Звук вкручивания лампочки. Диодная лампочка с датчиком звука

Что является одним из наиболее распространенных и глубоко укоренившихся заблуждений в мире меломанов?

Сохранить и прочитать потом -

Прим. перев.: Это перевод второй (из четырех) частей развернутой статьи Кристофера «Монти» Монтгомери (создателя Ogg Free Software и Vorbis) о том, что, по его мнению, является одним из наиболее распространенных и глубоко укоренившихся заблуждений в мире меломанов.

Частота 192 кГц считается вредной

Музыкальные цифровые файлы с частотой 192 кГц не приносят никакой выгоды, но всё же оказывают кое-какое влияние. На практике оказывается, что их качество воспроизведения немного хуже, а во время воспроизведения возникают ультразвуковые волны.

И аудиопреобразователи, и усилители мощности подвержены влиянию искажений, а искажения, как правило, быстро нарастают на высоких и низких частотах. Если один и тот же динамик воспроизводит ультразвук наряду с частотами из слышимого диапазона, то любая нелинейная характеристика будет сдвигать часть ультразвукового диапазона в слышимый спектр в виде неупорядоченных неконтролируемых нелинейных искажений, охватывающих весь слышимый звуковой диапазон. Нелинейность в усилителе мощности приведет к такому же эффекту. Эти эффекты трудно заметить, но тесты подтвердили, что оба вида искажений можно расслышать.

График выше показывает искажения, полученные в результате интермодуляции звука частотой 30 кГц и 33 кГц в теоретическом усилителе с неизменным коэффициентом нелинейных искажений (КНИ) около 0.09%. Искажения видны на протяжении всего спектра, даже на меньших частотах.

Неслышимые ультразвуковые волны способствуют интермодуляционным искажениям в слышимом диапазоне (светло-синяя зона). Системы, не предназначенные для воспроизведения ультразвука, обычно имеют более высокие уровни искажений, около 20 кГц, дополнительно внося вклад в интермодуляцию. Расширение диапазона частот для включения в него ультразвука требует компромиссов, которые уменьшат шум и активность искажений в пределах слышимого спектра, но в любом случае ненужное воспроизведение ультразвуковой составляющей ухудшит качество воспроизведения.

Есть несколько способов избежать дополнительных искажений:

  1. Динамик, предназначенный только для воспроизведения ультразвука, усилитель и разделитель спектра сигнала, чтобы разделить и независимо воспроизводить ультразвук, который вы не можете слышать, чтобы он не влиял на другие звуки.
  2. Усилители и преобразователи, спроектированные для воспроизведения более широкого спектра частот так, чтобы ультразвук не вызывал слышимых нелинейных искажений. Из-за дополнительных затрат и сложности исполнения, дополнительный частотный диапазон будет уменьшать качество воспроизведения в слышимой части спектра.
  3. Качественно спроектированные динамики и усилители, которые совсем не воспроизводят ультразвук.
  4. Для начала можно не кодировать такой широкий диапазон частот. Вы не можете (и не должны) слышать ультразвуковые нелинейные искажения в слышимой полосе частот, если в ней нет ультразвуковой составляющей.

Все эти способы нацелены на решение одной проблемы, но только 4 способ имеет какой-то смысл.

Если вам интересны возможности вашей собственной системы, то нижеследующие сэмплы содержат: звук частотой 30 кГц и 33 кГц в формате 24/96 WAV, более длинную версию в формате FLAC, несколько мелодий и нарезку обычных песен с частотой, приведенной к 24 кГц так, что они полностью попадают в ультразвуковой диапазон от 24 кГц до 46 кГц.

Тесты для измерения нелинейных искажений:

  • Звук 30 кГц + звук 33 кГц (24 бит / 96 кГц)
  • Мелодии 26 кГц – 48 кГц (24 бит / 96 кГц)
  • Мелодии 26 кГц – 96 кГц (24 бит / 192 кГц)
  • Нарезка из песен, приведенных к 24 кГц (24 бит / 96 кГц WAV) (оригинальная версия нарезки) (16 бит / 44.1 кГц WAV)

Предположим, что ваша система способна воспроизводить все форматы с частотами дискретизации 96 кГц . При воспроизведении вышеуказанных файлов, вы не должны слышать ничего, ни шума, ни свиста, ни щелчков или каких других звуков. Если вы слышите что-то, то ваша система имеет нелинейную характеристику и вызывает слышимые нелинейные искажения ультразвука. Будьте осторожны при увеличении громкости, если вы попадете в зону цифрового или аналогового ограничения уровня сигнала, даже мягкого, то это может вызвать громкий интермодуляционный шум.

