Какое явление относится к тепловым явлениям. Тепловые явления – они вокруг нас

В 30-х годах двадцатого века немецкий учёный Ганс Кребс вместе со своим учеником занимается изучением циркуляции мочевины. Во время Второй мировой войны, Кребс перебирается в Англию где и приходит к выводу, что некоторые кислоты катализируют процессы в нашем организме. За это открытие ему была вручена Нобелевская премия.

Как известно, энергетический потенциал организма зависит от глюкозы, которая содержится в нашей крови. Также, клетки человеческого организма содержат митохондрии, которые помогают в переработке глюкозы с целью её превращения в энергию. После некоторых преобразований глюкоза превращается в вещество под названием «аденозинтрифосфат» (АТФ) – главный источник энергии клеток. Его структура такова, что он может встраиваться в белок, и это соединение будет обеспечивать энергией все системы органов человека. Напрямую глюкоза не может стать АТФ, поэтому используются сложные механизмы для получения нужного результата. Им и является цикл Кребса.

Если говорить совсем уж простым языком, то цикл Кребса — это цепочка химических реакций, происходящих в каждой клетке нашего тела, которая называется циклом потому, что продолжается непрерывно. Конечным результатом данного цикла реакций является производство аденозинтрифосфата — вещества, которое представляет собой энергетическую основу жизнедеятельности организма. По-другому этот цикл называется клеточным дыханием, так как большинство его стадий происходят с участием кислорода. Кроме того, выделяют важнейшую функцию цикла Кребса – пластическую (строительную), так как во время цикла вырабатываются важные для жизнедеятельности элементы: углеводы, аминокислоты и т. д.

Для осуществления всего вышеизложенного необходимо наличие более ста различных элементов, в том числе витаминов. При отсутствии или недостатке хотя бы одного из них цикл будет недостаточно эффективным, что приведёт к нарушению метаболизма во всём теле человека.

Этапы цикла Кребса

  1. Первый этап заключается в расщеплении молекул глюкозы на две молекулы пировиноградной кислоты. Пировиноградная кислота выполняет важную метаболическую функцию, от её действия напрямую зависит работа печени. Доказано, что данное соединение содержится в некоторых фруктах, ягодах и даже в мёде; её успешно применяют в косметологии, как способ борьбы с отмершими клетками эпителия (гоммаж). Также, в результате реакции может образоваться лактат (молочная кислота), которая имеется в поперечнополосатой мускулатуре, крови (точнее в эритроцитах) и мозге человека. Важный элемент в работе сердца и нервной системы. Происходит реакция декарбоксилирования, то есть отщепление карбоксильной (кислотной) группы аминокислот, в процессе которой образуется кофермент А – он выполняет функцию транспортировки углерода в различных обменных процессах. При соединении с молекулой оксалоацетата (щавелевой кислоты) получается цитрат, который фигурирует в буферных обменах, т. е. «на себе» переносит полезные вещества в нашем организме и помогает им усваиваться. На данном этапе кофермент А полностью высвобождается, плюс, мы получаем молекулу воды. Данная реакция является необратимой.
  2. Вторая стадия характеризуется дегидрированием (отщеплением молекул воды) от цитрата, что дают нам цис-аконитат (аконитовая кислота), который помогает в образовании изоцитрата. По концентрации данного вещества, например, можно определить качество фруктов или фруктового сока.
  3. Третий этап. Здесь от изолимонной кислоты отделяется карбоксильная группа, что в результате даёт кетоглутаровую кислоту. Альфа-кетоглутарат участвует в улучшении всасывания аминокислот из поступающей пищи, улучшает метаболизм и предупреждает появление стрессов. Также образовывается NADH – вещество необходимое для нормального протекания окислительных и обменных процессов в клетках.
  4. На следующем этапе при отделении карбоксильной группы образуется сукцинил-КоА, который является важнейшим элементом в образовании анаболических веществ (белков и т.д.). Возникает процесс гидролиза (соединение с молекулой воды) и высвобождается энергия АТФ.
  5. На последующих стадия цикл начнёт замыкаться, т.е. сукцинат снова потеряет молекулу воды, что превращает его в фумарат (вещество способствующее переносу водорода к коферментам). К фумарату присоединяется вода и образуется малат (яблочная кислота), она окисляется, что снова приводит к появлению оксалоацетата. Оксалоацетата, в свою очередь, выступает в роли катализатора в вышеуказанных процессах, его концентрациях в митохондриях клеток постоянна, но, при этом, довольна низкая.

Таким образом можно выделить важнейшие функции данного цикла:

  • энергетическая;
  • анаболическая (синтез органических веществ – аминокислот, жирных белков и т.д.);
  • катаболическая: превращение некоторых веществ в катализаторы – элементы, способствующие выработке энергии;
  • транспортная, в основном происходит транспортировка водорода, участвующего в дыхании клеток.



У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе. У прокариот реакции цикла протекают в цитоплазме. При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.



