Георг кантор теория множеств. Георг Кантор: теория множеств, биография и семья математика

Семья Георга Кантора (1845-1918) переехала из России в Германию, когда он еще был ребенком. Именно там он начал изучать математику. Защитив в 1868 г. диссертацию по теории чисел, он получил степень доктора в Берлинском университете. В 27 лет Кантор опубликовал статью, содержавшую общее решение очень сложной математической проблемы - и идеи, выросшие впоследствии в его знаменитую теорию - теорию множеств. В 1878 г. он ввел и сформулировал значительный ряд новых понятий, дал определение множества и первое определение континуума, развил принципы сравнивания множеств. Систематическое изложение принципов своего учения о бесконечности он дал в 1879-1884 гг.

Настойчивое стремление Кантора рассмотреть бесконечность как нечто актуально данное было для того времени большой новостью. Кантор мыслил свою теорию как совершенно новое исчисление бесконечного, "трансфинитную" (то есть "сверхконечную") математику. По его идее, создание такого исчисления должно было произвести переворот не только в математике, но и в метафизике и теологии, которые интересовали Кантора едва ли не больше, чем собственно научные исследования. Он был единственным математиком и философом, который считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет поднимать математиков, а вслед за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил жизнь. Ученый твердо верил, что он избран Богом, чтобы совершить великий переворот в науке, и эта его вера поддерживалась мистическими видениями. Титаническая попытка Георга Кантора, впрочем, закончилась странно: в теории были обнаружены трудно преодолимые парадоксы, ставящие под сомнение и значение любимой идеи Кантора - "лестницы алефов", последовательного ряда трансфинитных чисел. (Эти числа широко известны в принятом им обозначении: в виде буквы алеф - первой буквы еврейского алфавита.)

Неожиданность и своеобразие его точки зрения, несмотря на все преимущества подхода, обусловили резкое неприятие его работ большей частью ученых. Десятилетиями он вел упорную борьбу почти со всеми современниками-философами и математиками, отрицавшими законность построения математики на фундаменте актуально-бесконечного. Некоторые приняли это как вызов, поскольку Кантор предполагал существование множеств или последовательностей чисел, имеющих бесконечно много элементов. Знаменитый математик Пуанкаре назвал теорию трансфинитных чисел "болезнью", от которой математика должна когда-нибудь излечиться. Л. Кронекер - учитель Кантора и один из самых авторитетных математиков Германии - даже нападал на Кантора, называя его "шарлатаном", "ренегатом" и "растлителем молодежи"! Только к 1890 г., когда были получены приложения теории множеств к анализу и геометрии, теория Кантора получила признание в качестве самостоятельного раздела математики.

Важно отметить, что Кантор способствовал созданию профессионального объединения - Немецкого математического общества, которое содействовало развитию математики в Германии. Он считал, что его научная карьера пострадала от предубежденного отношения к его трудам, и надеялся, что независимая организация позволит молодым математикам самостоятельно судить о новых идеях и заняться их разработкой. Он же был инициатором созыва первого Международного математического конгресса в Цюрихе.

Кантор тяжело переживал противоречия своей теории и сложности с ее принятием. С 1884 г. он страдал глубокой депрессией и через несколько лет отошел от научной деятельности. Умер Кантор от сердечной недостаточности в психиатрической лечебнице в Галле.

Кантор доказал существование иерархии бесконечностей, каждая из которых "больше" предшествующей. Его теория трансфинитных множеств, пережив годы сомнений и нападок, в конце концов, выросла в грандиозную революционизирующую силу в математике 20 в. и стала ее краеугольным камнем.

Начало XIX века ознаменовалось открытием неевклидовой геометрии. В 1825 году - Николай Васильевич Лобачевский, чуть позже, в 1831 году - Янош Больяй. И судьба этих открытий была весьма трагичной. Ни одного, ни второго открытия не признали. Вплоть до 1860-х годов, до открытий других неевклидовых геометрий - Риман и др. А первооткрыватели неевклидовой геометрии уже умерли! И вот - теория множеств, которую тоже не признают, ругают... Ох уж этот странный XIX век...