В целом, не факт, что нелинейные искажения от ультразвука будут слышимы на конкретной системе. Вносимые искажения могут быть как незначительны, так и довольно заметны. В любом случае, ультразвуковая составляющая никогда не является достоинством, и во множестве аудиосистем приведет к сильному снижению качества воспроизведения звука. В системах, которым она не вредит, возможность обработки ультразвука можно сохранить, а можно вместо этого пустить ресурс на улучшение качества звучания слышимого диапазона.

Недопонимание процесса дискретизации

Теория дискретизации часто непонятна без контекста обработки сигналов. И неудивительно, что большинство людей, даже гениальные доктора наук в других областях, обычно не понимают её. Также неудивительно, что множество людей даже не осознают, что понимают её неправильно.

Дискретизированные сигналы часто изображают в виде неровной лесенки, как на рисунке выше (красным цветом), которая выглядит как грубое приближение к оригинальному сигналу. Однако такое представление является математически точным, и когда происходит преобразование в аналоговый сигнал, его график становится гладким (голубая линия на рисунке).

Наиболее распространенное заблуждение заключается в том, что, якобы, дискретизация – процесс грубый и приводит к потерям информации. Дискретный сигнал часто изображается как зубчатая, угловатая ступенчатая копия оригинальной идеально гладкой волны. Если вы так считаете, то можете считать, что чем больше частота дискретизации (и чем больше бит на отсчет), тем меньше будут ступеньки и тем точнее будет приближение. Цифровой сигнал будет все больше напоминать по форме аналоговый, пока не примет его форму при частоте дискретизации, стремящейся к бесконечности.

По аналогии, множество людей, не имеющих отношения к цифровой обработке сигналов, взглянув на изображение ниже, скажут: «Фу!» Может показаться, что дискретный сигнал плохо представляет высокие частоты аналоговой волны, или, другими словами, при увеличении частоты звука, качество дискретизации падает, и частотная характеристика ухудшается или становится чувствительной к фазе входного сигнала.

Это только так выглядит. Эти убеждения неверны!

Комментарий от 04.04.2013: В качестве ответа на всю почту, касательно цифровых сигналов и ступенек, которую я получил, покажу реальное поведение цифрового сигнала на реальном оборудовании в нашем видео Digital Show & Tell , поэтому можете не верить мне на слово.

Все сигналы частотой ниже частоты Найквиста (половина частоты дискретизации) в ходе дискретизации будут захвачены идеально и полностью, и бесконечно высокая частота дискретизации для этого не нужна. Дискретизация не влияет на частотную характеристику или фазу. Аналоговый сигнал может быть восстановлен без потерь – таким же гладким и синхронным как оригинальный.

С математикой не поспоришь, но в чем же сложности? Наиболее известной является требование ограничения полосы. Сигналы с частотами выше частоты Найквиста должны быть отфильтрованы перед дискретизацией, чтобы избежать искажения из-за наложения спектров. В роли этого фильтра выступает печально известный сглаживающий фильтр. Подавление помехи дискретизации, на практике, не может пройти идеально, но современные технологии позволяют подойти к идеальному результату очень близко. А мы подошли к избыточной дискретизации.

Избыточная дискретизация

Частоты дискретизации свыше 48 кГц не имеют отношения к высокой точности воспроизведения аудио, но они необходимы для некоторых современных технологий. Избыточная дискретизация (передискретизация) – наиболее значимая из них .

Идея передискретизации проста и изящна. Вы можете помнить из моего видео «Цифровое мультимедиа. Пособие для начинающих гиков», что высокие частоты дискретизации обеспечивают гораздо больший разрыв между высшей частотой, которая нас волнует (20 кГц) и частотой Найквиста (половина частоты дискретизации). Это позволяет пользоваться более простыми и более надежными фильтрами сглаживания и увеличить точность воспроизведения. Это дополнительное пространство между 20 кГц и частотой Найквиста, по существу, просто амортизатор для аналогового фильтра.

На рисунке выше представлены диаграммы из видео «Цифровое мультимедиа. Пособие для начинающих гиков», иллюстрирующие ширину переходной полосы для ЦАП или АЦП при частоте 48 кГц (слева) и 96 кГц (справа).