СубстратыПродуктыФерментТип реакцииКомментарий 1 Оксалоацета т + Ацетил-CoA + H 2 O Цитрат + CoA-SH Цитратсинта за Альдольная конденсация лимитирующая стадия, превращает C 4 оксалоацетат в С 6 2Цитрат цис-аконитат + H 2 O аконитаза 3 цис-акониат + H 2 O изоцитрат гидратация изоцитратдеги дрогеназа декарбоксилир ующая Окисление 4 Изоцитрат + NAD + Оксалосукцин ат + NADH + H + 5 Оксалосукци нат α- кетоглутарат + CO 2 декарбокси лирование необратимая стадия, образуется C 5


СубстратыПродуктыФермент Тип реакции Комментарий 6 α- кетоглутар ат + NAD + + CoA-SH сукцинил- CoA + NADH + H + + CO 2 альфакетоглу таратдегидро геназный комплекс (3 фермента) Окислитель ное декарбокси лирование образуется NADH (эквивалентно 2.5 АТФ), регенерация C 4 цепи (освобождается CoA-SH) 7 сукцинил- CoA + GDP + P i сукцинат + CoA-SH + GTP сукцинилкоф ермент А синтетаза субстратно е фосфорили рование АДФ->ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP ATP, образуется 1 ATP (или 1 GTF) 8 сукцинат + убихинон (Q) фумарат + убихинол (QH 2) сукцинатдеги дрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте, образуется эквивалент 1.5 ATP">


СубстратыПродуктыФермент Тип реакции Комментарий 9 фумарат + H 2 O L-малатфумараза H 2 O- присоедин ение 10 L-малат + NAD + оксалоаце тат + NADH + H + малатдегидро геназа окисление образуется NADH (эквивалентно 2.5 ATP) Общее уравнение одного оборота цикла Кребса: Ацетил-КоААцетил-КоА 2CO 2 + КоА + 8e КоАe



Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов, цикл активно работает, а при избытке продуктов реакции тормозится. Регуляция осуществляется и при помощи гормонов. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса. Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО 2 + АТФ = Оксалацетат(субстрат Цикла Кребса) + АДФ + Фн.


1.Интегративная функция цикл является связующим звеном между реакциями анаболизма и катаболизма. 2.Катаболическая функция превращение различных веществ в субстраты цикла: Жирные кислоты, пируват,Лей,Фен Ацетил- КоА. Арг, Гис, Глу α-кетоглутарат. Фен, тир фумарат. 3.Анаболическая функция использование субстратов цикла на синтез органических веществ: Оксалацетат глюкоза, Асп, Асн. Сукцинил-КоА синтез гема. CО 2 реакции карбоксилирования.


1.Водорододонорная функция цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н + и одного ФАДН 2. 2.Энергетическая функция 3 НАДН.Н + дает 7.5 моль АТФ, 1 ФАДН 2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилировани синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилировани: ГТФ + АДФ = АТФ + ГДФ.


Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило: Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует ряду цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.


Существует также следующее мнемоническое стихотворение: Щуку ацетил лимонил, А нарцисса конь боялся, Он над ним изолимонно Альфа-кето-глютарался. Сукцинился коэнзимом, Янтарился фумарово, Яблочек припас на зиму, В щуку обратился снова. (щавелевоуксусная кислота, лимонная кислота, цис- аконитовая кислота, изолимонная кислота, α- кетоглутаровая кислота, сукцинил-CoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

Цикл Кребса. Циклический процесс окисления пировиноградной кислоты описал английский ученый Ханс Кребс. Если в клетку поступает кислород, то анаэробный процесс - гликолиз переходит в аэробный. В этом случае ПВК не восстанавливается до молочной кислоты, а переносится в митохондрии (см. § 9), где окисляется до производного уксусной кислоты. При этом одна молекула НАД + восстанавливается до НАД-Н, а один атом углерода окисляется до С0 2 (рис. 20). Таким образом, из трехуглеродной молекулы ПВК - С3Н403 образуется двухуглеродная молекула активированной уксусной кислоты. Уксусная кислота - это С 2 Н 4 0 2 , а ее сложно устроенное активированное производное, которое называют ацетилкоферментом А, или сокращенно ацетил-КоА (от лат. «ацетум» - уксус), можно в упрощенном виде выразить формулой С 2 Н 3 0-SKoA.

Рис. 20. Биологическое окисление с участием кислорода.
Слева - цикл Кребса; справа - цепь переноса электронов. ПВК - пиро-виноградная кислота; АК - ацетил-КоА; красные квадраты под номерами 1-8 - органические кислоты, переносящие в цикле Кребса остаток окисляемой уксусной кислоты; П 1 -П 4 - переносчики электронов в цепи

Ацетил-КоА, вступая в цикл Кребса, соединяется с органической кислотой (на рис. 20, - это 8), которая служит своего рода переносчиком остатка уксусной кислоты. Ацетил-КоА, соединяясь со своим переносчиком - 8, образует соединение 1, в составе которого начинается окисление остатка уксусной кислоты. Перемещаясь по ферментному конвейеру цикла Кребса (на рисунке 20 ферменты обозначены стрелками на кольце), остаток уксусной кислоты постепенно полностью окисляется. При этом образуются две молекулы С0 2 и, в результате восстановления НАД + , четыре молекулы НАД-Н, в которых запасена энергия высокоэнергетических электронов остатка уксусной кислоты. Структуры переносчиков (они также являются органическими кислотами) и самого остатка уксусной кислоты при прохождении по циклу Кребса меняются: из соединения 1 возникают соединения 2, 3, 4, 5, 6, 7 и, наконец, 8, которое готово снова присоединить остаток уксусной кислоты (АК). Таким образом, круг замыкается.

