Аминокислоты: названия и формулы. Оптимальное соотношение BCAA Химические формулы аминокислот

Аминокислоты: названия

Сгруппируем аминокислоты в таблице №2 по строению радикала (R) (формуле) (третий столбец таблицы) и по названию (по алфавиту).

Здесь же отметим знаком * незаменимые (важнейшие для организма) аминокислоты.

Поясним, что существуют незаменимые и заменимые аминокислоты:

Незаменимые аминокислоты : Это важные аминокислоты, которые не могут быть синтезированы в организме. Поэтому нужно, чтобы они поступали в организм с пищей.

Существуют 8 незаменимых аминокислот для взрослого человека: лейцин, изолейцин, валин, метионин, фенилаланин, треонин, триптофан, лизин, также часто к ним относят гистидин.

Заменимые аминокислоты - это аминокислоты, которые могут соединяться в организме. Их можно получить двумя способами: либо в готовом виде из повседневного потребления пищи, либо производить самостоятельно из других видов аминокислот и веществ попадающих в организм.

К заменимым аминокислотам относят: аргинин, аспарагин, глутамин, глутаминовая кислота, глицин, орнитин, таурин и др. (см. таблицу №1)

Таблица №1

Теперь переходим к таблице №2 с формулами и названиями аминокислот.

Название аминокислоты

Сокращение (аминокислотный остаток в пептидах и белках)

Строение радикала (R). Формулы

Алифатические аминокислоты

Изолейцин*

CH 3 –CH 2 –CH–

CH 3

(CH 3) 2 CH–CH 2 –

Ароматические аминокислоты

Фенилаланин*

Гетероциклические аминокислоты

Гистидин

Триптофан*

Иминокислота

Аминокислоты содержащие –OH группу

CH 3 –CH(OH)–

Аминокислоты содержащие –COOH группу

Аспарагиновая кислота

Глутаминовая кислота

HOOC–CH 2 –CH 2 –

Аминокислоты содержащие –NH 2 CO группу

Аспарагин

NH 2 CO–CH 2 –

Глутамин

NH 2 CO–CH 2 –CH 2 –

Аминокислоты содержащие NH 2 –группу

NH 2 –C–NH–(CH 2) 2 –CH 2 –
NH

NH 2 –(CH 2) 3 –CH 2 –

Метионин*

CH 3 –S–CH 2 –CH 2 –

Более подробно формулы и аминокислот с названиями можно посмотреть на данной иллюстрации:


Также названия аминокислоты формируются :

По количеству аминогрупп (NH 2):

Две аминогруппы: используется приставка диамино -

Три аминогруппы: используется приставка триамино -


По количеству карбоксильных групп (COOH):

Две карбоксильные группы в аминокислоте: используется суффикс -диовая (кислота)

Три карбоксильные группы: используется суффикс -триовая (кислота)

​​​​​​​

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Чтобы достичь хороших результатов в культуризме, спортсмен должен грамотно подходить к организации питания и физических нагрузок. Большинство современных атлетов отдают предпочтение спортивному питанию, в частности приему аминокислот. Чтобы правильно подобрать пищевые добавки, содержащие аминокислоты, нужно знать, для каких целей они предназначены, и как употреблять их.

Существует три разновидности аминокислот: заменимые, условно заменимые и незаменимые. Незаменимые аминокислоты не вырабатываются в организме самостоятельно, поэтому спортсмен обязательно должен добавлять их в свой рацион.

Аминокарбоновые кислоты – это один из элементов белка. Их наличие имеет большое значение для нормального функционирования организма, поскольку они необходимы для производства некоторых гормонов, ферментов и антител.


Чтобы организм мог нормально восполнять энергию после тренировок, а также наращивать мускулатуру, ему требуются аминокислоты. Поэтому они имеют немалое значение в питании бодибилдера.

Аминокислота - основной элемент построения всех белков животных и растительных организмов.

Значение аминокислот в бодибилдинге

Поскольку аминокислоты участвуют во всех процессах организма, связанных с физическими нагрузками (восстановлении и активации роста мышечной ткани, подавлении катаболических процессов), сложно переоценить их важность для современных атлетов. Дело в том, что физические нагрузки даже средней интенсивности приводят к существенному расходу свободных аминокислот (до 80%). И своевременное восполнение недостачи способствует наращиванию мышечной массы и повышению эффективности тренировок.
Особое значение для бодибилдеров имеют ВСАА (аминокарбоновые кислоты с разветвленными цепями – валин, изолейцин и лейцин), так как именно из них практически на 35% состоят все мышцы. Кроме того, BCAA обладают мощным антикатаболическим свойством и иными полезными функциями, а потому многие производители спортивного питания на их основе изготавливают пищевые добавки.

BCAA – это три незаменимых аминокислоты: лейцин, изолейцин и валин, исходный материал для строительства и регенерации клеток организма.

Виды аминокислот

Аминокислотные комплексы отличаются по составу, соотношению аминокислот и степени гидролизации. Аминокислоты в свободной форме, обычно изолированные, о них мы уже упоминали, это глютамин, аргинин, глицин и т.д., однако встречаются и комплексы. Гидролизаты - это разрушенные белки, в которых находятся короткие аминокислотные цепочки, способные быстро усваиваться. Ди- и трипептидные формы - это по сути тоже гидролизаты, только цепочки аминокислот более короткие, и состоят из 2 и 3 аминокислот соответственно, усваиваются очень быстро. BCAA - это комплекс из трех аминокислот - лейцина, изолейцина и валина, которые наиболее востребованы в мышцах, всасываются очень быстро.

Аминокислоты выпускаются в виде порошка, таблеток, растворов, капсул, однако все эти формы равнозначны по эффективности. Также существуют инъекционные формы аминокислот, которые вводятся внутривенно. Инъекционно применять аминокислоты не рекомендуется, так как это не имеет никаких преимуществ перед оральным приемом, зато есть большой риск осложнений и побочных реакций.

