Основные понятия электромагнитного поля. Школьная энциклопедия

Тема: Электромагнитная индукция

Урок: Электромагнитное поле. Теория Максвелла

Рассмотрим приведенную схему и случай, когда подключён источник постоянного тока (рис 1).

Рис. 1. Схема

К основным элементам цепи относят лампочку, обычный проводник, конденсатор - при замыкании цепи на обкладках конденсатора возникает напряжение равное напряжению на зажимах источника.

Конденсатор представляет собой две параллельные металлические пластины, между которыми находится диэлектрик. Когда подают разность потенциалов на обкладки конденсатора, они заряжаются, и внутри диэлектрика возникает электростатическое поле. При этом тока внутри диэлектрика при небольших напряжениях быть не может.

При замене постоянного тока на переменный свойства диэлектриков в конденсаторе не меняются, и в диэлектрике по-прежнему практически отсутствуют свободные заряды, но мы наблюдаем то, что лампочка горит. Возникает вопрос: что же происходит? Возникающий в данном случае ток Максвелл назвал током смещения.

Мы знаем о том, что при помещении токопроводящего контура в переменное магнитное поле, в нём возникает ЭДС индукции. Это обусловлено тем, что возникает вихревое электрическое поле.

А что если подобная же картина происходит при изменении электрического поля?

Гипотеза Максвелла: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля.

Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора. Это переменное электрическое поле порождает магнитное поле в той же области между обкладками конденсатора. Причём, это магнитное поле точно такое же, как будто бы между обкладками конденсатора протекал ток, равный току во всей остальной цепи. В основе теории лежат четыре уравнения Максвелла, из которых следует, что изменение электрического и магнитного полей в пространстве и во времени происходят согласованным образом. Так, электрическое и магнитное поле образуют единое целое. Электромагнитные волны распространяются в пространстве в виде поперечных волн с конечной скоростью.

Указанная взаимосвязь между переменным магнитным и переменным электрическим полем говорит о том, что они не могут существовать обособленно друг от друга. Возникает вопрос: касается ли это утверждение статических полей (электростатического, создаваемого постоянными зарядами, и магнитостатического, создаваемого постоянными токами)? Такая взаимосвязь существует и для статических полей. Но важно понимать, что эти поля могут существовать по отношению к определённой системе отсчёта.

Покоящийся заряд создаёт в пространстве электростатическое поле (рис. 2) относительно определённой системы отсчёта. Относительно других систем отсчёта он может двигаться и, следовательно, в этих системах этот же заряд будет создавать магнитное поле.

Электромагнитное поле - это особая форма существования материи, которая создаётся заряжёнными телами и проявляется по действию на заряжённые тела. В ходе этого действия их энергетическое состояние может изменяться, следовательно, электромагнитное поле обладает энергией.

1. Исследование явлений электромагнитной индукции приводит к выводу о том, что переменное магнитное поле порождает вокруг себя вихревое электрическое.

2. Анализируя прохождение переменного тока через цепи, содержащие диэлектрики, Максвелл пришёл к выводу, что переменное электрическое поле может порождать магнитное поле за счёт тока смещения.

3. Электрическое и магнитное поле - компоненты единого электромагнитного поля, которое распространяется в пространстве в виде поперечных волн с конечной скоростью.

  1. Буховцев Б.Б., Мякишев Г.Я, Чаругин В.М. Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 17-е изд., преобраз. и доп. - М.: Просвещение, 2008.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Znate.ru ().
  2. Слово ().
  3. Физика ().
  1. Какое электрическое поле образуется при изменении магнитного поля?
  2. Каким током объясняется свечение лампочки в цепи переменного тока с конденсатором?
  3. Какое из уравнений Максвелла указывает зависимость магнитной индукции от тока проводимости и смещения?

Физическое поле - это особая форма материи, существующая в каждой точке пространства, проявляющаяся воздействием на вещество, обладающее свойством, родственным с тем, которое создало это поле.

тело + заряд поле тело + заряд

Например, в случае излучения одиночного радиоимпульса при значительном расстоянии между передающей и приемной антеннами в какой-то момент времени окажется, что сигнал уже излучен передающей антенной, но еще не принят приемной. Следовательно, в данный момент времени энергия сигнала будет локализована в пространстве. В этом случае очевидно, что носитель энергии не является привычной материальной средой, а представляет собой иную физическую реальность, которая называется полем .

Существует принципиальная разница в поведении вещества и поля.

Основное отличие - это плавность. Вещество всегда имеет резкую границу того объема, который оно занимает, а поле принципиально не может иметь резкой границы (макроскопический подход ), оно изменяется плавно от точки к точке. В одной точке пространства может существовать бесконечное количество физических полей, не влияющих друг на друга, чего нельзя сказать о веществе. Поле и вещество могут взаимно проникать друг в друга.

ЭМП и электрический заряд представляют собой основные понятия, относящиеся к физическим явлениям электромагнетизма.

ЭМП – это особая форма материи, посредством которой осуществляется взаимодействие между электрическими зарядами, отличающаясянепрерывным распределением в пространстве (ЭМВ, ЭМП заряженных частиц) и обнаруживающаядискретность структуры (фотоны), характеризующаяся способностью распространяться в вакууме со скоростью, близкой кс , оказывающая на заряженные частицы силовое воздействие, зависящее от их скорости .

ЭМП может быть полностью описано с помощью скалярного и векторного потенциалов, составляющих согласно теории относительности единый четырехмерный вектор в пространстве-времени, компоненты которого преобразуются при переходе из одной инерциальной системы отсчета в другую в соответствии с преобразованиями Г. Лоренца .

Электрический заряд – свойство частиц вещества или тел, характеризующее их взаимосвязь с собственным ЭМП и их взаимодействие с внешним ЭМП; имеет два вида, известные как положительный заряд (заряд протона) и отрицательный (заряд электрона) заряд; количественно определяется по силовому взаимодействию тел, обладающих электрическими зарядами .

Для анализа ЭМП удобна идеализация «точечный заряд» – заряд, сосредоточенный в точке. Наименьшим зарядом в природе считается заряд электронаe эл =1,60210 -19 Кл, поэтому заряды тел должны быть кратныe эл .

Однако часто удобно считать заряд непрерывно распределенным (макроскопический подход). Существует понятие объемной (, Кл/м 3), поверхностной (
, Кл/м 2) и линейной (, Кл/м) плотности заряда.

. (1.1)

. (1.2)

. (1.3)

ЭМП неподвижных электрических зарядов неразрывно связано с частицами, порождающими его, но ЭМП заряженной частицы, движущейся ускоренно, может существовать независимо от вещества в виде ЭМВ .

ЭМВ – ЭМ колебания, распространяющиеся в пространстве с течением времени с конечной скоростью.

При исследовании ЭМП обнаруживаются две формы его проявления – электрическое и магнитное поля, которым можно дать следующие определения.

Электрическое поле – одно из проявлений ЭМП, обусловленное электрическими зарядами и изменением магнитного поля, оказывающее силовое воздействие на заряженные частицы и тела, выявляемое по силовому воздействию нанеподвижные заряженные тела и частицы.