Самый важный результат процессов, происходящих в цикле Кребса, - образование богатых энергией молекул НАД-Н. На последнем этапе аэробного процесса, а именно в цепи переноса электронов, энергия молекул НАД-Н служит для синтеза универсального «аккумулятора» энергии - молекул АТФ.

Цепь переноса электронов. Окислительное фосфорилирование. На этом этапе высокоэнергетические электроны НАД-Н перемещаются по многоступенчатой цепи переносчиков, как по лестнице, идущей вниз. При переходе с высшей ступени на низшую электрон теряет энергию, которая используется для образования высокоэнергетической связи в АТФ.

Переносчик электронов на высшей ступени способен передать электрон более сильному акцептору электронов на низшей ступени. Переносчик-акцептор становится донором электрона, когда передает его еще более сильному акцептору. Самый сильный акцептор электрона - кислород, расположенный в конце цепи (рис. 20, справа).

При прохождении высокоэнергетического электрона НАД-Н по «ступенькам» этой цепи до кислорода за счет его энергии три молекулы АДФ фосфорилируются до трех молекул АТФ.

В результате присоединения к кислороду четырех электронов (е ~), пришедших из цепи переноса, и четырех протонов (Н +) из водной среды молекула кислорода восстанавливается до двух молекул воды: ===0 2 + 4е - + 4Н + → 2Н 2 0

Таким образом происходит полное окисление глюкозы до С0 2 (в цикле Кребса) и Н 2 0 (в цепи переноса электронов), так же как если бы глюкоза сгорала в пламени костра, где ее энергия ушла бы в тепло. Однако при биологическом окислении только часть химической энергии превращается в тепловую. За счет окисления одной молекулы глюкозы образуется 38 молекул АТФ, которые используются в клетках и в организме во всех случаях, когда требуется энергия: для движения, транспорта веществ, синтеза нуклеиновых кислот, белков, углеводов и многого другого (в том числе и для умственной работы, на которую затрачивается много АТФ).

Фосфорилирование АДФ с образованием АТФ сопряжено с окислением и потреблением кислорода. Поэтому процесс этот называют окислительным фосфорилированием.

В клетках окислению подвергаются не только глюкоза, но и другие сахара, а также жиры и некоторые аминокислоты. В большинстве случаев в результате многочисленных ферментных превращений из этих соединений образуются ацетил-КоА или органические кислоты (на рис. 20, А, ПВК и 4), которые поступают в цикл Кребса.

Таким образом, окисление пировиноградной и некоторых других органических кислот ведет к образованию НАД-Н. Богатые энергией электроны НАД-Н поступают в цепь переноса и по пути к конечному акцептору - кислороду отдают свою энергию для синтеза АТФ. Цикл Кребса вместе с цепью переноса электронов выступает в роли энергетического «котла», в котором «сгорают» различные пищевые вещества: в цикле Кребса они передают свою энергию НАД-Н, а в цепи переноса электронов за счет окисления НАД-Н образуется АТФ.

Митохондрии - энергетические станции клетки. Очень кратко о митохондриях было рассказано в § 9. Напомним, что эти органоиды обнаруживаются во всех аэробных эукариотических (т. е. содержащих ядра) клетках: в одноклеточных и многоклеточных организмах животных и растений (как мы уже упоминали в § 11, в отсутствие освещения растения ведут себя как аэробные организмы). Внутренняя мембрана митохондрий образует многочисленные складки - кристы. Между кристами находится вязкая белоксодержащая масса - матрикс. В матриксе расположены все ферменты цикла Кребса, а на внутренней мембране - цепь переноса электронов. В различных типах клеток, на разных этапах развития в каждой клетке может содержаться от нескольких десятков до тысячи митохондрий. Митохондрии имеют собственный генетический аппарат, представленный кольцевыми молекулами ДНК.

Можно считать доказанным, что митохондрии более миллиарда лет тому назад были самостоятельными микроорганизмами. Эти аэробные прокариотические микроорганизмы внедрились в анаэробные эукариотические клетки, и в результате этого возник взаимовыгодный симбиоз. За многие миллионы лет часть бактериальных генов переместилась из митохондриальной в ядерную ДНК, и митохондрии стали зависимыми от клетки-хозяина (как и клетка-хозяин от митохондрий). Митохондриальные рибосомы, транспортные РНК (тРНК) и ряд ферментов митохондрий близки по структуре и свойствам к бактериальным и отличаются от сходных по функциям структур, которые содержатся в цитоплазме клетки-хозяина.

  1. Какова роль ферментативного конвейера цикла Кребса?
  2. В чем суть цикла Кребса?
  3. Что такое окислительное фосфорилирование?
  4. Каков энергетический эффект полного окисления глюкозы?