Одна из распространённый форм выпуска аминокислот - это таблетки и капсулы.

Классификация аминокислот

Есть следующая классификация аминокарбоновых кислот:

  1. Заменимые. Эти аминокислотные соединения могут синтезироваться самостоятельно, особенно, после приема энзимов, минералов и витаминов. В число заменимых аминокислот входят: глутамин, аргинин, таурин, аспарагин, глицин, карнитин и другие.
  2. Частично заменимые (или условно незаменимые). Синтезируются в организме в ограниченном количестве, к ним относятся тирозин, аланин, гистидин и цистеин.
  3. Незаменимые. Они не производятся организмом и поступают только с пищей и спортивными добавками, а потому нередко наблюдается их дефицит.

Человек получает этот вид кислот (ЕАА) только с продуктами питания. Их недостаток в организме приводит к ухудшению самочувствия, нарушению обмена веществ, снижению иммунитета.

При этом восполнить потребность ЕАА можно только при помощи обильного и сбалансированного рациона, что практически невозможно.
Именно поэтому многие бодибилдеры предпочитают получать незаменимые аминокислоты путем регулярного употребления соответствующих добавок. Для стимуляции синтеза белка и роста мышечной ткани принимать такие препараты рекомендуется и до, и после тренировок.

Валин, метионин, триптофан - это часть препаратов, в состав которых входят незаменимые аминокислоты.

Список незаменимых аминокислот

В него входят несколько ЕАА:

  1. Валин. Принимает участие в образовании гликогена и стимулирует выработку энергии во время низкокалорийной диеты.
  2. Изолейцин. Расщепляет холестерин, необходим для образования гемоглобина и гликогена, а также метаболизма углеводов.
  3. Лейцин. Снижает при диабете уровень сахара в крови, наполняет организм энергией, принимает участие в метаболизме углеводов и активирует расщепление холестерина.
  4. Лизин. При метаболизме в сочетании с метионином и витамином С образует карнитин, улучшающий устойчивость организма к стрессам и утомляемости. Также стимулирует умственную деятельность, поддерживает высокую производительность иммунной системы, положительно влияет на абсорбцию кальция и восстановление соединительных и костных тканей.
  5. Метионин. Является мощным антиоксидантом, активизирует процесс регенерации тканей почек и печени, обладает липотропным воздействием, принимает участие в образовании креатина, цистеина, адреналина и холина.
  6. Треонин. Необходим для образования эластина и коллагена, роста тканей, биосинтеза изолейцина и активизации иммунной системы. Способствует процессу энергообмена в клетках мышц.
  7. Триптофан. Свое рода антидепрессант. В комплексе с витамином В6 и биотином способствует нормализации сна. Также принимает участие в образовании серотонина и никотиновой кислоты, стимулирует увеличение в крови уровня гормона роста.
  8. Фенилаланин (стимулятор ЦНС). Требуется для выработки коллагена и нейротрансмиттеров, участвует в образовании трийодтиронина, тироксина, допамина, норадреналина, адреналина, меланина, инсулина. Благотворно влияет на работу кровеносной системы, способствует снижению аппетита и улучшения настроения, внимания, памяти и работоспособности.

Так как незаменимые амины не могут быть синтезированы в организме, то они все необходимы организму. Однако для атлетов наиболее важными являются амины с боковыми разветвленными цепями, также известные под названием БЦАА. В данную группу входит три вещества: изолейцин, валин, лейцин.

Название этих веществ связано с их молекулярной структурой, содержащей дополнительную углеводную цепь. Это уникальные амины, так как они метаболизируются в мускульных тканях, в то время как остальные аминокислотные соединения обрабатываются в печени. Сейчас вполне понятно, почему ВСАА часто называют мускульными аминами.
Среди аминов группы ВСАА наибольшими анаболическими свойствами характеризуется лейцин. Сегодня БЦАА можно купить в виде отдельной добавки, а также эти вещества входят в состав большого количества других добавок, скажем, гейнеры, предтренировочные комплексы и т.д.

BCAA

ВСАА обладают широким спектром положительных эффектов, о которых мы сейчас и расскажем.

Употребление этих аминокислот стимулирует образование новой мышечной ткани, ускоряет восстановление и замедляет процессы разрушения существующей, нормализует процессы жирового обмена, ускоряет сжигание жира и улучшает метаболизм.

  • Антикатаболическое воздействие

Амины группы БЦАА способны эффективно защищать мускулы от разрушения. Это свойство веществ активно используется билдерами во время сушки, когда приходится сидеть на низкоуглеводной диетической программе питания.

Во время тренинга гликогеновый запас организма расходуется достаточно быстро и для получения энергии начинают использоваться белковые соединения, из которых состоят мускульные ткани.
Так как во время сушки количество углеводов ограничено, то и запасы энергии в организме невелики. Это может привести к серьезным потерям массы. При этом заметим, что чем меньше жировой массы в вашем теле, тем выше вероятность потери мускульных тканей. Если использовать перед кардио сессией ВСАА, то этого можно избежать.

  • Повышается эффективность тренинга

Многие начинающие атлеты интересуются, могут ли БЦАА увеличить эффективность занятий. Чтобы ответить на этот вопрос, приведем результаты одного исследования. Участники эксперимента были разделены на две группы. Представители первой принимали плацебо, а во второй использовались ВСАА. Тренировочный процесс был одинаков в каждой из групп.
В результате ученые констатировали, что при употреблении аминов снизилась скорость секреции кортизола и особого фермента, способного разрушать мускульные ткани – креатинкиназы. В тоже время было зафиксировано повышение концентрации мужского гормона. Также следует сказать, что испытуемые с большой жировой массой употребляли амины в большем количестве, чтобы проявился анаболический эффект добавки.