Магнитное поле – одно из проявлений ЭМП, обусловленное электрическими зарядамидвижущихся заряженных частиц (и тел) и изменением электрического поля, оказывающее силовое воздействие надвижущиеся заряженные частицы, выявляемое по силовому воздействию, направленному нормально к направлению движения этих частиц и пропорциональному их скорости .

Разделение ЭМП на электрическое и магнитное поля имеет относительный характер, поскольку зависит от выбора инерциальной системы отсчета, в которой исследуется ЭМП. Например, если некоторая система состоит из покоящихся электрических зарядов, то при исследовании ЭМП в данной системе будет установлено наличие электрического поля и отсутствие магнитного. Однако если другая система координат будет двигаться относительно данной системы, то во второй системе будет обнаружено и магнитное поле .

Основными характеристиками ЭМП считаются(напряженность электрической составляющей поля ) и(магнитная индукция ), которые описывают проявление механических сил в ЭМП и могут быть непосредственно измерены. Напряженность электрического поля можно определить как силу, действующую на точечный заряд известной величины (силу Ш. Кулона ):

. (1.4)

Магнитная индукция определяется через силу, действующую на точечный зарядq известной величины,движущийся в магнитном поле со скоростью, (силу Г. Лоренца )
:

. (1.5)

Вспомогательными характеристиками ЭМП являются (электрическая индукция илиэлектрическое смещение ) и(напряженность магнитной составляющей ЭМП ). Названия характеристик ЭМП не бесспорны, но они сложились исторически. Единицы измерения основных характеристик ЭМП приведены на стр. 3. Мы будем пользоватьсяМеждународной системой единиц СИ , наиболее удобной дляпрактических применений.

Связь между и основными и вспомогательными характеристиками осуществляется с помощью материальных уравнений :

. (1.6)

. (1.7)

В большинстве сред векторы и, как ии,коллинеарны (Приложение 1). Но в случае гироэлектрических (сегнетоэлектрики) и гиромагнитных (ферромагнетики) сред и становятсятензорными величинами, и указанные в парах векторы могут утратить коллинеарность.

Величина
называетсямагнитным потоком .

Величина -удельная проводимость среды. С учетом этой величины можно связатьплотность тока проводимости (j пр ) и напряженность поля:

. (1.8)

Уравнение (1.8) представляет собой дифференциальную форму закона Г. Ома для участка цепи.

Поля разделяются на скалярные , векторные и тензорные .

Скалярное поле – это непрерывно распределенная в каждой точке пространства некая скалярная функция с областью определения (рис. 1.1). Скалярное поле характеризуется поверхностью уровня (например, на рис. 1.1 – эквипотенциальными линиями), которую задает уравнение:
.

Векторное поле – это заданное в каждой точке пространства непрерывная векторная величина с областью определения (рис. 1.2) Основной характеристикой этого поля являетсявекторная линия , в каждой точке которойвектор поля направлен по касательной. Физическая записьсиловых линий :
.

Тензорное поле – это распределенная в пространстве непрерывная тензорная величина. Например, для анизотропного диэлектрика его относительная диэлектрическая проницаемость становится тензорной величиной:
.

Изучая электромагнитную индукцию, мы видели, что при рассмотрении этого явления в определенной инерциальной системе отсчета возможны две различные причины возникновения индукционного тока. В лабораторной системе отсчета причина ЭДС - это либо появление вихревого электрического поля, либо действие силы Лоренца на движущиеся вместе с проводником электрические заряды со стороны магнитного поля. Однако при анализе возникновения ЭДС индукции за счет силы Лоренца в опыте с металлической рамкой, движущейся в магнитном поле (см. рис. 113), мы можем рассуждать и иначе.

Относительный характер электрического и магнитного полей.

Перейдем в систему отсчета, связанную с движущейся рамкой. В ней заряды неподвижны и, следовательно, со стороны магнитного

поля сила на них не действует. Строго говоря, при наличии тока заряды движутся вдоль проводника со скоростью дрейфа и (см. рис. 114), и в магнитном поле на них действует сила Лоренца. Однако она направлена поперек проводника и не может объяснить возникновение ЭДС.

Как же объяснить возникновение ЭДС индукции в этой системе отсчета? Единственное, что остается предположить, это наличие в этой системе электрического поля, направленного перпендикулярно магнитному вдоль стороны рамки, которого не было в исходной системе отсчета. Действительно, в любой инерциальной системе отсчета в единицах СИ действующая на заряд сила определяется формулой (5) § 17:

Поскольку в системе отсчета, связанной с рамкой, сила может быть обусловлена только электрическим полем Е, существующим в этой системе.

Электрическое и магнитное поля в разных системах отсчета. Итак, мы приходим к выводу об относительном характере электрического и магнитного полей. Согласно принципу относительности все инерциальные системы отсчета равноправны. Это справедливо не только для механических явлений, но и для явлений любой природы, в том числе электромагнитных.

Рис. 125. К объяснению возникновения ЭДС индукции в разных системах отсчета

В обсуждаемом здесь опыте наблюдаемой величиной является ЭДС индукции в рамке, и она существует независимо от того, в какой инерциальной системе этот опыт рассматривается.

Как мы видели, в одной системе отсчета, где электрическое поле отсутствует, существование ЭДС объясняется силой Лоренца (рис. 125а), в то время как в другой, где рамка неподвижна, - только наличием электрического поля (рис. 1256). При малых скоростях когда можно пренебречь изменением силы при переходе от одной системы отсчета к другой, из формулы (1) следует, что напряженность электрического поля Е в системе, где рамка

неподвижна, должна быть равна

Итак, движущийся магнит кроме магнитного создает и электрическое поле.

Обратим внимание на то, что относительный характер электрического и магнитного полей мы могли заметить и раньше. В самом деле, неподвижный заряд создает только электрическое поле. Однако заряд, неподвижный в какой-либо одной системе отсчета, относительно других систем отсчета движется. Такой движущийся заряд подобен электрическому току и потому создает магнитное поле. Таким образом, если в какой-либо системе отсчета есть только электрическое поле, то в любой другой системе будет еще и магнитное.

Получим формулу для индукции магнитного поля в этом случае, аналогичную формуле (2). Рассмотрим систему отсчета, движущуюся со скоростью относительно заряда . В этой системе отсчета заряд движется со скоростью Создаваемое им магнитное поле, в соответствии с формулой (16) § 15, дается выражением

Но в этой же точке заряд создает электрическое поле Е, равное

Сравнивая формулы (3) и (4), видим, что магнитное поле, создаваемое движущимся со скоростью -V зарядом, связано с электрическим полем Е, создаваемым этим же зарядом в той системе отсчета, где он неподвижен, соотношением

Эта формула, полученная для точечного заряда, справедлива и для поля, создаваемого любым распределением зарядов.

Таким образом, если в некоторой системе отсчета существует только электрическое поле Е, то в другой системе отсчета, движущейся со скоростью относительно исходной, существует еще и магнитное поле В, которое вычисляется по формуле (5).

