Гамма-излучение и его опасность для живых организмов. Гамма-излучение: понятие, источники, применение и способы защиты

Гамма-излучением называется одна из коротковолновых разновидностей электромагнитных излучений. Из-за крайне малой длины волны излучения гамма диапазона обладают выраженными корпускулярными свойствами, при этом волновые свойства практически отсутствуют.

Гамма обладает мощнейшим травмирующим действием на живые организмы, и при этом его совершенно невозможно распознать органами чувств.

Оно относится к группе ионизирующих излучений, то есть способствует превращению устойчивых атомов различных веществ в ионы с положительным или отрицательным зарядом. Скорость гамма-излучения сопоставима со скоростью света. Открытие ранее неизвестных радиационных потоков было сделано в 1900 году французским учёным Вилларом.

Для названий были использованы буквы греческого алфавита. Излучение, находящееся на шкале электромагнитных излучений после рентгеновского, получило название гаммы - третьей буквы алфавита.

Следует понимать, что границы между различными видами радиации, весьма условны.

Что такое гамма-излучение

Попробуем, избегая специфической терминологии, разобраться, что такое гамма ионизирующее излучение. Любое вещество состоит из атомов, которые в свою очередь включают в себя ядро и электроны. Атом, а тем более его ядро отличаются высокой устойчивостью, поэтому для их расщепления нужны особые условия.

Если эти условия каким-то образом возникают или получены искусственно, происходит процесс ядерного распада, который сопровождается выделением большого количества энергии и элементарных частиц.

В зависимости от того, что именно выделяется в этом процессе, излучения делятся на несколько видов. Альфа, бета и нейтронное излучение отличаются выделением элементарных частиц, а рентгеновские и гамма активный луч - это поток энергии.

Хотя, на самом деле, любое излучение, в том числе и излучение в гамма-диапазоне, подобно потоку частиц. В случае этого излучения частицами потока являются фотоны или кварки.

По законам квантовой физики, чем меньше длина волны, тем более высокой энергией обладают кванты излучения.

Так как длина волны гамма лучей очень мала, то можно утверждать, что энергия гамма излучения чрезвычайно велика.

Возникновение гамма-излучения

Источниками излучения в гамма-диапазоне являются различные процессы. Во вселенной существуют объекты, в которых происходят реакции. Результатом этих реакций является космическое гамма-излучение.

Основные источники гамма-лучей - это квазары и пульсары. Ядерные реакции с массивным выделением энергии и гамма-излучения также происходят в процессе преобразования звезды в сверхновую.

Гамма электромагнитное излучение возникает при различных переходах в области атомной электронной оболочки, а также при распаде ядер некоторых элементов. Среди источников гамма-лучей можно также назвать определённую среду с сильным магнитным полем, где элементарные частицы тормозятся сопротивлением этой среды.

Опасность гамма-лучей

В силу своих свойств радиация гамма-спектра обладает очень высокой проникающей способностью. Чтобы её задержать, нужна свинцовая стена толщиной не менее пяти сантиметров.

Кожные покровы и прочие защитные механизмы живого существа не являются препятствием гамма-излучению. Оно проникает прямо в клетки, оказывая разрушительное воздействие на все структуры. Облучённые молекулы и атомы вещества сами становятся источником излучения и провоцируют ионизацию других частиц.

В результате этого процесса из одних веществ получаются другие. Из них составляются новые клетки с другим геномом. Ненужные при строительстве новых клеток остатки старых структур становятся токсинами для организма.

Наибольшая опасность радиационных лучей для живых организмов, получивших дозу радиации, в том, что они не способны ощущать наличие в пространстве этой смертельной волны. А также в том, что у живых клеток нет никакой специфической защиты от разрушительной энергии, которую несёт гамма ионизирующее излучение. Наибольшее влияние этот вид радиации оказывает на состояние половых клеток, несущих молекулы ДНК.

Разные клетки организма по-разному ведут себя в гамма-лучах, и обладают разной степенью устойчивости к воздействию этого вида энергии. Однако ещё одним свойством гамма-излучения является кумулятивная способность.

Однократное облучение небольшой дозой не наносит непоправимого разрушительного воздействия на живую клетку. Именно поэтому радиационным излучениям нашлось применение в науке, медицине, промышленности и других областях человеческой деятельности.