Cantor), Георг (3 марта 1845 – 6 янв. 1918) – математик и мыслитель, создатель множеств теории, имеющей своим осн. объектом бесконечные множества. Род. в Петербурге. С 1872 – проф. ун-та в Галле. Умер в Галле в психиатрич. клинике. К созданию теории множеств (1870) его привели исследования тригонометрич. рядов. Творческий период в жизни К., продолжавшийся до 1897 (прерван душевным кризисом 1885), отмечен соч. "О бесконечных линейных точечных многообразиях" ("?ber unendliche, lineare Punktmannigfaltigkeiten", 1879–84), "К обоснованию теории о трансфинитных множествах" ("Beitr?ge zur Begr?ndung der transfiniten Mengenlehre", 1895–97) и др. К. заложил основы как абстрактной теории множеств [ изучающей множества лишь с т. зр. их "численности" (мощности множества) и отношений порядка между их элементами (порядковых типов множеств) ], так и теории точечных множеств (т.е. множеств, состоящих из точек числовой прямой и вообще числового n-мерного пространства). Одним из первых К. построил теорию действительных чисел, к-рая до сих пор (наравне с теориями немецких ученых Р. Дедекинда и К. Вейерштрасса) кладется обычно в основание построения математич. анализа. Теория множеств Кантора означала важный шаг вперед в изучении понятия бесконечности; ее создание явилось революцией во всем математич. знании. В нач. 20 в. вся математика была перестроена на основе теории множеств; ее развитие и проникновение в различные области математики привели к возникновению новых науч. дисциплин, напр. топологии, абстрактной алгебры и др. В дальнейшем в теории множеств были обнаружены парадоксы, что дало новый толчок исследованиям логич. оснований математики и привело к появлению новых течений в ее филос. истолковании (напр., интуиционизма). Один из первых парадоксов этого рода (связанный с понятием мощности множества всех множеств) был открыт самим К. в 1899. Математика, основанная на безоговорочном применении теории множеств К., в наст. время часто называется классической. См. Математика, Множеств теория, Математическая бесконечность. Филос. аспект идей К. состоял в признании полной законности понятия актуально бесконечного. К. различал два вида математич. бесконечности: несобственно бесконечное (потенциальное, или синкатегорематическое, бесконечное) и собственно бесконечное (актуально бесконечное), понимавшееся К. как нечто законченное, как строго ограниченное целое. В связи с вопросом о реальности математич. понятий К. различал: их интрасубъективную, или имманентную, реальность (их внутреннюю логич. непротиворечивость) и их транссубъективную, или транзиентную, реальность, под к-рой он понимал соответствие между математич. понятиями и процессами реального мира. В противовес Кронекеру, отвергавшему те способы доказательства существования математич. объектов, к-рые не связаны с их построением или вычислением, К. выдвинул тезис: "сущность математики – в ее свободе", осн. смысл к-рого сводился к допущению построения любых логически непротиворечивых абстрактных математич. систем, вопрос о "транзиентной реальности" к-рых решается сравнением их с процессами действительности. Плодотворность этой мысли К. была подтверждена развитием математики в 20 в., принесшим много примеров приложения вновь возникавших абстрактных математич. и логич. теорий в физике, технике, лингвистике и др. областях. По своим филос. взглядам К. был объективным идеалистом. Актуально бесконечное в математике он считал лишь одной из форм существования актуально бесконечного вообще; последнее приобретает "высочайшую завершенность" в полностью не зависимом ни от чего, внемировом бытии – в боге; бог – это абсолютно бесконечное, или абсолют; кроме того, актуально бесконечное, по К., объективно существует во внешнем мире. К. критиковал Гегеля, отвергая его диалектику на том основании, что ее ядром является противоречие. Значит, внимание, особенно в последний период своей жизни, К. уделял вопросам теологии. Его религиозно-филос. взгляды оформились под влиянием Аристотеля, Платона и схоластов. Соч.: Gesammelte Abhandlungen..., В., 1932. Лит.: Fraenkel ?., Georg Cantor, Lpz., 1930. А. Коноплянкин. Москва.

Отличное определение

Неполное определение ↓

КАНТОР Георг (1845-1918)