Инварианты электромагнитного поля. Формулы (2) и (5) представляют собой частные случаи преобразования полей при переходе от одной инерциальной системы отсчета к другой. Они справедливы при малой относительной скорости систем отсчета (). В общем случае, когда в исходной системе отсчета есть и электрическое, и магнитное поле, нерелятивистские формулы преобразования в СИ имеют вид

В дальнейшем мы увидим, что где с - скорость света в вакууме.

Формулы преобразования электрического и магнитного полей при относительной скорости систем отсчета, сравнимой со скоростью света, более громоздки, чем (6). Однако всегда при переходе от одной инерциальной системы отсчета к другой существуют инвариантные, т. е. не меняющие своего значения, комбинации из векторов Е и В. Независимых комбинаций только две - это скалярное произведение этих векторов и их разность квадратов:

Формулы (7) и (8) позволяют сделать ряд важных выводов о свойствах электромагнитного поля. Если в какой-либо инерциальной системе отсчета электрическое и магнитное поля взаимно перпендикулярны, то, как видно из (7), они будут взаимно перпендикулярны и во всякой другой системе. Для таких взаимно ортогональных полей можно найти такую систему отсчета, в которой либо либо смотря по тому, положителен или отрицателен инвариант (8).

Из относительного характера электрического и магнитного полей естественно вытекает, что при изучении электрических и магнитных явлений имеет смысл рассматривать эти поля совместно, как единое электромагнитное поле. При переходе от одной системы отсчета к другой электрическое поле в одной системе, как мы видели, выражается и через электрическое поле, и через магнитное поле в другой системе, и наоборот. Поэтому естественно ожидать, что между электрическими и магнитными явлениями существует определенная симметрия. Изменение магнитного поля порождает вихревое электрическое поле. Оказывается, что справедливо и обратное: изменяющееся во времени электрическое поле порождает магнитное поле.

Изменяющееся электрическое поле как источник магнитного поля. К этому выводу можно прийти, анализируя уже известные нам экспериментальные факты и описывающие их физические законы. Рассмотрим участок электрической цепи, содержащий длинный прямолинейный провод и плоский конденсатор (рис. 126а). Будем считать, что в течение некоторого достаточно малого промежутка времени ток в этой цепи равен I. Этот ток связан с изменением заряда конденсатора соотношением

Рассмотрим круговой контур I, охватывающий проводник, как показано на рис. 126а. Ток создает магнитное поле, поэтому по теореме о циркуляции вектора индукции магнитного поля имеем

В правой части (9) стоит заряд, пересекающий ограниченную контуром I поверхность в единицу времени. Будем теперь растягивать поверхность, ограниченную контуром I, так, чтобы она, не пересекая провода с током, прошла в промежутке между пластинами конденсатора (S на рис. 126б). В этом случае никакие заряды не пересекают ограниченную контуром вытянутую поверхность, и в этом смысле ток I в (9) равен нулю. Но магнитное поле вокруг провода, в том месте, где расположен контур, исчезнуть не может, и левая часть (9) не изменяет своего значения при деформации поверхности. Мы приходим к противоречию: левая часть (9) отлична от нуля, а правая равна нулю. Значит, в формуле (9) чего-то не хватает. Естественно ожидать, что на самом деле в правой части этой формулы должен стоять еще один член, который равен нулю, если стягиваемая контуром поверхность пересекает провод.

Рис. 126. Циркуляция вектора магнитной индукции не зависит от того, пересекает ли стягиваемая им поверхность провод с током (а) или проходит между обкладками конденсатора (б)

Как угадать вид этого члена? Так как левая часть формулы (9) при деформации поверхности не изменилась, то попробуем подставить в правую часть (9) вместо I равную ему скорость изменения заряда на обкладках конденсатора и попытаемся интерпретировать эту величину так, чтобы она имела смысл и в той области, где отсутствуют движущиеся заряды. Поскольку заряд конденсатора равен произведению поверхностной плотности заряда а на площадь пластины то при неизменных размерах и форме конденсатора Выражая поверхностную плотность заряда через напряженность электрического поля между пластинами перепишем (9) в виде

В отличие от тока I, величина не равна нулю в промежутке между обкладками конденсатора. Поскольку произведение представляет собой поток напряженности электрического поля Е через поверхность ограниченную контуром, то в правой части (10) стоит величина, пропорциональная скорости изменения потока напряженности электрического поля:

Обобщение теоремы о циркуляции магнитного поля. Если теперь вместо (9) и (11) написать формулу

то она будет справедлива всегда, независимо от того, где проходит поверхность, ограниченная контуром I. Если поверхность пересекает провод, то второй член в правой части (12) практически равен нулю и мы возвращаемся к теореме о циркуляции магнитного поля (9). Если же поверхность проходит внутри конденсатора, то первый член в правой части вклада не дает, но, как мы видели, положение спасает второе слагаемое.

Возникает вопрос: является ли добавленное второе слагаемое в правой части (12) чисто формальным, необходимым только для того, чтобы формула была справедлива при любой поверхности, ограниченной данным контуром, или оно имеет физический смысл и соответствует тому, что магнитное поле возбуждается изменяющимся электрическим полем?

Рис. 127. Изменение электрического поля приводит к появлению магнитного поля

Ответ на этот вопрос можно получить, если рассмотреть несколько видоизмененный опыт (рис. 127), где контур I расположен целиком внутри большого конденсатора, расстояние между пластинами которого велико по сравнению с размерами контура. Опыт показывает, что внутри конденсатора есть магнитное поле; однако очевидно, что это поле не может создаваться далеко расположенными проводами с током Значит, в этом случае магнитное поле возникает из-за изменения электрического поля. Циркуляция индукции этого магнитного поля по контуру определяется скоростью изменения потока напряженности электрического поля через поверхность, ограниченную этим контуром.

Ток смещения. Величина получила название тока смещения, так как она, подобно току проводимости является источником магнитного поля. Термин «смещение» обусловлен историческими причинами и связан с утратившей значение механической моделью электрического поля. Следует отметить, что ток смещения эквивалентен току проводимости только в отношении способности создавать магнитное поле. Например, при наличии тока смещения не выделяется джоулева теплота.

Ток смещения был впервые предсказан Максвеллом на основе теоретического анализа известных к тому времени экспериментально установленных законов электромагнетизма. Максвелл показал,

что единая непротиворечивая картина электромагнитных явлений, согласующаяся с законом сохранения электрического заряда, может быть создана, только если предположить, что изменяющееся электрическое поле способно создавать магнитное поле. Из написанной им системы уравнений электромагнитного поля следуют как все экспериментальные законы электромагнетизма, так и существование тока смещения.

Уравнения Максвелла. Система уравнений Максвелла содержит четыре основных закона электромагнетизма. Первый закон - теорема Гаусса, связывающая поток напряженности электрического поля через замкнутую поверхность с полным зарядом внутри этой поверхности. В случае неподвижных зарядов теорема Гаусса дает иную математическую формулировку экспериментальному закону Кулона. Устанавливаемая теоремой Гаусса связь между потоком напряженности электрического поля через замкнутую поверхность и полным зарядом внутри поверхности справедлива при движении как зарядов, так и поверхности в целом или отдельных ее участков (т. е. при деформации поверхности).