Области применения гамма-лучей

Даже смертоносным лучам пытливые умы учёных нашли сферы применения. В настоящее время гамма-излучение используется в различных отраслях промышленности, идут на благо науки, а также успешно применяются в различных медицинских приборах.

Способность изменять структуру атомов и молекул оказалась на благо при лечении тяжёлых заболеваний, разрушающих организм на клеточном уровне.

Для лечения онкологических новообразований гамма-лучи незаменимы, так как способны разрушить аномальные клетки, и прекратить их стремительное деление. Иногда остановить аномальный рост раковых клеток невозможно ничем, тогда на помощь приходит гамма-излучение, где клетки уничтожаются полностью.

Применяется гамма ионизирующее излучение для уничтожения патогенной микрофлоры и различных потенциально опасных загрязнений. В радиоактивных лучах стерилизуют медицинские инструменты и приборы. Также данный вид радиации применяется для обеззараживания некоторых продуктов.

Гамма-лучами просвечивают различные цельнометаллические изделия для космической и других отраслей промышленности с целью обнаружения скрытых дефектов. В тех областях производства, где необходим предельный контроль за качеством изделий, этот вид проверки просто незаменим.

При помощи гамма-лучей учёные измеряют глубину бурения, получают данные о возможности залегания различных пород. Гамма-лучи могут быть использованы и в селекции. Строго дозированным потоком облучаются определённые отобранные растения, чтобы получить нужные мутации в их геноме. Таким способом селекционеры получают новые породы растений с нужными им свойствами.

С помощью гамма-потока определяются скорости космических аппаратов и искусственных спутников. Посылая лучи в космическое пространство, учёные могут определить расстояние и смоделировать путь космического аппарата.

Способы защиты

Земля обладает естественным механизмом защиты от космической радиации, это озоновый слой и верхние слои атмосферы.

Те лучи, которые, обладая огромными скоростями, проникают в защищённое пространство земли, не причиняют большого вреда живым существам. Наибольшую опасность представляют источники и гамма-радиация, полученная в земных условиях.

Самым главным источником опасности радиационного заражения остаются предприятия, где под контролем человека осуществляется контролируемая ядерная реакция. Это атомные электростанции, где производится энергия для обеспечения населения и промышленности светом и теплом.

Для обеспечения работников этих объектов принимаются самые серьёзные меры. Трагедии, произошедшие в разных точках мира, из-за утраты человеком контроля за ядерной реакцией, научили людей быть осторожными с невидимым врагом.

Защита работников электростанций

На предприятиях ядерной энергетики и производствах, связанных с использованием гамма-излучения, строго ограничивается время контакта с источником радиационной опасности.

Все сотрудники, имеющие служебную необходимость контактировать или находиться вблизи источника гамма-излучения, используют специальные защитные костюмы и проходят несколько ступеней очистки перед тем, как вернуться в «чистую» зону.

Для эффективной защиты от гамма-лучей используются материалы, обладающие высокой прочностью. К ним относятся свинец, высокопрочный бетон, свинцовое стекло, определённые виды стали. Эти материалы применяются в сооружении защитных контуров электростанций.

Элементы из этих материалов используются при создании противорадиационных костюмов для сотрудников электростанций, имеющих допуск к источникам радиации.

В так называемой «горячей» зоне свинец нагрузки не выдерживает, так как его температура плавления недостаточно высока. В области, где протекает термоядерная реакция с выделением высоких температур, используются дорогие редкоземельные металлы, например вольфрам и тантал.

Все люди, имеющие дело с гамма-излучением, обеспечиваются индивидуальными измерительными приборами.

Ввиду отсутствия естественной чувствительности к радиации, человек может воспользоваться дозиметром, чтобы определить, какую дозу радиации он получил за определённый период.

Нормальной считается доза, не превышающая 18-20 микрорентген в час. Ничего особенно страшного не произойдёт при облучении дозой до 100 микрорентген. Если человек получил такую дозу, могут проявиться последствия через две недели.

При получении дозы в 600 рентген человеку грозит смерть в 95% случаев в течение двух недель. Доза в 700 рентген смертельна в 100% случаев.

Из всех видов радиации именно гамма-лучи несут наибольшую опасность для человека. К сожалению, вероятность радиационного заражения существует для каждого. Даже находясь вдали от промышленных предприятий, производящих энергию посредством расщепления атомного ядра, можно подвергнуться опасности облучения.

История знает примеры таких трагедий.

Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое - при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.