  • Стимуляция производства анаболических гормональных веществ

К группе анаболических гормонов следует причислить соматотропин, инсулин и тестостерон. Все они способны противостоять разрушительному воздействию на организм кортизола. В ходе многочисленных исследований было доказано, что БЦАА способны ускорить производство всех этих веществ.
Этот факт также объясняет сильные антикатаболические свойства аминов группы БЦАА. Например, лейцин обладает способность усиливать работу инсулина, что приводит к ускорению производства белковых соединений в мускульных тканях. Также есть результаты исследований, которые указывают на положительное воздействие лейцина применительно к процессам редукции адипозных тканей. Также заметим, что эффективность применения добавок с аминами группы ВСАА можно усилить с помощью витамина В1.

Глютамин

Глютамин (англ. Glutamine) – это условно незаменимая аминокислота, входящая в состав белка и необходимая для эффективного роста мышц и поддержки иммунной системы. Глютамин весьма распространен в природе, для человека является условно незаменимой аминокислотой. Глютамин в достаточно больших количествах циркулирует в крови и накапливается в мышцах. Глютамин является самой распространенной аминокислотой организма, а мышцы состоят из него на 60%, это лишний раз подчеркивает его значение в бодибилдинге.

Для эффективного и продуктивного роста мышечной ткани необходим глютамин. Эта аминокислота в избытке содержится в клетках мышечной ткани и циркулирует в крови.

Эффекты глютамина

  • Участвует в синтезе белков мышц.
  • Является источником энергии, наряду с глюкозой.
  • Оказывает антикатаболическое действие (подавляет секрецию кортизола).
  • Вызывает подъем уровня гормона роста (при употреблении 5 г ежедневно уровень ГР возрастает в 4 раза).
  • Укрепляет иммунитет.
  • Ускоряет восстановление после тренировок, предотвращает развитие перетренированности.

Как принимать глютамин?

Рекомендуемые дозы глютамина 4-8 г в сутки. Оптимально разделить эту дозу на два приема: сразу после тренировки и перед сном на голодный желудок. После тренинга глютамин быстро насыщает истощенный пул, подавляет катаболизм и запускает мышечный рост. Перед сном глютамин рекомендуется принимать, потому что ночью вырабатывается гормон роста, и глютамин может усиливать этот процесс. В дни отдыха принимайте глютамин в обед и перед сном на голодный желудок.

Сочетание глютамина со спортивным питанием

Глютамин хорошо сочетается со многими спортивными добавками, при этом происходит взаимное усиление эффектов. Наиболее оптимальное сочетание: глютамин + креатин, протеин. В эту связку можно включать предтренировочные комплексы, анаболические комплексы (тестостероновые бустеры) и другие добавки. Не смешивайте вместе глютамин и протеин, так как это снизит скорость абсорбции первого, принимайте их с разницей как минимум в 30 минут. Креатин и глютамин можно смешивать и принимать одновременно.

Побочные эффекты

Глютамин - это естественная аминокислота, которая постоянно поступает с пищей. Дополнительный прием глютамина не вреден для здоровья, и как правило не вызывает никаких побочных эффектов.

Другие аминокислоты распространенные в бодибилдинге

  • Аргинин - улучшение питания мышц, транспорт питательных веществ, пампинг.
  • L-карнитин - один из лучших жиросжигателей, который абсолютно безопасен для здоровья.
  • Бета-аланин - мышечный антиоксидант и восстановитель
  • Цитруллин - мощный восстановитель энергии после тренинга, профилактирует перетренированность, улучшает питание мышц.

Аминокислоты из аптеки

Современная медицина придает большое значение препаратам на основе аминокислот. Все биохимические системы организма состоят из этих соединений, и это обуславливает нужду в их производстве (большую часть аминокислот вы можете приобрести в аптеке).

Основное назначение аминокислот − синтез энзимов, которые являются природными ускорителями всех химических реакций в организме. Чем лучше и эффективнее происходят процессы синтеза белков, тем больше энергии выделяется у человека.

Подсчитано, что действие аминокислот в организмах спортсменов обеспечивает около 10% их общей энергии. Если мышцы исчерпали запасы энергии за время тренировки, то для восстановления физических показателей и прогресса необходимо употребление значительного количества аминокислот.
Некоторые из аминокислот способны влиять на выработку гормонов роста, что делает их полезными для атлетов, занимающихся силовыми видами спорта. Этот факт был доказан во время эксперимента: после приема L-аргинина и L-орнитина у испытуемых произошло кратковременное, но довольно значительное естественное повышение уровня гормона роста.
Для двадцати двух участников эксперимента была написана силовая программа, продолжительность которой составила пять недель. Одной группе в рацион добавляли определенное количество L-аргинина, а другая группа принимала плацебо (вещество, обладающее слабой химической и анаболической активностью). После окончания курса занятий, были проведены измерения силовых и мускульных приростов всех тренирующихся. Результаты показали, что спортсмены, принимавшие аминокислоты, имели гораздо более существенные достижения.

Фенилаланин

Одной из самых ценных для организма аминокислот является фенилаланин. Она оказывает важное влияние на организм. Одной из ее функций является защита эндорфинов. Эти клетки контролируют болевые ощущения в организме, и наличие D- и L-фенилаланина способствует снятию острых болей на долгосрочный период. Эта аминокислота вырабатывается в организме естественным образом и обладает в тысячу раз более высокой эффективностью, чем морфий. Прием небольшого количества фенинлаланина оказывает хороший обезболивающий эффект.

Глицин

Не менее ценной аминокислотой из аптеки является Глицин – аминокислота, не имеющая оптических изомеров, которая входит в состав многих белков и разных биологических соединений. Его рекомендуют употреблять при заболеваниях центрально - нервной системы, продолжительном стрессовом состоянии, при бессонице, повышенной возбудимости, тяжелых физических нагрузках, ишемическом инсульте. Рекомендуется употреблять 0.3 г в сутки в течении месяца. При необходимости курс можно повторить.

Действие глицина

  • Улучшается настроение.
  • Уменьшается агрессивность.
  • Нормализуется сон.
  • Повышается умственная работоспособность.
  • Нервная система получает дополнительную защиту от воздействия алкоголя и других вредных веществ.