Второй закон - теорема Гаусса для магнитного поля, согласно которой поток вектора магнитной индукции через любую замкнутую поверхность равен нулю. Эта теорема отражает вихревой характер магнитного поля и отсутствие в природе магнитных зарядов.

Третий закон - закон электромагнитной индукции Фарадея, согласно которому изменяющееся магнитное поле порождает вихревое электрическое поле.

Четвертый закон является обобщением закона Био-Савара- Лапласа. Магнитное поле может создаваться как движущимися электрическими зарядами, т. е. токами проводимости, так и изменяющимся электрическим полем, т. е. токами смещения.

Анализируя систему уравнений электромагнитного поля, Максвелл пришел к выводу, что эти уравнения допускают существование связанных между собой электрического и магнитного полей, распространяющихся в пространстве со скоростью света, - электромагнитных волн, которые позднее были экспериментально обнаружены Герцем.

Гауссова система единиц. При теоретическом описании электромагнитного поля наиболее простой и естественной является так называемая гауссова система единиц, которая для электрических величин совпадает с абсолютной электростатической системой СГСЭ. Единицы магнитных величин вводятся в гауссовой системе следующим образом.

Будем исходить из выражения для магнитной индукции поля, создаваемого бесконечным прямолинейным током:

Обнаружить магнитное поле можно по его действию на другой проводник с током. Если этот проводник расположить параллельно проводнику, создающему магнитное поле, то действующая на него сила согласно закону Ампера будет пропорциональна индукции магнитного поля В, силе тока в нем и его длине

Напомним, что в единицах СИ коэффициент к в формуле (14) равен единице в соответствии с определением индукции магнитного поля В через момент сил, действующих на рамку с током. В формуле (13) или в законе Био-Савара-Лапласа, из которого она следует, коэффициент к записывается в виде а его значение (или значение магнитной постоянной получается из определения ампера через силу взаимодействия двух параллельных токов.

В гауссовой системе единиц коэффициенты вводятся иначе.

Коэффициент к в формуле (13) может быть выбран произвольно, так как единица индукции поля В еще не установлена. Но после того, как этот коэффициент к в (13) выбран (тем самым выбрана и единица индукции В), коэффициент к в формуле (14) уже не может выбираться произвольно, а должен определяться из эксперимента. Разумеется, можно поступить и наоборот: использовать уравнение (14) для введения единицы индукции поля, полагая тогда коэффициент к в (13) будет определяться на опыте. В системе Гаусса поступают следующим образом. Выбирают коэффициент к в формуле (13) так, чтобы он равнялся коэффициенту к в формуле (14).

Электродинамическая постоянная. Если подставить в формулу (14) индукцию В из (13), то для силы взаимодействия двух параллельных проводников с токами I и находящихся на расстоянии друг от друга, получим следующее выражение:

На основании последней формулы и устанавливается единица индукции магнитного поля - гаусс. Один гаусс - это индукция такого поля, которое действует на 1 см проводника с током в одну СГСЭ - единицу с силой, численно равной дин, если проводник расположен перпендикулярно линиям индукции магнитного поля.

Подчеркнем, что числовое значение магнитной постоянной получается как прямое следствие определения ампера, а не устанавливается на опыте, в отличие от коэффициента в гауссовой системе. Так получается потому, что в системе СИ число основных единиц больше, чем в гауссовой и единица силы тока является основной (выбранной произвольно), в то время как в гауссовой системе эта единица является производной.

Основные формулы в гауссовой системе. Из второй формулы (16), выражающей закон Ампера, следует, что в гауссовой системе единиц выражение для силы Лоренца принимает вид:

Отсюда (как и из первой формулы следует, что в гауссовой системе размерности напряженности электрического поля и индукции магнитного поля одинаковы. Это совпадение размерностей не случайно: как мы видели, при переходе из одной системы отсчета в другую происходит частичное взаимное превращение электрического и магнитного полей. Это свойство электромагнитного поля наиболее естественным образом выражается именно в гауссовой системе единиц, где превращающиеся друг в друга физические величины Е и В измеряются в единицах одинаковой размерности (хотя эти единицы и называются по-разному: единица напряженности электрического поля не имеет специального названия, а единица индукции магнитного поля называется гаусс).

Отмеченное свойство проявляется в формулах преобразования полей при переходе из одной инерциальной системы отсчета в другую. Вместо (6) в гауссовой системе имеем

В этих формулах явно выступает одинаковая размерность слагаемых в правых частях.

В гауссовой системе единиц более симметричный вид принимают и выражения для инвариантов электромагнитного поля:

Объясните кратко, почему при переходе из системы отсчета, где есть только электрическое поле, в другую систему, в последней будет еще и магнитное поле, и наоборот.

Почему электрическое и магнитное поля, взаимно перпендикулярные в какой-либо системе отсчета, будут взаимно перпендикулярными и в любой другой системе отсчета?

Как объяснить, что магнитное поле создается не только движущимися зарядами, но и изменяющимся со временем электрическим полем?

В чем сходство и в чем различие между током проводимости и током смещения?

Два электрона в вакууме отталкиваются, так как имеют одинаковые заряды. Когда они движутся параллельными курсами, между ними действует сила притяжения, как между параллельными токами. Существует ли такая скорость, при которой это притяжение превзойдет их кулоновское отталкивание?

Какие экспериментальные законы электромагнитных явлений легли в основу системы уравнений Максвелла?

Как вводятся коэффициенты в законах Ампера и Био-Савара-Лапласа в гауссовой системе единиц?

Как определяется единица индукции магнитного поля в гауссовой системе единиц?

Покажите, что в гауссовой системе единиц напряженность электрического поля и индукция магнитного поля имеют одинаковую размерность.

Объясните, почему значение электрической постоянной в гауссовой системе единиц устанавливается на опыте, а значение магнитной постоянной в СИ просто вычисляется. На основе чего оно вычисляется?

П р и м е р 7.1. В электрическом поле точечного заряда напряжение между точками а и b равно 25 В (рис. 7.1). Определить значение и направление напряженности поля в точке с , если точки a , b и с лежат в плоскости рисунка.

Р е ш е н и е. Напряженность электрического поля точечного заряда в произвольной точке

E = . (1)

Напряженность электрического поля в точке с

E с = . (2)

Напряжение между точками a и b

= (3)

Получив выражение для заряда q из уравнения (3) и подставив его в уравнение (2), найдем

Е с = = 525 В.

П р и м е р 7.2. Коаксиальный кабель имеет радиусы внутренней жилы a = 2 мм и внешней оболочки b = 5 мм.

Определить емкость кабеля на единицу длины и под какое напряжение можно подключить кабель, если максимальная напряженность поля не должна превышать 1/3 пробивной напряженности, равной Е пр = 2·10 4 кВ/м.