Это только половина дела, потому что цифровые фильтры имеют меньше практических ограничений в отличие от аналоговых, и мы можем завершить сглаживание с большей точностью и эффективностью. Высокочастотный необработанный сигнал проходит сквозь цифровой сглаживающий фильтр, который не испытывает проблем с размещением переходной полосы фильтра в ограниченном пространстве. После того, как сглаживание завершено, дополнительные дискретные отрезки в амортизирующем пространстве просто откидываются. Воспроизведение передискретизированного сигнала проходит в обратном порядке.

Это означает, что сигналы с низкой частотой дискретизации (44.1 кГц или 48 кГц) могут обладать такой же точностью воспроизведения, гладкостью АЧХ и низким уровнем наложений, как сигналы с частотой дискретизации 192 кГц или выше, но при этом не будет проявляться ни один из их недостатков (ультразвуковые волны, вызывающие интермодуляционные искажения, увеличенный размер файлов). Почти все современные ЦАП и АЦП производят избыточную дискретизацию на очень высоких скоростях, и мало кто об этом знает, потому что это происходит автоматически внутри устройства.

ЦАП и АЦП не всегда умели передискретизировать. Тридцать лет назад некоторые звукозаписывающие консоли использовали для звукозаписи высокие частоты дискретизации, используя только аналоговые фильтры. Этот высокочастотный сигнал потом использовался для создания мастер-дисков. Цифровое сглаживание и децимация (повторная дискретизация с более низкой частотой для CD и DAT) происходили на последнем этапе создания записи. Это могло стать одной из ранних причин, почему частоты дискретизации 96 кГц и 192 кГц стали ассоциироваться с производством профессиональных звукозаписей.

16 бит против 24 бит

Хорошо, теперь мы знаем, что сохранять музыку в формате 192 кГц не имеет смысла. Тема закрыта. Но что насчет 16-битного и 24-битного аудио? Что же лучше?

16-битное аудио с импульсно-кодовой модуляцией действительно не полностью покрывает теоретический динамический звуковой диапазон, который способен слышать человек в идеальных условиях. Также есть (и будут всегда) причины использовать больше 16 бит для записи аудио.

Ни одна из этих причин не имеет отношения к воспроизведению звука – в этой ситуации 24-битное аудио настолько же бесполезно, как и дискретизация на 192 кГц. Хорошей новостью является тот факт, что использование 24-битного квантования не вредит качеству звучания, а просто не делает его хуже и занимает лишнее место.

Примечания к Части 2

6. Многие из систем, которые неспособны воспроизводить сэмплы 96 кГц, не будут отказываться их воспроизводить, а будут незаметно субдискретизировать их до частоты 48 кГц. В этом случае звук не будет воспроизводиться совсем, и на записи ничего не будет, вне зависимости от степени нелинейности системы.

7. Передискретизация – не единственный способ работы с высокими частотами дискретизации в обработке сигналов. Есть несколько теоретических способов получить ограниченный по полосе звук с высокой частотой дискретизации и избежать децимации, даже если позже он будет субдискретизирован для записи на диски. Пока неясно, используются ли такие способы на практике, поскольку разработки большинства профессиональных установок держатся в секрете.

8. Неважно, исторически так сложилось или нет, но многие специалисты сегодня используют высокие разрешения, потому что ошибочно полагают, что звук с сохраненным содержимым за пределами 20 кГц звучит лучше. Прямо как потребители.

Сможете подойти к сути дела, открыть причину какою-нибудь явления.

Носить в кармане лампочку - к соблазну, жизни в эротических грезах.

Ввинчивать или вывинчивать лампочку - вы можете стать виновником чего-то (несчастья, праздника).

Наступить на лампочку - вы рискуете кому-то подвернуться под руку.

Уронить во сне лампочку - к тревоге.

Цветная лампочка - символ лжи, принимаемой за истину.

Лампочки в виде гирлянды - символ путаницы.

Лампа, горящая ровным и ярким светом - высока вероятность успехов во всех сферах.

Большая люстра - возможно, вас ждёт участие в торжественном собрании.

Светящаяся люстра - к укреплению здоровья, радости.

Погашенная люстра - сон имеет противоположное толкование.