Глицин можно встретить в любой аптеке, средняя цена – 50 руб. за упаковку. Многие принимают глицин для стимулирования деятельности мозга, эта аптечная аминокислота очень популярна и у спортсменов.

Метионин

Метионин является незаменимой аминокислотой, входящей в состав белков, так же она:

  • понижает уровень холестерина в крови
  • используется в качестве антидепресанта
  • улучшает работу печени

В большом количестве метионин содержится: в мясе (говядина и курица), а также ее много в твороге, яйцах, в пшенице, рисе, овсянке, перловке, гречке, макаронах. Не так много ее содержится в бананах, сое, бобах. Принимать ее рекомендуется по 0.5г три раза в день. Данную аптечную аминокислоту обычно назначают при заболеваниях печени, или при белковой недостаточности. Противопоказан прием, если у вас сильная чувствительность к метионину. Стоимость в аптеках – 100 руб. за пачку.

Глютамин

60% аминокислот внутри мышц – это глютамин, он выполняет очень много различных функций в организме, поэтому его дополнительный прием в виде добавки точно не помешает.

Глютамин – это незаменимая аминокислота, которую вы можете приобрести в аптеке, она входит в состав белков и необходима для полноценного роста мышц и поддержания иммунитета. Стоимость глютамина намного выше, чем на глицин, но возможно в аптеке купить ее будет выгоднее, чем вы приобретете ее в магазине спортивного питания. Рекомендовано принимать глютамин по - 5 г 2 раза в день.
Действие глютамина

  • Является источником энергии.
  • Является антикатаболической защитой.
  • Способствует укреплению иммунитета.
  • Улучшает качество восстановительных процессов.
  • Стимулирует рост мышц.

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты ). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α- аминокислотами и на их примере можно показать дополнительные способы классификации.

По строению бокового радикала

Выделяют

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин),
  • ароматические (фенилаланин, тирозин, триптофан),
  • серусодержащие (цистеин, метионин),
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH 2 -группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

Обычно названия аминокислот сокращаются до 3-х буквенного обозначения. Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

Строение протеиногенных аминокислот

По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е. их синтез происходит в недостаточном количестве, особенно это касается детей.

Белки составляют материальную основу химической деятельности клетки. Функции белков в природе универсальны. Названию белки, наиболее принятому в отечественной литературе, соответствует термин протеины (от греч. proteios - первый). К настоящему времени достигнуты большие успехи в установлении соотношения структуры и функций белков, механизма их участия в важнейших процессах жизнедеятельности организма и в понимании молекулярных основ патогенеза многих болезней.

В зависимости от молекулярной массы различают пептиды и белки. Пептиды имеют меньшую молекулярную массу, чем белки. Для пептидов более свойственна регуляторная функция (гормоны, ингибиторы и активаторы ферментов, переносчики ионов через мембраны, антибиотики, токсины и др.).

12.1. α -Аминокислоты

12.1.1. Классификация

Пептиды и белки построены из остатков α-аминокислот. Общее число встречающихся в природе аминокислот превышает 100, но некоторые из них обнаружены лишь в определенном сообществе орга- низмов, 20 наиболее важных α-аминокислот постоянно встречаются во всех белках (схема 12.1).

α-Аминокислоты - гетерофункциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу у одного и того же атома углерода.

Схема 12.1. Важнейшие α-аминокислоты*

* Сокращенные обозначения применяются только для записи аминокислотных остатков в молекулах пептидов и белков. ** Незаменимые аминокислоты.

Названия α-аминокислот могут быть построены по заместительной номенклатуре, но чаще используются их тривиальные названия.

Тривиальные названия α-аминокислот обычно связаны с источниками выделения. Серин входит в состав фиброина шелка (от лат. serieus - шелковистый); тирозин впервые выделен из сыра (от греч. tyros - сыр); глутамин - из злаковой клейковины (от нем. Gluten - клей); аспарагиновая кислота - из ростков спаржи (от лат. asparagus - спаржа).

Многие α-аминокислоты синтезируются в организме. Некоторые аминокислоты, необходимые для синтеза белков, в организме не образуются и должны поступать извне. Такие аминокислоты называют незаменимыми (см. схему 12.1).

К незаменимым α-аминокислотам относятся:

валин изолейцин метионин триптофан

лейцин лизин треонин фенилаланин

α-Аминокислоты классифицируют несколькими способами в зависимости от признака, положенного в основу их деления на группы.

Одним из классификационных признаков служит химическая природа радикала R. По этому признаку аминокислоты делятся на алифатические, ароматические и гетероциклические (см. схему 12.1).

Алифатические α-аминокислоты. Это наиболее многочисленная группа. Внутри нее аминокислоты подразделяют с привлечением дополнительных классификационных признаков.

В зависимости от числа карбоксильных групп и аминогрупп в молекуле выделяют:

Нейтральные аминокислоты - по одной группе NH 2 и СООН;

Основные аминокислоты - две группы NH 2 и одна группа

СООН;

Кислые аминокислоты - одна группа NH 2 и две группы СООН.

Можно отметить, что в группе алифатических нейтральных аминокислот число атомов углерода в цепи не бывает больше шести. При этом не существует аминокислоты с четырьмя атомами углерода в цепи, а аминокисоты с пятью и шестью атомами углерода имеют только разветвленное строение (валин, лейцин, изолейцин).

В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

Гидроксильная - серин, треонин;

Карбоксильная - аспарагиновая и глутаминовая кислоты;

Тиольная - цистеин;

Амидная - аспарагин, глутамин.

Ароматические α-аминокислоты. К этой группе относятся фенилаланин и тирозин, построенные таким образом, что бензольные кольца в них отделены от общего α-аминокислотного фрагмента метиленовой группой -СН 2-.