Р е ш е н и е. Проведем вокруг внутренней жилы коаксиального кабеля цилиндрическую поверхность радиусом r и длиной l .

По теореме Гаусса .

Из условий симметрии находим, что напряженность электрического поля Е направлена по радиусу и на торцевых поверхностях

Тогда уравнение Гаусса можно записать в виде Е ·2πrl = q/ε a .

Откуда E = q /2πε a rl = , где τ -линейная плотность заряда.

По определению потенциал в любой точке равен

.

Полагая потенциал равным нулю на поверхности коаксиального кабеля при r = b , найдем произвольную постоянную const = .

Тогда потенциал в любой точке равен

Потенциал внутренней жилы коаксиального кабеля (при r = a ) определим по уравнению .

Это позволяет выразить линейную плотность заряда через напряжение U

и определить емкость кабеля на единицу длины

.

Напряженность электрического поля в любой точке

Напряженность поля максимальна на поверхности внутреннего цилиндра, т.е. в точках r = a: Е max = . (1)

По условию Е max =Е пр /3. (2)

Решая уравнение (1) относительно выражения U и учитывая соотношение (2), получаем = 12,2 кВ.

П р и м е р 7.3. Определить потенциал точки М, расположенной между двумя заряженными осями. Определить положение эквипотенциалей.

Р е ш е н и е. Пусть одна ось на единицу длины имеет заряд +τ, другая – заряд – τ. Возьмем в поле некоторую произвольную точку М (рис.7.3) Результирующая напряженность поля в ней равна геометрической сумме напряженностей от обоих зарядов. Расстояние точки М до положительно заряженной оси обозначим через а , до отрицательно заряженной оси – через b . Потенциал есть функция скалярная. Потенциал точки М равен сумме потенциалов от каждой оси: .

Потенциал определяется с точностью до постоянной С . Зададим φ = 0 при a = b . Для этого проведем ось х декартовой системы координат через заряженные оси, а ось y посредине между заряженными осями. Тогда при расположении точки М на оси у (при х = 0) всегда а = b и

φ М = С = 0. В остальных случаях

Эквипотенциаль представляет собой совокупность точек, отношение расстояний которых до двух заданных точек есть величина постоянная, т.е. b/a = const = k . Поскольку

и то ,

или .

Последнее уравнение определяет окружность радиуса ,

у которой центр смещен относительно начала координат на расстояние . Между величинами x 1 , R , x 0 выполняется равенство x 1 2 = x 0 2 +R 2

Таким образом, уравнение эквипотенциали для двух заряженных осей является окружность, смещенная относительно начала координат. Для построения картины поля нужно, чтобы приращение потенциала при переходе от любой линии равного потенциала к соседней оставалось постоянным, т.е.

или при возрастании порядкового номера эквипотенциали числа k должны изменяться по геометрической прогрессии .

П р и м е р 7.4. Два провода радиусом 1 мм расположены на расстоянии 10 мм друг от друга. Провода находятся под напряжением 100 В. Построить картину электростатического поля между проводами. Рассчитать емкость на единицу длины. Разбить весь поток на 12 трубок равного потока, эквипотенциали провести через 10 В.

Р е ш е н и е . Известно, что поверхность проводящего тела является поверхностью с равным потенциалом (эквипотенциальной поверхностью) и напряженность электрического поля внутри проводника равна нулю.

Так как провода находятся под напряжением 100 В, то можно положить, что потенциал левого проводника равен 50 В, а у правого проводника – 50 В (потенциал определяется с точностью до произвольной постоянной). При таком условии поверхность с потенциалом равном нулю будет находиться посередине между проводниками.

Из предыдущей задачи известно, что эквипотенциали для двух заряженных осей являются окружностями, смещенными на разные расстояния по отношению к началу координат. В рассматриваемой задаче поверхности проводников являются эквипотенциалями и имеют вид окружности. По-видимому можно найти такое положение заряженных осей, чтобы они создавали эквипотенциаль радиусом

1 мм с потенциалом 50 В, и тогда все расчеты можно провести, используя формулы предыдущей задачи.

Полагая радиус эквипотенциали R = 1 мм, координату центра эквипотенциали (смещение от начала координат) x 1 = l /2 = 5 мм, найдем координату заряженной оси .

Возьмем точку М на эквипотенциале (для удобства вычисления расположим ее при y = 0) и найдем отношение расстояний от точки М до заряженных осей (рис. 7.4)

Используя полученное в предыдущем примере уравнение для потенциала

*)

и подставляя в него значение потенциала точки М и величину отношения а/b = k м = 0,101, найдем линейную плотность заряда

**)

Для определения положения эквипотенциалей со значениями

φ 10 = – 10 В, φ 20 = –20 В, φ 30 = –30 В, φ 40 = –40 В используем уравнение (*) и находим величины k 10 , k 20 , k 30 , k 40:

Аналогично

Используя полученные ранее уравнения для радиуса и координаты центра эквипотенциалей найдем соответствующие величины. Например, для эквипотенциали φ 30 = –30 В находим

= 5,57 мм.

Откладывая от начала координат величину x 30 = 5,57 мм, находим координату центра окружности и радиусом R 30 = =2,65 мм проводим дугу (рис.7.4). Во всех точках, лежащих на этой дуге потенциал равен φ 30 = –30 В. Аналогично строим эквипотенциали φ 10, φ 20 и φ 40 (рис.7.5). Эквипотенциали с положительными значениями потенциала 10, 20, 30, 40 В строят по тем же цифрам, но откладывают их слева от оси y .

Для определения емкости на единицу длины используем уравнение (**):

Для построения силовых линий электростатического поля двух заряженных осей используем уравнение любой линии напряженности поля

Эта линия представляет собой дугу окружности, проходящей через заряженные оси. Действительно для всех точек, лежащих на дуге

V = const угол θ = θ 2 – θ 1 будет неизменным, так как он измеряется половиной дуги AFB (рис.7.6).

При этом центральный угол AOF тоже равен θ , так как он определяется дугой ASF, которая равна половине дуги AFB. Это позволяет определить радиус этой дуги и смещение ее центра у 1 = OO 1 = x 0 ctgβ , где β = π – θ.

Чтобы подразделить поле на трубки равного потока следует получить разности ∆V = V ν +1 – V ν одинаковые для двух любых соседних линий. Для этого необходимо при переходе от любой линии напряженности поля к соседней, изменять угол θ на постоянную величину ∆θ . Чтобы разбить весь поток электростатического поля на 12 трубок равного потока, нужно дать приращения углов θ на , т.е. иметь углы θ равные . При этом шесть трубок будет выше оси x и шесть трубок – ниже. Для проведения соответствующих окружностей находим координаты их центров по уравнению y к = x 0 ctgθ к . Получаем у 1 = ±9,9мм, у 2 = ± 5,8 мм, у 3 = 4,9 мм. Окружности должны были проходить через заряженные оси, так как в данной задаче рассматривается поле, созданное двумя проводниками и внутри проводников электрическое поле отсутствует, то силовые линии, ограничивающие трубки равного потока должны начинаться на левом проводнике и заканчиваться на правом (рис.7.5).