немецкий математик, логик, теолог, создатель теории трансфинитных (бесконечных) множеств, оказавшей определяющее влияние на развитие математических наук на рубеже 19- 20 вв. Окончил Университет Берлина (1867), профессор Университета Халле (1879-1913). Главный труд: "Основы общего учения о многообразиях" (1902). Исследования К., инициированные необходимостью решения насущных проблем теории бесконечных рядов Фурье, стали основой для дальнейших фундаментальных исследований в направлении теории числовых множеств, где им были введены: общее определение множества, трансфинитные числа, общее понятие "мощность множества" (как количество элементов множества), мощности различных трансфинитных множеств. Под множеством К. понимал "...вообще всякое многое, которое можно мыслить как единое, т.е. всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона...". Основополагающим в понятии множества является акт объединения различных объектов в единое целое, определяемое как множество. Элементами множеств могут быть любые объекты реальной дейсвительности, человеческой интуиции или интеллекта. Наличие в определении К. словосочетания "...совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона..." полностью определяет множество его элементами или законом (характеристическими признаками, свойствами), согласно которому происходит акт объединения различных объектов в единое целое - множество. Поэтому фундаментальным понятием теории множеств является не само понятие множества, а отношение принадлежности объектов множеству. К Аристотелю восходит традиция разделения бесконечности на актуальную и потенциальную: "Остается альтернатива, согласно которой бесконечное имеет потенциальное существование... Актуально бесконечное не существует" (Аристотель, "Физика"). Эта традиция продолжалась Декартом ("Бесконечность распознаваема, но не познаваема") и даже во времена К.Гаусса ("В математике бесконечную величину никогда нельзя использовать как нечто окончательное; бесконечность - не более чем facon de parle /манера выражаться - С.С /, означающая предел, к которому стремятся одни величины, когда другие бесконечно убывают"). К., как писал М.Клайн, отошел от давней традиции "уже тем, что рассматривал бесконечные множества как единые сущности, притом сущности, доступные человеческому разуму". Резко расходясь со своими коллегами-математиками во взглядах на математическую бесконечность, К. мотивировал необходимость введения актуально бесконечных множеств тем, что "потенциальная бесконечность в действительности зависит от логически предшествующей ей актуальной бесконечности". Классическим примером актуально бесконечного множества по К. являются десятичные разложения иррациональных чисел, т.к. каждый "конечный отрезок такого разложения дает лишь конечное приближение к иррациональному числу". К 1873 относится начало исследований К. по классификации актуально бесконечных множеств. Немного позднее К. определил бесконечное множество как множество, для которого существует взаимно однозначное соответствие с его собственным подмножеством (т.е. отличным от всего множества). Одним из следствий такого подхода стала, например, возможность установления взаимно однозначного соответствия между точками прямой линии и точками многообразия любой размерности. Основываясь на собственном определении бесконечных множеств, К. смог установить для каждой пары из них отношение эквивалентности (равномощности). В 1874 К. доказал несчетность множества всех действительных чисел, установив при этом существование пар бесконечных множеств, имеющих различные мощности (неэквивалентных множеств). Систематически основы своей теории математической бесконечности К. изложил в 1879-1884. Основанием иерархии бесконечностей К. стала доказанная в первой половине 1890-х широко известная теорема К.-Бернштейна: "если два множества А и В таковы, что существует взаимно однозначное соответствие между множеством А и подмножеством множества В и между множеством В и подмножеством множества А, то возможно установить также и взаимно однозначное соответствие между множеством А и множеством В", т.е. установить равномощность (эквивалентность) множеств А и В. При этом, К. определял, что если множество А возможно поставить во взаимно однозначное соответствие с собственным подмножеством В, а множество В невозможно поставить во взаимно однозначное соответствие с собственным подмножеством А, то множество В по определению больше множества А. По мнению М.Клайна, такое определение обобщает на случай бесконечных множеств то, что "непосредственно очевидно в случае конечных множеств". Следуя данному подходу, К. доказал, что для любого "заданного множества всегда найдется множество, большее исходного" (например, множество всех подмножеств данного множества больше первоначального множества). То, что между двумя мощностями возможно установление отношений "равенство", "больше" и "меньше", дало К. основание назвать "числами" символы обозначения мощностей бесконечных множеств (для конечных множеств символы обозначения их мощности суть числа натурального ряда, определяющие количество элементов в каждом из эквивалентных конечных множеств). В отличие от чисел натурального ряда [ординальных чисел /от нем. Die Ordinalzahl (Ordnungzahl) - числительные порядковые - C.C.I, К. назвал кардинальными числами (от нем. Die Kardinalzahl - числительные количественные)] "числа" обозначения мощности бесконечных множеств. К. считал, что область определенных величин не исчерпывается конечными величинами, т.к. об "актуальном бесконечном также возможно доказательное знание". Если понятие мощности было расширенным понятием "количество" для бесконечных множеств, то понятие кардинального числа стало расширенным обобщением понятия "числа вообще". Расширение К. понятия "числа" в область Бесконечного ознаменовало переход математики на качественно новый уровень мышления. Фактически, мощность множеств по К. отражает в сознании человека-исследователя определенные отношения множеств, т.е. мощность множеств по К. - это наиболее общая характеристика эквивалентных бесконечных множеств. Больцано еще в начале 19 в. пришел к понятию взаимно однозначного соответствия между множествами (а, следовательно, и к понятию мощностей множеств и выражению их кардинальными числами). Однако под "количеством" до середины 19 в. понималась величина. А так как каждую величину посредством избранной единицы измерения возможно выразить числом, то представление о количестве ассоциировалось с понятием числа. Поэтом Больцано был вынужден отступить перед серьезными затруднениями, вытекавшими из понятия "количество". Математика того времени вообще определялась как наука, исследующая зависимости между величинами и выражающими их числами. Однако, как пишет В.А.Волков, "как бы ни были важны различные виды величин и зависимости между ними для практических приложений математики, они охватывают далеко не все богатства различных количественных отношений и пространственных форм действительного мира". К. также было введено в математику понятие "предельная точка производного множества", построен пример совершенного множества ("множество К."), сформулирована одна из аксиом непрерывности ("аксиома К."). Следствия из теории К. выявили противоречия в достаточно серьезно изученных областях оснований математики. Эти противоречия лидеры математики того времени назвали парадоксами (антиномиями) по одной той причине, что парадокс "может быть объяснен, а математиков не покидала надежда, что все встретившиеся трудности им в конце концов удастся разрешить". Теорию математической бесконечности К., в отличие от большинства ведущих математиков того времени, поддерживали Рассел и Гильберт. Рассел, считая К. одним из великих мыслителей 19 в., писал в 1910, что решение К. проблем, "издавна окутывающих тайной математическую бесконечность, является, вероятно, величайшим достижением, которым должен гордиться наш век /20 в. - С.С./". Гильберту в 1926 представлялось, что теория К. - это "самый восхитительный цветок математической мысли и одно из величайших достижений человеческой деятельности в сфере чистого мышления". А Э.Борель и А.Лебег уже в самом начале 20 в. обобщили понятие интеграла и развивали теории меры и измерений, в основании которых лежала теория К. К 1897 К. был вынужден прекратить активные математические исследования вследствие резкого сопротивления его идеям (в частности, со стороны Л.Кронекера, называвшего К. шарлатаном), выдвинув так называемый "закон сохранения невежества": "нелегко опровергнуть любое неверное заключение, коль скоро к нему пришли и оно получило достаточно широкое распространение, причем, чем менее оно понятно, тем более упорно его придерживаются". К. всегда разделял философские идеи Платона и верил в то, что в окружающем нас Мире "идеи существуют независимо от человека. И чтобы осознать реальность этих идей, необходимо лишь задуматься над ними". К., будучи в соответствии с давней религиозной традицией своей семьи ревностным лютеранином, в своих высказываниях часто применял и теологическую аргументацию. Особенно это проявилось после отхода его от занятий математикой.