Гетероциклические α-аминокислоты. Относящиеся к этой группе гистидин и триптофан содержат гетероциклы - имидазол и индол соответственно. Строение и свойства этих гетероциклов рассмотрены ниже (см. 13.3.1; 13.3.2). Общий принцип построения гетероциклических аминокислот такой же, как и ароматических.

Гетероциклические и ароматические α-аминокислоты можно рассматривать как β-замещенные производные аланина.

К героциклическим относится также аминокислота пролин, в которой вторичная аминогруппа включена в состав пирролидинового

В химии α-аминокислот большое внимание уделяется строению и свойствам «боковых» радикалов R, которые играют важную роль в формировании структуры белков и выполнении ими биологических функций. Большое значение имеют такие характеристики, как полярность «боковых» радикалов, наличие в радикалах функциональных групп и способность этих функциональных групп к ионизации.

В зависимости от бокового радикала выделяют аминокислоты с неполярными (гидрофобными) радикалами и аминокислоты c поляр- ными (гидрофильными) радикалами.

К первой группе относятся аминокислоты с алифатическими боковыми радикалами - аланин, валин, лейцин, изолейцин, метионин - и ароматическими боковыми радикалами - фенилаланин, триптофан.

Ко второй группе принадлежат аминокислоты, у которых в радикале имеются полярные функциональные группы, способные к иони- зации (ионогенные) или не способные переходить в ионное состояние (неионогенные) в условиях организма. Например, в тирозине гидроксильная группа ионогенная (имеет фенольный характер), в серине - неионогенная (имеет спиртовую природу).

Полярные аминокислоты с ионогенными группами в радикалах в определенных условиях могут находиться в ионном (анионном или катионном) состоянии.

12.1.2. Стереоизомерия

Основной тип построения α-аминокислот, т. е. связь одного и того же атома углерода с двумя разными функциональными группами, радикалом и атомом водорода, уже сам по себе предопределяет хираль- ность α-атома углерода. Исключение составляет простейшая аминокислота глицин H 2 NCH 2 COOH, не имеющая центра хиральности.

Конфигурация α-аминокислот определяется по конфигурационному стандарту - глицериновому альдегиду. Расположение в стандартной проекционной формуле Фишера аминогруппы слева (подобно группе ОН в l-глицериновом альдегиде) соответствует l-конфи- гурации, справа - d-конфигурации хирального атома углерода. По R, S-системе α-атом углерода у всех α-аминокислот l-ряда имеет S-, а у d-ряда - R-конфигурацию (исключение составляет цистеин, см. 7.1.2).

Большинство α-аминокислот содержит в молекуле один асимметрический атом углерода и существует в виде двух оптически активных энантиомеров и одного оптически неактивного рацемата. Почти все природные α-аминокислоты принадлежат к l-ряду.

Аминокислоты изолейцин, треонин и 4-гидроксипролин содержат в молекуле по два центра хиральности.

Такие аминокислоты могут существовать в виде четырех стереоизомеров, представляющих собой две пары энантиомеров, каждая из которых образует рацемат. Для построения белков животных организмов используется только один из энантиомеров.

Стереоизомерия изолейцина аналогична рассмотренной ранее стереоизомерии треонина (см. 7.1.3). Из четырех стереоизомеров в состав белков входит l-изолейцин с S-конфигурацией обоих асимметрических атомов углерода С-α и С-β. В названиях другой пары энантиомеров, являющихся диастереомерами по отношению к лейцину, используется приставка алло-.

Расщепление рацематов. Источником получения α-аминокислот l-ряда служат белки, которые подвергают для этого гидролитическому расщеплению. В связи с большой потребностью в отдельных энантиомерах (для синтеза белков, лекарственных веществ и т. п.) разработаны химические методы расщепления синтетических рацемических аминокислот. Предпочтителен ферментативный способ расщепления с использованием ферментов. В настоящее время для разделения рацемических смесей используют хроматографию на хиральных сорбентах.

12.1.3. Кислотно-основные свойства

Амфотерность аминокислот обусловлена кислотными (СООН) и основными (NH 2) функциональными группами в их молекулах. Аминокислоты образуют соли как со щелочами, так и с кислотами.

В кристаллическом состоянии α-аминокислоты существуют как диполярные ионы H3N+ - CHR-COO- (обычно используемая запись

строения аминокислоты в неионизированной форме служит лишь для удобства).

В водном растворе аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм.

Положение равновесия зависит от рН среды. У всех аминокислот преобладают катионные формы в сильнокислых (рН 1-2) и анион- ные - в сильнощелочных (рН >11) средах.

Ионное строение обусловливает ряд специфических свойств аминокислот: высокую температуру плавления (выше 200 ?С), растворимость в воде и нерастворимость в неполярных органических растворителях. Способность большинства аминокислот хорошо растворяться в воде является важным фактором обеспечения их биологического функционирования, с нею связаны всасывание аминокислот, их транспорт в организме и т. п.

Полностью протонированная аминокислота (катионная форма) с позиций теории Брёнстеда является двухосновной кислотой,

Отдавая один протон, такая двухосновная кислота превращается в слабую одноосновную кислоту - диполярный ион с одной кислотной группой NH 3 + . Депротонирование диполярного иона приводит к получению анионной формы аминокислоты - карбоксилат-иона, являющегося основанием Брёнстеда. Значения характеризую-

щие кислотные свойства карбоксильной группы аминокислот, обычно лежат в интервале от 1 до 3; значения рK а2 характеризующие кислотность аммониевой группы, - от 9 до 10 (табл. 12.1).

Таблица 12.1. Кислотно-основные свойства важнейших α-аминокислот

Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определенных значениях рН существенно зависит от строения радикала, главным образом от присутствия в нем ионогенных групп, играющих роль дополнительных кислотных и основных центров.

Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты равны, называется изоэлектрической точкой (p/).