По картине поля можно ориентировочно определить емкость двухпроводной линии на единицу длины. Полагая, что при пересечении силовых линий и эквипотенциалей на рис.7.5 получились криволинейные квадраты, найдем

где m – число трубок равного потока, n – число приращений потенциала. Сравнивая полученный результат с вычисленным ранее, находим, что погрешность графического метода порядка 12 %.

d = 0,5мм. Кабель находится под напряжением 100 В. Определить емкость кабеля на единицу длины.

Р е ш е н и е . Так как металлические поверхности жилы и экрана являются эквипотенциальными и в поперечном сечении представляют окружности, то используя аналогию с эквипотенциальными поверхностями двух заряженных осей (рис. 7.7), рассчитаем линейную плотность заряда, которая создала бы разность потенциалов 100 В между эквипотенциалями диаметрами 1 и 4 мм. При этом поверхность с потенциалом, равным нулю, окажется в стороне, потенциалы точек N и M будут сравнительно большими, но разность их будет равна 100 В, т.е. φ N – φ M = 100 В.

Обозначая величины смещения центров окружностей от начала координат (где φ = 0) соответственно х 1 и х 2 , запишем для них уравнение

Решая полученную систему уравнений, находим

Потенциалы точек М и N определяются уравнениями

и

где

Зная разность потенциалов φ N – φ M = 100 В, определим линейную плотность заряда, обеспечивающую эту разность потенциалов:

или

Тогда потенциал точки М равен

Для построения эквипотенциалей внутри коаксиального кабеля нужно сначала найти значение коэффициентов k 20 , k 40 , k 60 , k 80 . Например, для эквипотенциали, соответствующей 40 % напряжения, приложенного между электродами, найдем k 40 из уравнения:

или

Тогда радиус эквипотенциали и координата ее центра определяем по уравнению

, .

Аналогично определяем

и соответствующие радиусы эквипотенциалей и координаты их центров.

Емкость на единицу длины коаксиального кабеля со смещенной жилой определяем по формуле

Ф/м.

П р и м е р 7.6. Вдоль двухпроводной линии протекает постоянный ток I = 36 А. Направление тока в проводах линии показательно на рис. 7.8. Расстояние между осями проводов d = 1 м.

Определить разность скалярных магнитных потенциалов между точками M и N , M и P , т.е. и . Координаты точек x M = 0,5м; y M = 0,5м; x N = 0; y N = 0,5м; x р = – 0,5м;

y р = – 0,5м. Качественно построить картину магнитного поля двухпроводной линии.

Р е ш е н и е. M и N по пути MlN, обусловленное током левого провода

(рис. 7.9,а ), U mM = .

Магнитное напряжение между точками M и N по пути MКN, обусловленное током правого провода,

, где β = 45º,

так как . Для определения угла α сначала найдем угол γ , считая tg γ = y м /d = 0,5; γ = 26,5º, и α = 45º – 26,5º = 18,5º.

Магнитное напряжение между точками M и N

U mMN = = 36/360º (– 45º+18,5º) = – 2,65 А.

Магнитное напряжение между точками M и P (рис. 7.9, б )

U mMP = = (I /360) β 1 – (I /360) α 1 = 12,5 А,

где β 1 = 360º – 90º – 26,5º = 243,5º; α 1 = 90º+26,5º = 116,5º.

Картина магнитного поля двухпроводной линии приведена на рис. 7.9, в .

П р и м е р 7.7. Вдоль длинного цилиндрического стального провода протекает постоянный ток. Радиус провода r 0 =1 см. Относительная магнитная проницаемость стали μ = 50. Средой, окружающей провод, является воздух. Проекция векторного магнитного потенциала на ось z меняется в функции расстояний от оси провода по закону A 1 = – 6,28 r 2 Вб/м, а вне провода она меняется по закону

А 2 = – 25,1· 10 -6 In – 6,28·10 -4 Вб/м.

Найти законы изменения модуля напряженности магнитного поля и модуля вектора намагниченности в функции расстояния от оси провода. Построить графики Н = f (R) и J = f 1 (R) при 0 < r < ∞.

Р е ш е н и е. Так как , то модуль вектора магнитной индукции внутри и вне провода найдем из выражений

B 1 = B 1 α = rot α = – = 12,56 r,

B 2 = B 2 α = rot α = – = 25,1·10 -6 1/r .

Определим модуль напряженности магнитного поля внутри и вне провода, полагая μ 1а = μ∙μ 0 , μ 2а = μ 0:

Н 1 1 1а =2·10 5 r А/м, (1)

Н 2 2 2а =20 1/ r А/м. (2)

Пользуясь выражениями (1) и (2), строим график зависимости Н =f(r) (рис. 7.10). Так как индукция , то модуль вектора

намагниченности внутри провода

J 1 = В 1 0 – H 1 =9,8·10 6 r А/м; (3)

модуль вектора намагниченности вне провода J 2 = 0. (4)

По уравнениям (3) и (4) строим график зависимости J= f(r) (рис.7.10).

П р и м е р 7.8. Определить индуктивность двухпроводной линии, если радиус проводников а , а расстояние между проводниками d. (Рис.7.11)

Р е ш е н и е. Выберем внутри проводника площадку dS = ldr и определим магнитный поток внутри проводника

;

и потокосцепление

. (1)

Так как через сечение проводника радиуса r протекает часть тока I, равная ,

то из закона полного тока Hdl=i определим

и подставим это выражение в уравнение (1):

μ a ldr =

Определим магнитный поток и потокосцепление между проводниками от одного проводника (снаружи)

Определим суммарное потокосцепление от двух проводников

Индуктивность двухпроводной линии

При d >>a и немагнитных проводниках .

П р и м е р 7.9. Электрический ток i = 100 А течет по бесконечно длинному прямолинейному проводу круглого сечения радиусом R = 2 см, расположенному в однородной среде с магнитной проницаемостью μ 0 . Рассчитайте и постройте зависимости А(r), В(r) внутри и вне провода.

Р е ш е н и е . Векторный магнитный потенциал удовлетворяет внутри и вне провода уравнениям при 0 ≤ r R ;

при r R, решение этих уравнений имеет вид

При 0 ≤ r R

и A(r) = C 3 ln r + C 4 , B(r) = – C 3 /r при r R .

Для нахождения входящих в решения постоянных С 1 , С 2 , С 3 , С 4 используем следующие условия. Так как при r = 0 имеем В = 0, то

C 1 = 0. При r = R магнитная индукция не может иметь разрыв, что приводит к условию откуда получаем .

Потенциал А при r = R также непрерывен:

Одна из постоянных (С 2 или С 4) может иметь произвольное конечное значение, так как изменение векторного магнитного потенциала на постоянную не оказывает влияния на магнитную индукцию. Принимая С 4 = 0, получаем С 2 = –μ 0 i (lnR – 0,5)/2π и окончательно можем написать

При 0 ≤ r R ;

при r R .