При энергии свыше 10 14 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты - 10 20 –10 21 эВ , приходят из космоса крайне редко - примерно один квант в 100 лет на квадратный километр.

Источники

Изображение получено в 2005 году гамма-телескопом HESS . Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей - энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. ). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта - нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.

Столкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. ). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд .

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника )

В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.

При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.

Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.

Приемники

Расположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см , которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).

Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц - космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.

Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.

Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение , которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.

При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц - широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.

Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.

Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.

Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз - по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.

Важная особенность ФЭУ - быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.

Проникающая радиация. Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду

Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду. По своим физическим свойствам эти виды излучения различаются между собой, однако общим для них является способность распространяться в воздухе во все стороны на расстояния до 2,5-3 км. Время действия проникающей радиации 15-20 сек и определяется временем подъема облака взрыва на такую высоту, при которой гамма-излучение полностью поглощается толщей воздуха и не достигает поверхности земли. Необходимо различать проникающую радиацию, действующую всего несколько секунд и радиоактивное заражение местности, поражающее действие которого сохраняется в течение длительного времени. Основным источником гамма-излучения являются осколки деления ядерного горючего, находящиеся в зоне взрыва и радиоактивном облаке нейтроны при ядерном взрыве образуются при реакциях деления (в процессе цепной реакции), при термоядерном синтезе, а также в результате распада осколков деления. Нейтроны, образующиеся при реакциях деления и синтеза испускаются в течение долей микросекунды и называются мгновенными , а нейтроны образующиеся при распаде осколков деления – запаздывающими . Под действием нейтронов некоторые нерадиоактивные вещества становятся радиоактивными. Этот процесс называется наведенной активностью .

Нейтроны и гамма-излучение действуют практически одновременно. Хотя нейтроны испускаются, главным образом, в первые секунды, а гамма-излучение длится еще несколько секунд, этот факт существенного значения не имеет. В связи с чем поражающее действие проникающей радиации определяется суммарной дозой, получаемой от сложения доз гамма-излучения и нейтронов. Так называемые нейтронные боеприпасы , представляют собой ядерные боеприпасы с термоядерным зарядом малой мощности, отличающимся повышенным выходом нейтронного излучения. В нейтронном боеприпасе такие поражающие факторы, как ударная волна, световое излучение, радиоактивное заражение местности имеют второстепенное значение, а основным поражающим фактором взрыва нейтронного боеприпаса является проникающая радиация. В составе проникающей радиации в таком боеприпасе нейтронный поток преобладает над гамма-излучением.

Поражающее действие проникающей радиации на людей зависит от полученной дозы радиации , т.е. от количества поглощенной организмом энергии и связанной с этим степенью ионизации тканей. Результатом воздействия различных доз радиации на человека является острая лучевая болезнь (ОЛБ) .

Для защиты от проникающей радиации используются различные материалы, ослабляющие действие гамма-излучения и нейтронов. Эта способность материалов характеризуется величиной слоя половинного ослабления . Под этим понимают толщину материала, проходя через, которую гамма-излучение и поток нейтронов ослабляется в 2 раза. При этом следует помнить, что гамма-излучение ослабляется тем больше, чем плотнее вещество, например, свинец, бетон, сталь. Нейтронный поток сильнее ослабляется легкими материалами (вода, полиэтилен, парафин, стеклопластик), содержащими ядра легких элементов, таких как водород, углерод и др. Считается, что слой воды, толщина которого 70 см или слой парафина 650 см ослабляет поток нейтронов в 100 раз (Табл. 1).

Цель работы

Работа имеет целью практическое обучение методике определения энергии гамма-квантов по ослаблению узкого пучка излучения в веществе путем экспериментального измерения величины массового коэффициента ослабления.

    Введение

    1. Общие понятия

Гамма-излучение – это фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния атомных ядер, ядерных превращениях и при аннигиляции частиц. Гамма-излучение является электромагнитным косвенно ионизирующим излучением. Энергия гамма-квантов, испускаемых радионуклидами, заключена в пределах от 0,01 МэВ до 10 МэВ. Большинство радионуклидов дают гамма-излучение сложного энергетического спектра. Некоторые ядра (их немного) испускают моноэнергетически гамма-излучения.