Георг Кантор (фото приведено далее в статье) - немецкий математик, который создал теорию множеств и ввел понятие трансфинитных чисел, бесконечно больших, но отличающихся друг от друга. Также он дал определение порядковым и кардинальным числам и создал их арифметику.

Георг Кантор: краткая биография

Родился в Санкт-Петербурге 03.03.1845. Его отцом был датчанин протестантского вероисповедания Георг-Вальдемар Кантор, занимавшийся торговлей, в т. ч. и на фондовой бирже. Его мать Мария Бем была католичкой и происходила из семьи выдающихся музыкантов. Когда в 1856 году отец Георга заболел, семья в поисках более мягкого климата переехала сперва в Висбаден, а затем во Франкфурт. Математические таланты у мальчика проявились еще до его 15-летия во время учебы в частных школах и гимназиях Дармштадта и Висбадена. В конце концов Георг Кантор убедил отца в своем твердом намерении стать математиком, а не инженером.

После недолгого обучения в Цюрихском университете в 1863 г. Кантор перевелся в Берлинский университет, чтобы изучать физику, философию и математику. Там ему преподавали:

  • Карл Теодор Вейерштрасс, чья специализация на анализе, вероятно, оказала наибольшее влияние на Георга;
  • Эрнст Эдуард Куммер, преподававший высшую арифметику;
  • Леопольд Кронекер, специалист по теории чисел, который впоследствии выступал против Кантора.

Проведя один семестр в университете Геттингена в 1866 г., в следующем году Георг написал докторскую диссертацию под заголовком «В математике искусство задавать вопросы более ценное, чем решение задач», касающуюся проблемы, которую Карл Фридрих Гаусс оставил нерешенной в его Disquisitiones Arithmeticae (1801). После краткого преподавания в Берлинской школе для девочек Кантор начал работать в университете Галле, в котором оставался до конца своей жизни сначала как преподаватель, с 1872 года как доцент и с 1879-го в качестве профессора.