Нейтральные α-аминокислоты. Эти аминокислоты имеют значения рI несколько ниже 7 (5,5-6,3) вследствие большей способности к ионизации карбоксильной группы под влиянием -/-эффекта группы NH 2 . Например, у аланина изоэлектрическая точка находится при рН 6,0.

Кислые α-аминокислоты. Эти аминокислоты имеют в радикале дополнительную карбоксильную группу и в сильнокислой среде находятся в полностью протонированной форме. Кислые аминокислоты являются трехосновными (по Брёндстеду) с тремя значениями рК а, как это видно на примере аспарагиновой кислоты (р/ 3,0).

У кислых аминокислот (аспарагиновой и глутаминовой) изоэлектрическая точка находится при рН много ниже 7 (см. табл. 12.1). В организме при физиологических значениях рН (например, рН крови 7,3-7,5) эти кислоты находятся в анионной форме, так как у них ионизированы обе карбоксильные группы.

Основные α-аминокислоты. В случае основных аминокислот изоэлектрические точки находятся в области рН выше 7. В сильно- кислой среде эти соединения также представляют собой трехосновные кислоты, этапы ионизации которых показаны на примере лизина (р/ 9,8).

В организме основные аминокислоты находятся в виде катионов, т. е. у них протонированы обе аминогруппы.

В целом ни одна α -аминокислота in vivo не находится в своей изоэлектрической точке и не попадает в состояние, отвечающее наименьшей растворимости в воде. Все аминокислоты в организме находятся в ионной форме.

12.1.4. Аналитически важные реакции α -аминокислот

α-Аминокислоты как гетерофункциональные соединения вступают в реакции, характерные как для карбоксильной, так и для аминогруппы. Некоторые химические свойства аминокислот обусловлены функциональными группами в радикале. В настоящем разделе рассматриваются реакции, имеющие практическое значение для идентификации и анализа аминокислот.

Этерификация. При взаимодействии аминокислот со спиртами в присутствии кислотного катализатора (например, газообразный хлороводород) с хорошим выходом получаются сложные эфиры в виде гидрохлоридов. Для выделения свободных эфиров реакционную смесь обрабатывают газообразным аммиаком.

Сложные эфиры аминокислот не имеют диполярного строения, поэтому, в отличие от исходных кислот, они растворяются в органических растворителях и обладают летучестью. Так, глицин - крис- таллическое вещество с высокой температурой плавления (292 ?С), а его метиловый эфир - жидкость с температурой кипения 130 ?С. Анализ эфиров аминокислот можно проводить с помощью газожидкостной хроматографии.

Реакция с формальдегидом. Практическое значение имеет реакция с формальдегидом, которая лежит в основе количественного определения аминокислот методом формольного титрования (метод Сёренсена).

Амфотерность аминокислот не позволяет проводить непосредственно титрование их щелочью в аналитических целях. При взаимодействии аминокислот с формальдегидом получаются относительно устойчивые аминоспирты (см. 5.3) - N-гидроксиметильные производные, свободную карбоксильную группу которых затем титруют щелочью.

Качественные реакции. Особенность химии аминокислот и белков заключается в использовании многочисленных качественных (цветных) реакций, составлявших ранее основу химического анализа. В настоящее время, когда исследования проводятся с помощью физико-химических методов, многие качественные реакции продолжают применять для обнаружения α-аминокислот, например, в хроматографическом анализе.

Хелатообразование. С катионами тяжелых металлов α-аминокислоты как бифункциональные соединения образуют внутрикомплексные соли, например, со свежеприготовленным гидроксидом меди(11) в мягких условиях получаются хорошо кристаллизующиеся хелатные

соли меди(11) синего цвета (один из неспецифических способов обнаружения α-аминокислот).

Нингидринная реакция. Общая качественная реакция α-аминокислот - реакция с нингидрином. Продукт реакции имеет синефиолетовый цвет, что используется для визуального обнаружения аминокислот на хроматограммах (на бумаге, в тонком слое), а также для спектрофотометрического определения на аминокислотных анализаторах (продукт поглощает свет в области 550-570 нм).

Дезаминирование. В лабораторных условиях эта реакция осуществляется при действии азотистой кислоты на α-аминокислоты (см. 4.3). При этом образуется соответствующая α-гидроксикислота и выделяется газообразный азот, по объему которого судят о количестве вступившей в реакцию аминокислоты (метод Ван-Слайка).

Ксантопротеиновая реакция. Эта реакция используется для обнаружения ароматических и гетероциклических аминокислот - фенилаланина, тирозина, гистидина, триптофана. Например, при действии концентрированной азотной кислоты на тирозин образуется нитропроизводное, окрашенное в желтый цвет. В щелочной среде окраска становится оранжевой в связи с ионизацией фенольной гидроксильной группы и увеличением вклада аниона в сопряжение.

Существует также ряд частных реакций, позволяющих обнаруживать отдельные аминокислоты.

Триптофан обнаруживают при помощи реакции с п-(диметиламино)бензальдегидом в среде серной кислоты по появляющемуся красно-фиолетовому окрашиванию (реакция Эрлиха). Эта реакция используется для количественного анализа триптофана в продуктах расщепления белков.

Цистеин обнаруживают с помощью нескольких качественных реакций, основанных на реакционной способности содержащейся в нем меркаптогруппы. Например, при нагревании раствора белка с ацетатом свинца (СНзСОО)2РЬ в щелочной среде образуется черный осадок сульфида свинца PbS, что указывает на присутствие в белках цистеина.

12.1.5. Биологически важные химические реакции

В организме под действием различных ферментов осуществляется ряд важных химических превращений аминокислот. К таким пре- вращениям относятся трансаминирование, декарбоксилирование, элиминирование, альдольное расщепление, окислительное дезаминирование, окисление тиольных групп.