Для радионуклидов со сложным спектром гамма-излучения в эксперименте может быть определена эффективная энергия фотонов такого моноэнергетического фотонного излучения, относительное ослабление которого в поглотителе определенного состава и определенной толщины то же самое, что и у рассматриваемого немоноэнергетического фотонного излучения.

Характеристиками гамма-излучения являются поток гамма-квантов и плотность потока.

Под потоком гамма-квантов понимают отношение числа квантов dN γ , проникающих через данную поверхность за интервал времени dt, к этому интервалу

Плотность потока гамма-квантов – это отношение потока dФ γ , проникающего в объем элементарной сферы, к площади поперечного сечения этой сферы dS

Аналогичными характеристиками, учитывающими энергию гамма-квантов, является поток энергии и плотность потока энергии гамма-излучения.

Взаимодействие гамма-излучения с веществом осуществляется в основном за счет трех элементарных процессов: фотоэлектрического эффекта, некогерентного рассеяния (эффект Комптона) и образования электронно-позитронных пар (пар-эффекта). При малых энергиях гамма-квантов определенный вклад дает также когерентное рассеяние на электронах.

Вероятность взаимодействия гамма-квантов с веществом характеризуется массовым коэффициентом ослабления. Под ним понимается отношение доли косвенно ионизирующих частиц данной энергии, претерпевших взаимодействие при прохождении элементарного путиdl в среде с плотностью ρ к длине этого пути и к плотности среды

Для фотонного излучения массовый коэффициент ослабления равен сумме массовых коэффициентов ослабления, обусловленных фотоэффектом, некогерентным рассеянием, когерентным рассеянием и образованием электронно-позитронных пар. При этом для гамма-излучения когерентное рассеяние, как правило, не учитывается:

Как видно из приведенного определения, по физическому смыслу массовый коэффициент ослабления – это вероятность для гамма-квантов провзаимодействовать с веществом при единичной массовой толщине мишени.

В расчетах по защите от излучения часто используют линейный коэффициент ослабления гамма-излучения μ, получающийся умножением массового коэффициента ослабления на плотность ρ. По физическому смыслу линейный коэффициент ослабления – это вероятность взаимодействия гамма-кванта с веществом на пути единичной длины. Единицы измерения и μ в системе СИ соответственно м 2 /кг и м -1 .

Величина коэффициентов ослабления сложным образом зависит от энергии гамма-квантов и от материала защиты. Эти зависимости приводятся в справочнике в виде таблиц или графиков (см. приложение 3, рис. 3-6).

Аналитическое выражение для описания ослабления гамма-излучения защитой можно получить для узкого пучка моноэнергетического гамма-излучения. В этом случае в результате любого акта взаимодействия гамма-квант выбывает из пучка. Следовательно, число выбывших из пучка фотонов dN пропорционально пройденной толщине вещества dx и числу падающих фотонов N, т.е.

Для моноэнергетического излучения μ постоянно, и интегрирование полученного выражения дает

Если разделить обе части этого выражения на площадь мишени и время облучения, то получится выражение для плотности потока гамма-квантов

где φ γ0 и φ γ – плотность потока гамма-квантов перед поглотителем и после поглотителя толщиной d.

График зависимости lgφ=f(d) имеет вид, приведенный на рис. 4.1.

Экспериментально построенный график служит для определения значения линейного коэффициента ослабления μ, а затем по справочному графику μ=f(E) – для определения энергии гамма-излучения. Значение μ из графика определяют либо по толщине слоя половинного ослабления d 1/2

либо по тангенсу угла наклона α

При проведении работы измеряют не плотность потока φ γ непосредственно, а пропорционально ему скорость счета импульсов n.

1.2. Описание лабораторной установки

Блок-схема лабораторной установки показана на рис. 4.2. Источниками излучения служат препараты 60 Со или 137 Сs активностью около 10 мКu. Источник помещается в свинцовую защиту, из которой выходит направленный пучок гамма-квантов, проходящий на пути к детектору через поглотитель. Второй коллиматор служит для поглощения гамма-квантов, рассеянных в поглотителе, иначе значение коэффициента ослабления гамма-излучения окажется заниженным.

Измерения выполняются на лабораторной установке, разработанной на основе радиометра КРВП-3Б.

    Выполнение лабораторной работы

2.1. Подготовка к работе и производство измерений

Получить у лаборанта источник излучения и набор пластин поглотителя.