Исследования

В начале серии из 10 работ с 1869 по 1873 г. Георг Кантор рассмотрел теорию чисел. Работа отражала увлеченность предметом, его исследования Гаусса и влияние Кронекера. По предложению Генриха Эдуарда Гейне, коллеги Кантора в Галле, который признавал его математическое дарование, он обратился к теории тригонометрических рядов, в которых расширил понятие действительных чисел.

Отталкиваясь от работы по функции комплексной переменной немецкого математика Бернхарда Римана 1854 года, в 1870 г. Кантор показал, что такая функция может быть представлена только одним способом - тригонометрическими рядами. Рассмотрение совокупности чисел (точек), которые бы не противоречили такому представлению, привело его, во-первых, в 1872 году к определению в терминах рациональных чисел (дробей целых чисел) и далее к началу работы над трудом всей его жизни, теорией множеств и концепцией трансфинитных чисел.

Теория множеств

Георг Кантор, теория множеств которого зародилась в переписке с математиком технического института Брауншвейга Ричардом Дедекиндом, дружил с ним с детства. Они пришли к выводу, что множества, конечные или бесконечные, являются совокупностью элементов (например, чисел, {0, ±1, ±2 . . .}), которые обладают определенным свойством, сохраняя при этом свою индивидуальность. Но когда Георг Кантор применил для изучения их характеристик взаимно однозначное соответствие (например, {А, B, C} к {1, 2, 3}), он быстро понял, что они отличаются по степени их принадлежности, даже если это были бесконечные множества, т. е. множества, часть или подмножество которых включает столько же объектов, сколько оно само. Его метод вскоре дал удивительные результаты.

В 1873 году Георг Кантор (математик) показал, что рациональные числа, хотя и бесконечны, являются счетными, потому что могут быть поставлены во взаимно однозначное соответствие с натуральными (т. е. 1, 2, 3 и т. д.). Он показал, что множество действительных чисел, состоящее из иррациональных и рациональных, бесконечное и несчетное. Что более парадоксально, Кантор доказал, что множество всех алгебраических чисел содержит столько же элементов, сколько множество всех целых, и что трансцендентные числа, не являющиеся алгебраическими, которые представляют собой подмножество иррациональных чисел, несчетные и, следовательно, их количество больше, чем целых чисел, и должно рассматриваться как инфинитное.

Противники и сторонники

Но работа Кантора, в которой он впервые выдвинул эти результаты, не была опубликована в журнале «Крелль», так как один из рецензентов, Кронекер, был категорически против. Но после вмешательства Дедекинда она была опубликована в 1874 году под названием «О характерных свойствах всех действительных алгебраических чисел».

Наука и личная жизнь

В этом же году во время проведения медового месяца со своей женой Валли Гутман в Кантор встретил Дедекинда, который благожелательно отозвался о его новой теории. Жалование Георга было небольшим, но на деньги отца, который умер в 1863 г., он построил для своей жены и пятерых детей дом. Многие из его работ были опубликованы в Швеции в новом журнале Acta Mathematica, редактором и основателем которого был Геста Миттаг-Леффлер, в числе первых признавший талант немецкого математика.

Связь с метафизикой

Теория Кантора стала совершенно новым предметом исследований, касающимся математики бесконечного (например, ряда 1, 2, 3 и т. д., и более сложных множеств), который в значительной степени зависел от взаимно однозначного соответствия. Разработка Кантором новых методов постановки вопросов, касающихся непрерывности и бесконечности, придала его исследованиям неоднозначный характер.

Когда он утверждал, что бесконечные числа реально существуют, он обратился к древней и средневековой философии в отношении актуальной и потенциальной бесконечности, а также к раннему религиозному воспитанию, которое дали ему родители. В 1883 году в своей книге «Основы общей теории множеств» Кантор объединил свою концепцию с метафизикой Платона.

Кронекер же, утверждавший, что «существуют» только целые числа («Бог создал целые числа, остальное - дело рук человека»), в течение многих лет горячо отвергал его рассуждения и препятствовал его назначению в Берлинском университете.

Трансфинитные числа

В 1895-97 гг. Георг Кантор полностью сформировал свое представление о непрерывности и бесконечности, включая бесконечные порядковые и кардинальные числа, в его самой известной работе, опубликованной под названием «Вклад в создание теории трансфинитных чисел» (1915). Это сочинение содержит его концепцию, к которой его привела демонстрация того, что бесконечное множество может быть поставлено во взаимно однозначное соответствие с одним из его подмножеств.

