Решение систем с двумя параметрами. Системы уравнений с параметром

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют задачи, в которых необходимо произвести поиск решений линейных и квадратных уравнений в общем виде или произвести поиск количества корней, которое имеет уравнение в зависимости от значения параметра. Все эти задачи с параметрами.

Рассмотрим следующие уравнения в качестве наглядного примера:

\[у = kx,\] где \ - переменные, \- параметр;

\[у = kx + b,\] где \ - переменные, \ - параметр;

\[аx^2 + bх + с = 0,\] где \ - переменная, \[а, b, с\] - параметр.

Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.

Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:

1. Определить "контрольные" значения параметра.

2. Решить исходное уравнение относительно [\x\] при значениях параметра, определенных в первом пункте.

3. Решить исходное уравнение относительно [\x\] при значениях параметра, отличающихся от выбранных в первом пункте.

Допустим, дано такое уравнение:

\[\mid 6 - x \mid = a.\]

Проанализировав исходные данные, видно, что a \[\ge 0.\]

По правилу модуля \ выразим \

Ответ: \ где \

Где можно решить уравнение с параметром онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Замечание . В приведенном примере вычисление всех определителей заканчивалось представлением в виде произведения сомножителей, один из которых (13) сократился при делении. Такая ситуация является весьма общей. Поэтому не надо торопиться перемножать сомножители, хотя чаще всего они не сокращаются.

Задача 4.4. Решить системы уравнений, используя правило Крамера:

1 + 4x 2 + x 3 = 21

1 + x 2 − x 3 = 2

2x 1 + x 2 + x 3 = 7

3x 2 − 3x3 = 1

1) 4x1 + 2x2 + x3 = 27

3) x1 + 4x2 − 5x3

3x 2 + 2x3 = 19

− 2x2 + 3x3 = 7

4x1 + 10x2 − x3

Решение приведенных задач показывает, что формулы Крамера представляют собой единый и удобный метод отыскания решений систем линейных уравнений.

Указание . Использование формул Крамера значительно упрощается, если надо найти только одно из неизвестных: в этом случае надо сосчитать только два определителя.

2.4.4. Системы уравнений с параметрами

Выше всюду рассматривались системы линейных алгебраических уравнений с фиксированными коэффициентами при неизвестных и правыми частями уравнений. В практических задачах очень часто эти коэффициенты и значения правых частей известны неточно. Поэтому приходится анализировать влияние таких параметров на решение систем.

Пример 4.5. Исследовать зависимость решения системы уравнений

3 x + 8 y = a5 x + 9 y = b

от параметров a и b .

Здесь от параметров зависят только правые части уравнений. Поскольку

27 − 40 = − 13 ≠ 0

для отыскания решения можно воспользоваться формулами Крамера. Имеем:

∆1

9a − 8b,∆ 2

3b − 5a

x = x

= ∆ 1

9a − 8b

8b − 9a

Y = x

∆ 2 =

5a − 3b

− 13

Подстановкой убеждаемся, что полученное решение верно:

8b − 9a

5a − 3b

a(− 27 + 40)

B(24 − 24)

8b − 9a

5a − 3b

a(− 45 + 45)

− 27)

В частности, если a = 11, b = 14 получаем: x =

8× 14 − 9× 11

1 и y = 1.

y (a , b )

x (a , b )

Таким образом, каждой паре параметров a и b соответствует единственная пара чисел x и y , удовлетворяющая заданной системе уравнений. Это значит, что решением системы уравнений является упорядоченная пара и двух функций от двух переменных (параметров a и b ). Обе функции определены для любых значений этих параметров и линейно зависят от независимых переменных a и b . Кроме того, x – монотонно возрас-

тающая функция b и монотонно убывающая функция a ,

– наоборот,

возрастающая функция a и монотонно убывающая функция b .

Задача 4.5. Найти решение систем уравнений

8 x + 5 y = 2 a + 1

4 x + 9 y = a + b

9x + 4 y

3 x + 2 y = a

3 x + 8 y = 3 a − b

8 x + 3 y

и исследовать зависимость их решения от параметров a и b . Рекомендация . Постройте графики полученных решений x (a , b ) и y (a , b )

как функций переменных параметров a и b . Объясните, почему во всех задачах решения линейно зависят от параметров a и b .

Пример 4.6. Исследовать зависимость решения системы уравнений

(a + 3) x + 2 ay = 5

от параметров a и b .

x + 5 y = b

В этом примере коэффициенты при неизвестных зависят от параметра

a , а правые части – от параметра b .

Найдем определитель матрицы коэффициентов при неизвестных:

a + 3 2

5(a + 3) − 2a = 3(a + 5)

Этот определитель не равен нулю только тогда, когда a ≠ − 5. Поэтому пользоваться формулами Крамера можно только тогда, когда a ≠ − 5. В этом случае:

∆1 =

25 − 2ab , ∆ 2 =

a + 3

Ab + 3b − 5

x = x

25 − 2ab

y = x

3 b − 5 + ab

3(a + 5)

3(a + 5)

Рассмотрим отдельно случай a = − 5 . Тогда исходная система есть:

− 2 x −10 y = 5 x +5 y = b

− 5 − c x = c , y = 2

Конечно, здесь имеется произвол в выборе значения любой из неизвестных, а решение можно записать и в виде:

x = − 5 2 − 5 c , y = c

Таким образом, зависимость от параметра коэффициентов при неизвестных исходной системы может порождать отсутствие решения или наличие бесконечного множества решений. Обнаруженный факт представляет собой обобщение известного ранее для одного уравнения ax = b и для систем двух линейных уравнений с двумя неизвестными.

Замечание 1. Введение константы c в решение системы уравнений напоминает произвол в выборе константы интегрирования.

Замечание 2 . Рассмотренный пример показывает, что как и для одного уравнения, для линейных алгебраических систем с большим числом уравнений и неизвестных возможны только три разных случая: единственное решение, отсутствие решения или бесконечно много решений.

Задача 4.6. Исследовать решения системы уравнений:

4 x + 5 ay = 2 a

4 x + 5 ay = 2 a

4 x + 5 ay = 2 a

8 x + 10 y

8 x + 10 y

8 x + 10 y = b

Задача 4.7. Придумать собственную систему двух алгебраических уравнений с двумя неизвестными и двумя параметрами и исследовать ее в зависимости от значений параметров.

Вопросы для самостоятельного контроля

1) Что такое минор элемента определителя?

2) Чем отличаются алгебраическое дополнение и минор элемента определителя?

3) Что называется присоединенной матрицей?

4) Как найти присоединенную матрицу для заданной матрицы?

5) Чему равен порядок присоединенной матрицы?

6) В каком случае обратная матрица не существует?

7) Какая матрица называется невырожденной?

8) При каких условиях можно использовать формулы Крамера?

9) Что такое решение системы линейных алгебраических уравнений?

10) Какие определители входят в формулы Крамера?

11) Когда определители зависят от параметров?

12) Может ли произведение присоединенной и исходной матрицы быть скалярной матрицей?

13) Как влияет на результат перестановка множителей при умножении присоединенной и исходной матрицы?

14) Что такое формулы Крамера?

15) При каких условиях решение системы линейных алгебраических уравнений можно найти с помощью правила (формул) Крамера?

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.