Собрать лабораторную установку в соответствии с приведенной на рис. 4.2. блок-схемой. Обратить особое внимание на соосность коллиматоров. Для этого перед установкой источника в коллиматор произвести «прицеливание» путем наблюдения через второй коллиматор. Источник излучения устанавливать после измерения фона в лаборатории.

Подготовить к работе радиометр КРВП-3Б. Обсчитать фон в течение пяти минут.

Установить источник излучения, измерить скорость счета без поглотителя. Затем установить поочередно одну, две, три и т.д. пластины поглотителя, каждый раз измеряя их толщину и скорость счета от проходящего сквозь них пучка гамма-излучения. Время измерения скорости счета выбирать, исходя из 5% точности измерения.

Измерения выполнять до уменьшения скорости счета в 8-10 раз. Результаты измерений и последующих расчетов занести в таблицу отчета.

По результатам измерений построить график lg n=f(d), по графику определить коэффициент ослабления гамма-излучения и по нему – энергию гамма-квантов.

2.2. Оформление отчета по лабораторной работе

До начала работы необходимо на специальном бланке отчета составить краткое описание работы и заготовить таблицу для записи результатов измерений. Подготовить оси координат для нанесения графика зависимости lg n=f(d).

Таблица 4.1 Результаты измерений

N ф = импульсов за t = минут

n ф = имп/мин. Материал поглотителя

По результатам измерений построить график зависимости lgn=f(d), по которому определить величину μ. По графикам (см. приложение, рис. 3, 4, 5, 6) определить энергию γ-квантов. Полученное значение энергии γ-квантов сравнить с табличными значениями (см. приложение 2, табл. 6) и определить погрешность измерения.

3. Техника безопасности

Перед началом работы каждому исполнителю необходимо получить у лаборанта дозиметр для измерения дозы облучения. Источники γ-излучения брать только пинцетом. После укладки источника в коллиматор закрыть обратную сторону коллиматора свинцовой защитой.

В процессе выполнения работы необходимо принимать меры для уменьшения дозы облучения, помня при этом, что доза облучения от точечного источника пропорциональна времени и обратно пропорциональна квадрату расстояния.

Дозы облучения после работы измеряет лаборант, докладывает преподавателю и заносит в журнал учета доз. Так как в электрической схеме установки имеется опасное напряжение (400 В), вскрывать электрическую схему ЗАПРЕЩАЕТСЯ.

Контрольные вопросы

    С каким видом излучения выполняется работа?

    Что такое гамма-излучение?

    Каков спектр гамма-излучения?

    Какие процессы определяют ослабление гамма-излучения в веществе?

    Что такое поток гамма-излучения?

    Что такое плотность потока гамма-излучения?

    Что такое массовый коэффициент ослабления гамма-излучения?

    Каков физический смысл линейного коэффициента ослабления гамма-излучения?

    Линейный коэффициент ослабления гамма-излучения в свинце равен 0,5 см -1 . Чему равна энергия гамма-квантов?

    Слой половинного ослабления гамма-излучения в свинце равен 1,4 см. Чему равна энергия гамма-квантов?

    Массовый коэффициент ослабления гамма-излучения в свинце равен 0,02 м 2 /кг. Чему равна энергия гамма-квантов?

    Какая математическая зависимость описывает ослабление гамма-излучения в веществе?

    Какие условия должны соблюдаться, чтобы ослабление гамма-излучения в веществе описывалось экспонентой?

    Какой вид имеет график зависимости lgφ γ =f(d)?

    Как по графику lgφ γ =f(d) определить энергию гамма-излучения?

    Для чего нужны коллиматоры в данной работе?

    Каковы пути уменьшения дозы облучения от точечного источника гамма-излучения?

    Как измениться доза облучения пальцев рук, если вместо пинцета (R=25см) источник брать руками (R=0,5см)?

    Чем обеспечивается необходимая точность измерений в данной работе?

    Какой радионуклид исследовался в данной работе?

    Какова энергия гамма-излучения у радионуклида в данной работе?

ЛАБОРАТОРНАЯ РАБОТА №5

Файл установки «Гамма-Поток. Гидравлический расчет» возможно получить по запросу.

В ПО встроено лицензионное соглашение.

В версии 1.1.0.1 программного комплекса «Гамма-Поток» внесены следующие изменения и дополнения:

1. Раздел « Расчет массы газа»:

1.1 Расширена номенклатура модулей:

  • Добавлен модуль объемом 160л. на давление 60 бар.
  • Добавлены модули объемом 80л. и 100л. на давление 150 бар с диаметром ЗПУ 40мм для Хладона 23.
  • Введена линейка модулей типа МПУ для СО2 с диаметром ЗПУ 12мм.