Под наименьшим трансфинитным кардинальным числом он подразумевал мощность любого множества, которое можно поставить во взаимно однозначное соответствие с натуральными числами. Кантор назвал его алеф-нулем. Большие трансфинитные множества обозначаются и т. д. Далее он развил арифметику трансфинитных чисел, которая была аналогична конечной арифметике. Таким образом, он обогатил понятие бесконечности.

Оппозиция, с которой он столкнулся, и время, которое понадобилось на то, чтобы его идеи были полностью приняты, объясняются сложностями переоценки древнего вопроса о том, чем является число. Кантор показал, что множество точек на линии обладает более высокой мощностью, чем алеф-нуль. Это привело к известной проблеме гипотезы о континууме - никаких кардинальных чисел между алеф-нулем и мощностью точек на линии нет. Эта задача в первой и второй половине 20-го века вызывала большой интерес и изучалась многими математиками, в т. ч. Куртом Геделем и Полом Коэном.

Депрессия

Биография Георга Кантора с 1884 г. была омрачена начавшимся у него психическим заболеванием, но он продолжал активно работать. В 1897 г. он помог провести в Цюрихе первый международный математический конгресс. Отчасти потому, что ему оппонировал Кронекер, он часто сочувствовал молодым начинающим математикам и стремился найти способ избавить их от притеснений со стороны преподавателей, чувствующих угрозу со стороны новых идей.

Признание

На рубеже веков его работа была полностью признана в качестве основы для теории функций, анализа и топологии. Кроме того, книги Кантора Георга послужили толчком для дальнейшего развития интуитивистских и формалистических школ логических основ математики. Это существенно изменило систему преподавания и часто ассоциируется с «новой математикой».

В 1911 г. Кантор был в числе приглашенных на празднование 500-летия Сент-Эндрюсского университета в Шотландии. Он отправился туда в надежде встретиться с который в своей недавно опубликованной работе Principia Mathematica неоднократно ссылался на немецкого математика, но этого не произошло. Университет присвоил Кантору почетную степень, но из-за болезни он не смог принять награду лично.

Кантор вышел на пенсию в 1913 г., жил в бедности и во время Первой мировой войны голодал. Торжества в честь его 70-летия в 1915 г. были отменены по причине войны, но небольшая церемония состоялась у него дома. Он умер 06.01.1918 г. в Галле, в психиатрической лечебнице, где провел последние годы своей жизни.

Георг Кантор: биография. Семья

9 августа 1874 г. немецкий математик женился на Валли Гутман. У супругов родилось 4 сына и 2 дочери. Последний ребенок родился в 1886 г. в приобретенном Кантором новом доме. Содержать семью ему помогло наследство отца. На состоянии здоровья Кантора сильно отразилась смерть его младшего сына в 1899 г. - с тех пор его не покидала депрессия.

Ed., Gesammelte Abhandlungen mathematischen und philosophischen inhalts , mit erl ä uternden anmerkungen sowie mit erg ä nzungen aus dem briefwechsel Cantor - Dedekind , Berlin, Verlag von Julius Springer, 1932

1. Период развития (1845−1871)

Георг Фердинанд Людвиг Филипп Кантор, создатель теории множеств, одного из величайших новых явлений в мире науки, родился в Петербурге 19 февраля ст. стиля (3 марта нов. стиля) 1845 г. Отец его Георг Вольдемар Кантор, родом из Копенгагена, прибыл в Петербург в молодости; он держал там маклерскую контору под собственным именем, иногда же под названием «Кантор и К.» Усердный и удачливый коммерсант, он достиг крупного успеха и оставил после смерти (1863 г.) весьма значительное состояние; по-видимому, он пользовался и в Петербурге, и позже в Германии высоким уважением. По болезни легких он в 1856 г. переселился с семьей в Германию; там он вскоре избрал местом пребывания Франкфурт на Майне, где жил на положении рантье. Мать Кантора, Мария, урожденная Бем, происходила из семьи, многие члены которой были одарены в разных областях искусства; влияние ее проявилось, без сомнения, в богатой фантазии сына. Дед его, Людвиг Бем, был капельмейстером; брат деда Иозеф, живший в Вене, был учителем знаменитого виолончелиста-виртуоза Иоахима; брат Марии Кантор был также музыкантом, а сестра ее Аннета имела дочь-художницу, преподававшую в Мюнхенской школе художественных ремесел. Художественная жилка заметна также у брата Георга Кантора, Константина, бывшего талантливым пианистом, и у сестры его Софии, особенно склонной к рисованию.