Трансаминирование является основным путем биосинтеза α-ами- нокислот из α-оксокислот. Донором аминогруппы служит аминокислота, имеющаяся в клетках в достаточном количестве или избытке, а ее акцептором - α-оксокислота. Аминокислота при этом превращается в оксокислоту, а оксокислота - в аминокислоту с соответствующим строением радикалов. В итоге трансаминирование представляет обратимый процесс взаимообмена амино- и оксо- групп. Пример такой реакции - получение l-глутаминовой кислоты из 2-оксоглутаровой кислоты. Донорной аминокислотой может служить, например, l-аспарагиновая кислота.

α-Аминокислоты содержат в α-положении к карбоксильной группе электроноакцепторную аминогруппу (точнее, протонированную аминогруппу NH 3 +), в связи с чем способны к декарбоксилированию.

Элиминирование свойственно аминокислотам, у которых в боковом радикале в β-положении к карбоксильной группе содержится электроноакцепторная функциональная группа, например гидроксильная или тиольная. Их отщепление приводит к промежуточным реакционноспособным α-енаминокислотам, легко переходящим в таутомерные иминокислоты (аналогия с кето-енольной таутомерией). α-Иминокислоты в результате гидратации по связи C=N и последующего отщепления молекулы аммиака превращаются в α-оксокислоты.

Такой тип превращений имеет название элиминирование-гидратация. Примером служит получение пировиноградной кислоты из серина.

Альдольное расщепление происходит в случае α-аминокислот, у которых в β-положении содержится гидроксильная группа. Например, серин расщепляется с образованием глицина и формальдегида (последний не выделяется в свободном виде, а сразу связывается с коферментом).

Окислительное дезаминирование может осуществляться с участием ферментов и кофермента НАД+ или НАДФ+ (см. 14.3). α-Аминокислоты могут превращаться в α-оксокислоты не только через трансаминирование, но и путем окислительного дезаминирования. Например, из l-глутаминовой кислоты образуется α-оксоглутаровая кислота. На первой стадии реакции осуществляется дегид- рирование (окисление) глутаминовой кислоты до α-иминоглутаровой

кислоты. На второй стадии происходит гидролиз, в результате которого получаются α-оксоглутаровая кислота и аммиак. Стадия гидролиза протекает без участия фермента.

В обратном направлении протекает реакция восстановительного аминирования α-оксокислот. Всегда содержащаяся в клетках α-оксоглутаровая кислота (как продукт метаболизма углеводов) превращается этим путем в L-глутаминовую кислоту.

Окисление тиольных групп лежит в основе взаимопревращений цистеиновых и цистиновых остатков, обеспечивающих ряд окислительно-восстановительных процессов в клетке. Цистеин, как и все тиолы (см. 4.1.2), легко окисляется с образованием дисульфида - цистина. Дисульфидная связь в цистине легко восстанавливается с образованием цистеина.

Благодаря способности тиольной группы к легкому окислению цистеин выполняет защитную функцию при воздействии на орга- низм веществ с высокой окислительной способностью. Кроме того, он был первым лекарственным средством, проявившим противолучевое действие. Цистеин используется в фармацевтической практике в качестве стабилизатора лекарственных препаратов.

Превращение цистеина в цистин приводит к образованию дисульфидных связей, например, в восстановленном глутатионе

(см. 12.2.3).

12.2. Первичная структура пептидов и белков

Условно считают, что пептиды содержат в молекуле до 100 (что соответствует молекулярной массе до 10 тыс.), а белки - более 100 аминокислотных остатков (молекулярная масса от 10 тыс. до нескольких миллионов).

В свою очередь, в группе пептидов принято различать олигопептиды (низкомолекулярные пептиды), содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, в состав цепи которых входит до 100 аминокислотных остатков. Макромолекулы с числом аминокислотных остатков, приближающимся или немного превышающим 100, не разграничивают по понятиям полипептиды и белки, эти термины часто используют как синонимы.

Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с обра- зованием пептидной (амидной) связи между мономерными звеньями (схема 12.2).

Конструкция полиамидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся пептидных (амидных) групп -СО-NH- и фрагментов -CH(R)-.

Один конец цепи, на котором находится аминокислота со свободной группой NH 2, называют N-концом, другой - С-концом,

Схема 12.2. Принцип построения пептидной цепи

на котором находится аминокислота со свободной группой СООН. Пептидные и белковые цепи записывают с N-конца.

12.2.1. Строение пептидной группы

В пептидной (амидной) группе -СО-NH- атом углерода находится в состоянии sp2-гибридизации. Неподеленная пара электронов атома азота вступает в сопряжение с π-электронами двойной связи С=О. С позиций электронного строения пептидная группа представляет собой трехцентровую p,π-сопряженную систему (см. 2.3.1), электронная плотность в которой смещена в сторону более электроотрицательного атома кислорода. Атомы С, Ои N, образующие сопряженную систему, находятся в одной плоскости. Распределение электронной плотности в амидной группе можно представить с по- мощью граничных структур (I) и (II) или смещения электронной плотности в результате +M- и - M-эффектов групп NH и C=O соответственно (III).

В результате сопряжения происходит некоторое выравнивание длин связей. Двойная связь С=О удлиняется до 0,124 нм против обычной длины 0,121 нм, а связь С-N становится короче - 0,132 нм по сравнению с 0,147 нм в обычном случае (рис. 12.1). Плоская сопряженная система в пептидной группе служит причиной затруднения вращения вокруг связи С-N (барьер вращения составляет 63-84 кДж/моль). Таким образом, электронное строение предопре- деляет достаточно жесткую плоскую структуру пептидной группы.

Как видно из рис. 12.1, α-атомы углерода аминокислотных остатков располагаются в плоскости пептидной группы по разные стороны от связи С-N, т. е. в более выгодном тpанс-положении: боковые радикалы R аминокислотных остатков в этом случае будут наиболее удалены друг от друга в пространстве.