Толкование снов из Сонника XXI века

Сонник - Звуки

Услышать во сне неприятные, резкие звуки означает получение дурных известий. Громкие звуки во сне предупреждают об опасности или важности событий. Торжественные - к неожиданным и почетным мероприятиям, большим сделкам, богатству.

Звук трубы во сне предвещает получение известий, которые переменят вашу судьбу. Если во сне вы испугаетесь их, то перемены будут дурными. Смотрите толкование: звон и по названиям предметов, от которых они исходят.

Толкование снов из

Всем привет!

Продавец отправил посылку на следующий день после оплаты. При этом она была снабжена полноценным треком, так что вся информация об ее отслеживании по пути из Китая в Беларусь доступна для просмотра всем желающим по ссылке.

Поставляется лампочка в оригинальной заводской упаковке, которая представляет собой картонную коробку с разноцветной полиграфией и массой иероглифов. Из понятной для меня информации, размещенной на лицевой стороне упаковки - надпись «LED»:)


Дальше все еще хуже. Судя по всем этим китайским символам, данная продукция ориентирована на внутренний рынок и не предназначена для экспорта. Хотя может это просто упаковка такая.


На крышке коробки доступной для восприятия информации куда больше, вот только часть ее скрыта под разнообразными наклейками:


Из той информации, которая осталась открытой, видно, что цоколь у лампочки Е27, мощность 9Вт, частота 50/60Гц, степень защищенности IP20 (то есть защита против твердых частиц размером более 12 мм. и полное отсутствие защиты от влаги).

Несмотря на то, что коробка пришла изрядно помятой, лампочка осталось целой. В живую она выглядит следующим образом:


Первое, что бросается в глаза - габариты, маленькими их точно не назовешь. Так что для любого светильника она не подойдет, нужно что-то соответствующих размеров.

В целом, сделана лампочка неплохо, придраться тут не к чему. Пластиковое «стекло» снимается без проблем, а значит можно заглянуть во внутренности лампочки и узнать как она устроена. В качестве источника света выступают 26 диодов, которые расположены тремя рядами на круглом металлическом диске, находящемся под рассеивателем.


Вытащив диск с диодами, можно взглянуть на мозг и сердце лампочки: с одной стороны платы расположен микрофон, парочка конденсаторов и что-то очень сильно напоминающее фоторезистор, играющий здесь роль датчика освещенности. То есть для того, чтобы лампочка начала светить необходимо 2 условия: звук и темнота - самое оно для общего коридора.


С другой стороны плата выглядит интересней:


Диаметр лампочки в самом широком месте 77,9 миллиметров.


Больше ничего интересного ни во внешнем виде, ни во внутреннем устройстве лампочки нет, а значит можно переходить к проверке ее работоспособности. Для начала измерим потребление электроэнергии и узнаем ее реальную мощность:


Даже в выключенном состоянии лампочка потребляет электроэнергию - 0,3 Вт.

Мощность лампочки в активном режиме - 6 Вт (причем выше этого уровня значение не поднималось, заявленных 9 я так и не увидел).


Однако этой мощности хватает для вполне себе приличного освещения коридора. А с учетом того, что она наклонена в сторону двери кмоей квартиры, то у меня к яркости вообще никаких претензий нет. Визуально яркость такая же, как у лампочки накаливания мощностью 60 Вт. Но испускаемй цвет белый, а не желтый, поэтому ее свечение кажется более ярким. Вот так выглядит лампочка, установленная в светильник в коридоре:


Светиться она начинает после громкого звука - хлопка двери, громкого топанья и т.д. Время свечения примерно 45 секунд, которых мне вполне достаточно для того, чтобы закрыть дверь на ключ (или наоборот накрыть) и дойти от общей двери до двери в квартиру (и наоборот).

Вот небольшое видео того, как работает лампочка в реальных условиях (сразу извиняюсь за качество картинки, но суть, думаю, понятна):


В завершении хочу сказать, что лампочка отлично подошла для освещения коридора. Очень надеюсь, что проработает она долго, а диоды не начнут выгорать через месяц-два. В любом случае, пока что я покупкой более чем доволен. За то непродолжительное время, которое лампочка используется в коридоре, проблем со срабатыванием выявлено не было, что не может не радовать. Так что если вам надо осветить что-то подобное, то, думаю, что такой вариант стоит рассмотреть.

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

Планирую купить +15 Добавить в избранное Обзор понравился +27 +51