Одаренный мальчик, посещавший в Петербурге начальную школу, уже очень рано проявил страстное желание приступить к изучению математики. Отец его, однако, не согласился с этим, считая более обещающей в отношении заработка профессию инженера. Сын сначала подчинился; он посещал некоторое время гимназию в Висбадене, а также частные школы во Франкфурте на Майне; затем поступил, весной 1859 г., в провинциальное реальное училище Великого герцогства Гессенского в Дармштадте, где преподавали также латынь; оттуда он перешел в 1860 г. на общий курс Высшей ремесленной школы (позже Высшей технической школы). Отец руководил его образованием, предъявляя необычно высокие требования; особую важность придавал он воспитанию энергии, твердости характера и пронизывающей всю жизнь религиозности; в частности же он подчеркивал важность полного овладения основными современными языками. Отец наставлял его (в письме по поводу конфирмации в 1860 г.) держаться твердо, вопреки всякой вражде, и всегда добиваться своего; призыв этот не раз вспоминался сыну в часы тяжелых испытаний и, возможно, именно этому отцовскому воспитанию мы обязаны тем, что творческий дух его не был преждевременно сломлен и плоды его не были потеряны для потомства.

С течением времени глубокое влечение сына к математике не могло не подействовать на отца, письма которого свидетельствуют также об его уважении к науке. В письме из Дармштадта, датированном 25 мая 1862 г. и представляющем первое сохранившееся письмо Кантора, сын мог уже выразить отцу благодарность за одобрительное отношение к его планам: «Дорогой папа! Ты можешь себе представить, как обрадовало меня твое письмо; оно определяет мое будущее. Последние дни я провел в сомнении и неуверенности; и не мог прийти ни к какому решению. Долг и влечение постоянно были в борьбе. Теперь я счастлив, видя, что не огорчу тебя, последовав в моем выборе собственной склонности. Надеюсь, дорогой отец, что сумею еще доставить тебе радость, потому что душа моя, все мое существо живет в моем призвании; человек делает то, что он хочет и может, и к чему влечет его неведомый, таинственный голос!..»

Осенью 1862 г. Кантор приступил к занятиям в Цюрихе, откуда он, впрочем, уже после первого семестра ушел вследствие смерти отца. С осени 1863 г. он изучал математику, физику и философию в Берлине, куда триумвират Куммера, Вейерштрасса и Кронеккера привлекал лучшие дарования, возбуждая умы (тогда еще довольно узкого) круга слушателей в самых различных направлениях. Лишь весенний семестр 1866 г. провел он в Геттингене. Сильнейшее влияние на его научное развитие оказал, бесспорно, Вейерштрасс. Замечательно и характерно для широты взглядов Вейерштрасса, для его непредубежденного и проницательного суждения, с каким сочувственным пониманием и как рано оценил он нетрадиционные идеи своего ученика, ответив этим на глубокое уважение, которое тот неизменно оказывал ему в течение всей жизни, вопреки преходящим размолвкам. В берлинские годы Кантор входил не только в Математическое Общество, но и в более узкий круг молодых коллег, еженедельно встречавшихся в трактире Ремеля; к этому кругу принадлежали, не считая случайных гостей, Генох (будущий издатель “Fortschritte” («Успехов»), Лампе, Мертенс, Макс Симон, Томе; последний из них был особенно близок Кантору. Далее, к его товарищам по Берлинскому университету принадлежал Г. А. Шварц, бывший на два года старше; впоследствии, впрочем, он встретил идеи Кантора с сильнейшим недоверием, в противоположность своему учителю Вайерштрассу, и до самого конца жизни особо предостерегал от них, подобно Кронеккеру, своих студентов. 14 декабря 1867 г. двадцатидвухлетний студент защитил в Берлинском университете дипломную работу, возникшую из глубокого изучения Disquisitiones arithmeticae («Исследования по арифметике») и «Теории чисел» Лежандра и оцененную факультетом как “dissertatio docta et ingeniosa” («Ученое и остроумное рассуждение») * Эта работа примыкает к формулам Гаусса для решения диофантова уравнения ax 2 + a"x" 2 + a"x" 2 = 0; в ней устанавливается некоторое соотношение, не приведенное у Гаусса в явном виде. Детальное обсуждение работ Кантора содержится в написанной мною подробной его биографии, опубликованной в Jahresbericht der Deutschen Mathematikervereininung, т. 39 (1930), стр.189−266, а также отдельной книгой: «Георг Кантор», Лейпциг и Берлин, 1930 ; он посвятил ее своим опекунам (одновременно опекунам его брата и сестры). На устном экзамене он получил “magna cum laude” («с особым отличием»). Из трех предложенных им для защиты тезисов особенно характерен третий: “In re mathematica ars propenendi questionem pluris facienda est quam solvendi” (В математике искусство постановки вопросов важнее искусства их решения». Возможно, даже полученные им в теории множеств результаты уступают по значению революционным постановкам вопросов, столь далеко вышедшим в своем влиянии за пределы его собственных трудов.