П р и м е р 7.10. Используя метод наложения, рассчитайте зависимость А(х) вдоль линии, соединяющей ближайшие друг к другу точки двух бесконечно длинных прямолинейных проводов круглого сечения с токами встречных направлений, расположенных в однородной среде с магнитной проницаемостью μ 0 . Расстояние между осями проводов d = 10 см. Ток каждого провода i = 80 А.

Р е ш е н и е. Поместим начало прямоугольной системы координат в точке на расстоянии 0,5d от осей проводов (рис.7.12.). Потенциал вне проводов в точках оси х, в соответствии с решением предыдущего примера равен

Постоянную С принимаем равной нулю, так как при x = 0 имеем А = 0

П р и м е р 7.11. В пазу прямоугольной формы, изображенном на рис.7.13, размещены два провода прямоугольного сечения с токами встречных направлений. Допуская, что имеющий единственную составляющую А z векторный магнитный потенциал зависит только от координаты у, найдите зависимости А z (у), В х (у) для 0 ≤ у ≤ h и постройте кривые их изменения. Ток одного провода i = 50 А, магнитная проницаемость вещества провода μ 0 .

Р е ш е н и е . Векторный магнитный

потенциал удовлетворяет уравнению

где

Интегрируя уравнение, получаем

при 0 ≤ y ≤ 0,5h и

при 0,5h y h

Постоянную С 1 интегрирования определяем из условия B x = 0 при y = 0: получаем C 1 = 0. Интегрирование функции B x (y) = dA/dy приводит к выражениям при 0 ≤ y ≤ 0,5h и

при 0,5h y h .

Постоянную С можно принять произвольной, например, равной нулю, поскольку ее значение не оказывает влияния на магнитную индукцию. Кривые зависимостей В х (у), А(у ) (принято С = 0) показаны на рис.7.14.

П р и м е р 7.12. Постройте картину магнитного поля в воздушной области, ограниченной внутренним контуром стальных листов (рис 7.15), принимая допущение о том, что магнитная проницаемость вещества сердечника бесконечно велика и что магнитное поле является плоскопараллельным, не изменяющимся в направлении, перпендикулярном плоскости листов. Обмотку центрального стержня представьте в виде бесконечно тонкого охватывающего стержень слоя тока, по высоте которого ток распределен равномерно. Рассчитайте индуктивность L обмотки,используя построенную картину магнитного поля.

Обозначения размеров магнитной системы показаны на рис.7.15:

а = с = 12 см, е = 2см, b = 6 см, d = 4 см, h = 6 см. Число витков обмотки w = 100, ток в обмотке I = 1 A.

Р е ш е н и е .Учитывая симметрию поля относительно пунктирной линии (см.рис.7.15), ограничимся построением картины поля лишь в половине всей области. Для построения картины магнитного поля, включающей линии напряженности и линии постоянных значений скалярного магнитного потенциала, следует задать граничные условия для скалярного магнитного потенциала на линии ABCDEFGA. Поскольку обмотка стержня представлена в виде бесконечно тонкого слоя с постоянной линейной плотностью тока, то скалярный магнитный потенциал изменяется вдоль линии CD по линейному закону, причем разность потенциалов между точками С и D равна Iw = 100 А. Потенциал в точке D задаем равным нулю. Так как магнитная проницаемость материала сердечника принята бесконечно большой, то скалярный потенциал на линии DEFG сохраняется постоянным и равным нулю. По той же причине потенциал будет постоянным и равным 100 А на линии ABC. Линия AG является линией симметрии; нормальная к ней составляющая напряженности Н n магнитного поля равна нулю, и поэтому на ней

При построении картины поля следует соблюдать следующие правила: а) линии напряженности поля и линии постоянного потенциала должны пересекаться под прямым углом, б) линии напряженности поля должны подходить под прямым углом к поверхностям, на которых потенциал постоянный, в) ячейки сетки, образованные линиями напряженности поля и линиями постоянного потенциала, должны быть подобными.

Примем изменение ΔU m потенциала при переходе от любой линии к соседней равным 25 А. В этом случае следует изобразить всего три линии, на которых потенциал равен 25 , 50 и 75 А. Необходимо отметить точки токового слоя (p , q , r ), в которых потенциал принимает эти значения, и проводить линии, начиная с этих точек. Так как линейная плотность тока постоянна, то эти точки распределены вдоль линии CD равномерно. Определив ориентировочно вид этих линий, переходим к изображению линий напряженности магнитного поля, стараясь выполнить правила построения картины поля. Обычно линии напряженности поля проводят так, чтобы ячейки были квадратными или близкими к ним, т.е. чтобы отношение Δa n (рис.7.16) было близким к единице.

После этого следует скорректировать положение линий постоянного потенциала, затем – положение линий напряженности поля и т. д. Эту процедуру следует выполнять до тех пор, пока картина поля не будет удовлетворять требуемым правилам. В итоге получаем картину

поля (рис.7.16), в которой линии напряженности подразделяют всю область на трубки постоянных значений потока. Заметим, что линии напряженности поля подходят к линии CD под углом, не равным 90°, так как на этой линии распределен слой тока.

Для расчета индуктивности L , находим магнитный поток, сцепленный с обмоткой среднего стержня. С этой целью вычисляем магнитный поток одной трубки, а также число трубок, сцепленных с обмоткой. Магнитный поток трубки равен ΔФ = μ 0 HΔS = μ 0 (ΔU m /Δn ) Δаt = 8π ·10 -7 Вб (принято толщина сердечника t = 0,02м Δa n = 1). Трубки магнитного потока с номерами 1, 2,... 6 (рис.7.16) охватывают всю обмотку, тогда как трубки с номерами 7, 8, 9 охватывает лишь ее части. Пунктирными линиями на рис.7.16 изображены средние, или осевые линии некоторых трубок, по положению которых и определяем, какую часть обмотки охватывает трубка потока.

Таким образом, полный поток, сцепленный с обмоткой среднего стержня, составляет ψ 1 = 2ΔФw 1 (m 0 + h 1 /h + h 2 /h ... ), где m 0 – число трубок, сцепленных со всеми витками w 1 обмотки. Число слагаемых вида h K /h равно числу трубок, сцепленных не со всей обмоткой. Имеем

ψ 1 = 1,6π·10 -6 (6 +0,97 + 0,84+0,67) ≈ 4,3·10 -5 Вб, L = ψ 1 /i = 4,3·10 -5 Гн.

П р и м е р 7.13. Плоская электромагнитная волна проникает из воздуха в металлическую плиту. Удельная проводимость металла

γ = 5·10 6 См/м, его относительная магнитная проницаемость μ = 1. Фронт волны параллелен поверхности плиты. Частота колебаний f = =5000 Гц. Амплитуда плотности тока на поверхности J m = =5√2·10 5 А/м 2 .

Определить активную мощность, поглощаемую слоем металла толщиной 0,5 см и площадью 1м 2 . Найти глубину проникновения электромагнитной волны h и ее длину λ в металле.

Р е ш е н и е. Комплекс действующего значения модуля вектора Пойнтинга на поверхности плиты ,

где ; ; Z B = = 8,85·10 -5 е j 45º Ом.