1.2. Для ГОТВ Хладон ФК-5-1-12 введены два значения нормативной концентрации:

  • нормативная концентрация Сн 4.2% в соответствии с действующей редакцией СП5.13130-2009 (изм. №1)
  • нормативная концентрация Сн 5.4% в соответствии с проектом новой редакции СП5.13130 в ред. 2015г.

1.3. Исправлено отображение остатка ГОТВ в трубной разводке

2. Раздел «Гидравлический расчет»:

2.1. Введены специальные насадки для ГОТВ Хладон ФК-5-1-12

2.2.Уточнены коэффициенты гидравлических сопротивлений элементов трубопровода (поворот, тройник)

2.3. Уточнены дополнительные потери на вертикальных участках трубопровода.

Программное обеспечение «Гамма-Поток» возможно использовать в течение 10 дней с момента установки в тестовом режиме без ограничения функционала. Далее следует пройти регистрацию для получения Регистрационного ключа.

Алгоритм регистрации:

  1. В окне «Регистрационная информация» нажать на кнопку «Получить регистрационный ключ».
  2. В открывшемся окне «Регистрация пользователя программы Гамма-Поток» заполнить поля данных.

Нажимая кнопку «ОК» Вы подтверждаете достоверность указанных данных и соглашаетесь на хранение и обработку данных компанией ООО «НПО Пожарная автоматика сервис».
Далее, Программа сформирует регистрационный файл и предложит его сохранить на Ваш компьютер.
Для получения регистрационного ключа необходимо переслать данный файл в наш адрес. В ответном письме мы вышлем ключ к программе.

Использование собранной информации.

Мы не распространяем полученную информацию ни для каких целей, в том числе не передаем ее третьей стороне. Полученная от Вас информация может быть раскрыта только в случаях, оговоренных законодательством РФ или по Вашей письменной просьбе.

Часто задаваемые вопросы

Проанализировав часто задаваемые вопросы проектировщиков, нашими специалистами были разработаны:

  • файл расчета максимального рабочего давления для труб с разной толщиной стенки (xls, ~21Кб) ;
  • файл расчета площади проема для сброса избыточного давления (xls, ~62Кб) .

1. Вопрос : почему в программе используются трубы и фитинги, которые невозможно купить на рынке.
Ответ :

  • Про трубы: в базу ПО «Гамма-Поток» введен сортамент труб согласно ГОСТ 8732 и ГОСТ 8734. В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы труб, выбранные программой. Однако, пользователь программы может самостоятельно создать свой пользовательский список с сортаментом труб, основываясь на возможности приобретения его в своем регионе. Также, при обращении к нам с задачей по выполнению гидравлического расчета, проектировщик может указать нужный для него перечень труб. Для проверки правильности выбора толщины стенки трубы, проектировщик может воспользоваться файлом «Расчета максимального рабочего давления для труб с разной толщиной стенки» выложенным на нашем сайте.
  • Про фитинги: В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы фитингов, выбранные программой. Стандартная номенклатура отводов по ГОСТ 17375 и тройников по ГОСТ 17376 является очень ограниченной и недостаточной для выполнения проектных расчетов. Поэтому, в базу ПО «Гамма-Поток» введен сортамент фитингов, который включает как стандартный сортамент отводов и тройников согласно указанным ГОСТ, так и размерный ряд фитингов (с шагом по внутреннему диаметру 1 мм), который может быть изготовлен индивидуально в соответствии с требованиями указанных ГОСТ специализированными предприятиями. Также, нормами не запрещено применение фитингов, которые могут быть изготовлены монтажными организациями самостоятельно из труб по ГОСТ 8732 и ГОСТ 8734 .

2. Вопрос : почему в ПО «Гамма Поток» не предусмотрен расчет площади проема для сброса избыточного давления в соответствии с СП 5.13130.2009
Ответ :

  • мы не включили указанный расчет в программу гидравлического расчета осознано, т.к. считаем, что он лишь косвенно связан с гидравлическим расчетом и требует отдельного осмысления, сбора исходных данных, связанных со строительными конструкциями.
  • в помощь проектировщику для выполнения этого расчета самостоятельно, нами разработана