Кажется, Кантор в течение короткого времени преподавал в Берлине в женской школе; во всяком случае, в 1868 г, он вступил, выдержав государственный экзамен, в известную семинарию Шельбаха, готовившую учителей математики.

Докторская диссертация, давшая Кантор возможность стать весной 1869 г. приват-доцентом университета в Галле, принадлежит, вместе с несколькими небольшими заметками, опубликованными в 1868−72 годах, еще к первому, арифметическому кругу его интересов, к которому он редко возвращался впоследствии Эти занятия теорией чисел под руководством и при одобрении Кронеккера, не были, впрочем, для Кантора лишь случайным эпизодом. Напротив, он испытал глубокое внутреннее воздействие этой дисциплины, с ее особой чистотой и изяществом. Об этом свидетельствует, наряду с первым, также третий представленный им к защите тезис: “Numeris integros simili modo atque corpora coelestia totum quoddam legibus et relationibus compositum efficere” («Целые числа, подобно небесным телам, трактовать как единое целое, связанное законами и соотношениями»). К раннему времени, возможно уже к этому периоду, относится также установление связей между различными теоретико-числовыми функциями и дзета-функцией Римана (примыкающее к работе Римана о простых числах); эта работа была опубликована Кантором лишь в 1880 г., под влиянием заметки Липшица в парижских Comptes Rendus («Докладах»). О дальнейших теоретико-числовых интересах Кантора говорит, кроме его числовой таблицы , также сохранившийся до 1884 г., но не осуществленный план опубликовать в Acta Mathematica, работу о квадратичных формах .

Э. Гейне, бывший ординарным профессором в Галле в то время, когда Кантор защищал там диссертацию, сразу же понял, что в его молодом коллеге необычайная острота ума счастливо соединяется с богатейшей фантазией. Решающее значение имело то обстоятельство, что Гейне вскоре после переезда Кантора в Галле побудил его заняться теорией тригонометрических рядов. Ревностные труды над этим предметом не только завершились рядом существенных достижений, но и привели Кантора на путь к теории точечных множеств и трансфинитным порядковым числам. Работы , , и посвящены уточнению одного утверждения Римана о тригонометрических рядах (и сопутствовавшей этому полемике с Аппелем, в которой подробно рассматривалось понятие равномерной сходимости); в работе же Кантор доказывает теорему о единственности тригонометрического представления * Удивительно, что Кронеккер, вначале положительно отнесшийся к теореме единственности Кантора (ср. ), впоследствии полностью игнорирует этот результат; например, в “Vorlesungen über die Theorie der einfachen und mehrfachen Inegrale” («Лекциях по теории простых и кратных интегралов») (1894) он представляет вопрос о единственности как еще открытый! . Он стремится обобщить этот результат, отказываясь от каких-либо предположений о поведении ряда на некотором исключительном множестве; это вынуждает его изложить в работе краткий набросок идей, «могущих быть полезными для выяснения отношений, возникающих во всех случаях, когда заданы числовые величины в конечном или бесконечном числе Здесь для точечных множеств вводятся предельные точки и производные (конечного порядка). С этой целью Кантор, с одной стороны, развивает свою теорию иррациональных чисел * . В работе Гейне «Элементы теории функций» (J. Math., 74, стр. 172–188, 1872) иррациональные числа вводятся способом, в точности следующим идеям Кантора; ср. введение к статье Гейне, а также работу Кантора “Mitteilungen zur Lehre vom Transfiniten” («К учению о трансфинитном») , вслед за теорией множеств обессмертившую его имя, где иррациональные числа рассматриваются как фундаментальные ряды. С другой стороны, для перехода к геометрии он вводит особую аксиому (аксиому Кантора), одновременно и независимо появившуюся в несколько иной формулировке в книге Дедекинда «Непрерывность и иррациональные числа».