Подставляя числовые значения в последние уравнения, получим

=1130 е j 45º Вт/м 2 .

Комплекс действующего значения модуля вектора Пойтинга на глубине x = 0,5 см

= 1130 е – 314 · 0,005 е j 45º = 235 е j 45º Вт /м 2 ,

где κ = = 314 м -1.

Активная мощность, поглощаемая слоем металла толщиной

5 мм и площадью s = 1 м 2 , P = (S 1 -S 2)s cos 45º = 632 Вт.

Глубина проникновения электромагнитной волны в металл

Физическое поле - это особая форма материи, существующая в каждой точке пространства, проявляющаяся воздействием на вещество, обладающее свойством, родственным с тем, которое создало это поле.

тело + заряд поле тело + заряд

Например, в случае излучения одиночного радиоимпульса при значительном расстоянии между передающей и приемной антеннами в какой-то момент времени окажется, что сигнал уже излучен передающей антенной, но еще не принят приемной. Следовательно, в данный момент времени энергия сигнала будет локализована в пространстве. В этом случае очевидно, что носитель энергии не является привычной материальной средой, а представляет собой иную физическую реальность, которая называется полем .

Существует принципиальная разница в поведении вещества и поля.

Основное отличие - это плавность. Вещество всегда имеет резкую границу того объема, который оно занимает, а поле принципиально не может иметь резкой границы (макроскопический подход ), оно изменяется плавно от точки к точке. В одной точке пространства может существовать бесконечное количество физических полей, не влияющих друг на друга, чего нельзя сказать о веществе. Поле и вещество могут взаимно проникать друг в друга.

ЭМП и электрический заряд представляют собой основные понятия, относящиеся к физическим явлениям электромагнетизма.

ЭМП – это особая форма материи, посредством которой осуществляется взаимодействие между электрическими зарядами, отличающаясянепрерывным распределением в пространстве (ЭМВ, ЭМП заряженных частиц) и обнаруживающаядискретность структуры (фотоны), характеризующаяся способностью распространяться в вакууме со скоростью, близкой кс , оказывающая на заряженные частицы силовое воздействие, зависящее от их скорости .

ЭМП может быть полностью описано с помощью скалярного и векторного потенциалов, составляющих согласно теории относительности единый четырехмерный вектор в пространстве-времени, компоненты которого преобразуются при переходе из одной инерциальной системы отсчета в другую в соответствии с преобразованиями Г. Лоренца .

Электрический заряд – свойство частиц вещества или тел, характеризующее их взаимосвязь с собственным ЭМП и их взаимодействие с внешним ЭМП; имеет два вида, известные как положительный заряд (заряд протона) и отрицательный (заряд электрона) заряд; количественно определяется по силовому взаимодействию тел, обладающих электрическими зарядами .

Для анализа ЭМП удобна идеализация «точечный заряд» – заряд, сосредоточенный в точке. Наименьшим зарядом в природе считается заряд электронаe эл =1,60210 -19 Кл, поэтому заряды тел должны быть кратныe эл .

Однако часто удобно считать заряд непрерывно распределенным (макроскопический подход). Существует понятие объемной (, Кл/м 3), поверхностной (
, Кл/м 2) и линейной (, Кл/м) плотности заряда.

. (1.1)

. (1.2)

. (1.3)

ЭМП неподвижных электрических зарядов неразрывно связано с частицами, порождающими его, но ЭМП заряженной частицы, движущейся ускоренно, может существовать независимо от вещества в виде ЭМВ .

ЭМВ – ЭМ колебания, распространяющиеся в пространстве с течением времени с конечной скоростью.

При исследовании ЭМП обнаруживаются две формы его проявления – электрическое и магнитное поля, которым можно дать следующие определения.

Электрическое поле – одно из проявлений ЭМП, обусловленное электрическими зарядами и изменением магнитного поля, оказывающее силовое воздействие на заряженные частицы и тела, выявляемое по силовому воздействию нанеподвижные заряженные тела и частицы.

Магнитное поле – одно из проявлений ЭМП, обусловленное электрическими зарядамидвижущихся заряженных частиц (и тел) и изменением электрического поля, оказывающее силовое воздействие надвижущиеся заряженные частицы, выявляемое по силовому воздействию, направленному нормально к направлению движения этих частиц и пропорциональному их скорости .

Разделение ЭМП на электрическое и магнитное поля имеет относительный характер, поскольку зависит от выбора инерциальной системы отсчета, в которой исследуется ЭМП. Например, если некоторая система состоит из покоящихся электрических зарядов, то при исследовании ЭМП в данной системе будет установлено наличие электрического поля и отсутствие магнитного. Однако если другая система координат будет двигаться относительно данной системы, то во второй системе будет обнаружено и магнитное поле .

Основными характеристиками ЭМП считаются(напряженность электрической составляющей поля ) и(магнитная индукция ), которые описывают проявление механических сил в ЭМП и могут быть непосредственно измерены. Напряженность электрического поля можно определить как силу, действующую на точечный заряд известной величины (силу Ш. Кулона ):

. (1.4)

Магнитная индукция определяется через силу, действующую на точечный зарядq известной величины,движущийся в магнитном поле со скоростью, (силу Г. Лоренца )
:

. (1.5)

Вспомогательными характеристиками ЭМП являются (электрическая индукция илиэлектрическое смещение ) и(напряженность магнитной составляющей ЭМП ). Названия характеристик ЭМП не бесспорны, но они сложились исторически. Единицы измерения основных характеристик ЭМП приведены на стр. 3. Мы будем пользоватьсяМеждународной системой единиц СИ , наиболее удобной дляпрактических применений.

Связь между и основными и вспомогательными характеристиками осуществляется с помощью материальных уравнений :

. (1.6)

. (1.7)

В большинстве сред векторы и, как ии,коллинеарны (Приложение 1). Но в случае гироэлектрических (сегнетоэлектрики) и гиромагнитных (ферромагнетики) сред и становятсятензорными величинами, и указанные в парах векторы могут утратить коллинеарность.

Величина
называетсямагнитным потоком .

Величина -удельная проводимость среды. С учетом этой величины можно связатьплотность тока проводимости (j пр ) и напряженность поля:

. (1.8)

Уравнение (1.8) представляет собой дифференциальную форму закона Г. Ома для участка цепи.

Поля разделяются на скалярные , векторные и тензорные .

Скалярное поле – это непрерывно распределенная в каждой точке пространства некая скалярная функция с областью определения (рис. 1.1). Скалярное поле характеризуется поверхностью уровня (например, на рис. 1.1 – эквипотенциальными линиями), которую задает уравнение:
.

Векторное поле – это заданное в каждой точке пространства непрерывная векторная величина с областью определения (рис. 1.2) Основной характеристикой этого поля являетсявекторная линия , в каждой точке которойвектор поля направлен по касательной. Физическая записьсиловых линий :
.

Тензорное поле – это распределенная в пространстве непрерывная тензорная величина. Например, для анизотропного диэлектрика его относительная диэлектрическая проницаемость становится тензорной величиной:
.