Полипептидная цепь имеет удивительно однотипное строение и может быть представлена в виде ряда расположенных под углом друг

Рис. 12.1. Плоскостное расположение пептидной группы -CO-NH- и α-атомов углерода аминокислотных остатков

к другу плоскостей пептидных групп, соединенных между собой через α-атомы углерода связями Сα-N и Сα-Сsp 2 (рис. 12.2). Вращение вокруг этих одинарных связей весьма ограничено вследствие затруднений в пространственном размещении боковых радикалов аминокислотных остатков. Таким образом, электронное и пространственное строение пептидной группы во многом предопределяет структуру полипептидной цепи в целом.

Рис. 12.2. Взаимное положение плоскостей пептидных групп в полипептидной цепи

12.2.2. Состав и аминокислотная последовательность

При единообразно построенной полиамидной цепи специфичность пептидов и белков определяется двумя важнейшими характе- ристиками - аминокислотным составом и аминокислотной последовательностью.

Аминокислотный состав пептидов и белков - это природа и количественное соотношение входящих в них α-аминокислот.

Аминокислотный состав устанавливается путем анализа пептидных и белковых гидролизатов в основном хроматографическими методами. В настоящее время такой анализ осуществляется с помощью аминокислотных анализаторов.

Амидные связи способны гидролизоваться как в кислой, так и щелочной среде (см. 8.3.3). Пептиды и белки гидролизуются с образованием либо более коротких цепей - это так называемый частичный гидролиз, либо смеси аминокислот (в ионной форме) - полный гидролиз. Обычно гидролиз осуществляют в кислой среде, так как в условиях щелочного гидролиза многие аминокислоты неустойчивы. Следует отметить, что гидролизу подвергаются также амидные группы аспарагина и глутамина.

Первичная структура пептидов и белков - это аминокислотная последовательность, т. е. порядок чередования α-аминокислотных остатков.

Первичную структуру определяют путем последовательного отщепления аминокислот с какого-либо конца цепи и их идентификации.

12.2.3. Строение и номенклатура пептидов

Названия пептидов строят путем последовательного перечисления аминокислотных остатков, начиная с N-конца, с добавлением суффикса -ил, кроме последней С-концевой аминокислоты, для которой сохраняется ее полное название. Другими словами, названия

аминокислот, вступивших в образование пептидной связи за счет «своей» группы СООН, оканчиваются в названии пептида на -ил: аланил, валил и т. п. (для остатков аспарагиновой и глутаминовой кислот используют названия «аспартил» и «глутамил» соответствен- но). Названия и символы аминокислот означают их принадлежность к l -ряду, если не указано иное ( d или dl ).

Иногда в сокращенной записи символами Н (как часть аминогруппы) и ОН (как часть карбоксильной группы) уточняется незамещенность функциональных групп концевых аминокислот. Этим способом удобно изображать функциональные производные пептидов; например, амид приведенного выше пептида по С-концевой аминокислоте записывается Н-Asn-Gly-Phe-NH2.

Пептиды содержатся во всех организмах. В отличие от белков они имеют более разнородный аминокислотный состав, в частнос- ти, довольно часто включают аминокислоты d -ряда. В структурном отношении они также более разнообразны: содержат циклические фрагменты, разветвленные цепи и т. д.

Один из наиболее распространенных представителей трипептидов - глутатион - содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т. е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

12.3. Вторичная структура полипептидов и белков

Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны и более высокие уровни организа- ции, которые называют вторичной, третичной и четвертичной струк- турами.

Вторичная структура описывается пространственной ориентацией основной полипептидной цепи, третичная - трехмерной архитектурой всей белковой молекулы. Как вторичная, так и третичная структура связана с упорядоченным расположением макромолекулярной цепи в пространстве. Третичная и четвертичная структура белков рассматривается в курсе биохимии.

Расчетным путем было показано, что для полипептидной цепи одной из наиболее выгодных конформаций является расположение в пространстве в виде правозакрученной спирали, названной α-спиралью (рис. 12.3, а).

Пространственное расположение α-спирализованной полипептидной цепи можно представить, вообразив, что она обвивает некий

Рис. 12.3. α-Спиральная конформация полипептидной цепи

цилиндр (см. рис. 12.3, б). На один виток спирали в среднем приходится 3,6 аминокислотного остатка, шаг спирали составляет 0,54 нм, диаметр - 0,5 нм. Плоскости двух соседних пептидных групп располагаются при этом под углом 108?, а боковые радикалы аминокислот находятся на наружной стороне спирали, т. е. направлены как бы от поверхности цилиндра.

Основную роль в закреплении такой конформации цепи играют водородные связи, которые в α-спирали образуются между кар- бонильным атомом кислорода каждого первого и атомом водорода NН-группы каждого пятого аминокислотного остатка.

Водородные связи направлены почти параллельно оси α-спирали. Они удерживают цепь в закрученном состоянии.

Обычно белковые цепи спирализованы не полностью, а лишь частично. В таких белках, как миоглобин и гемоглобин, содержатся довольно длинные α-спиральные участки, например цепь миоглобина

спирализована на 75%. Во многих других белках доля спиральных участков в цепи может быть небольшой.

Другим видом вторичной структуры полипептидов и белков является β-структура, называемая также складчатым листом, или складчатым слоем. В складчатые листы укладываются вытянутые полипептидные цепи, связываемые множеством водородных связей между пептидными группами этих цепей (рис. 12.4). Во многих белках одновременно содержатся α-спиральные и β-складчатые структуры.

Рис. 12.4. Вторичная структура полипептидной цепи в виде складчатого листа (β-структура)

Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.

Аминокислоты.

Аминокислоты - органические бифункциональные соединения, в состав которых входит карбоксильная группа -СООН , а аминогруппа - NH 2 .

Разделяют α и β - аминокислоты:

В природе встречаются в основном α -кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С 5 Н 9 NO 2 ):

Самая простая аминокислота - глицин. Остальные аминокислоты можно разделить на следующие основные группы:

1) гомологи глицина - аланин, валин, лейцин, изолейцин.

Получение аминокислот.

Химические свойства аминокислот.

Аминокислоты - это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы - аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:

Кислотно-основные превращение можно представить в виде: