Чем вызывается давление на стенки сосуда. Давление газа на стенки сосуда

Мы уже говорили (§ 220), что газы всегда нацело заполняют объем, ограниченный непроницаемыми для газа стенками. Так, например, стальной баллон, употребляемый в технике для хранения сжатых газов (рис. 375), или камера автомобильной шины полностью и практически равномерно заполнены газом.

Рис. 375. Стальной баллон для хранения сильно сжатых газов

Стремясь расшириться, газ оказывает давление на стенки баллона, камеры шины или любого другого тела, твердого или жидкого, с которым он соприкасается. Если не принимать во внимание действия поля тяжести Земли, которое при обычных размерах сосудов лишь ничтожно меняет давление, то при равновесии давление газа в сосуде представляется нам совершенно равномерным. Это замечание относится к макромиру. Если же представить себе, что происходит в микромире молекул, составляющих газ в сосуде, то ни о каком равномерном распределении давления не может быть и речи. В одних местах поверхности стенок молекулы газа ударяют о них, в то время как в других местах удары отсутствуют; эта картина все время беспорядочным образом меняется.

Допустим для простоты, что все молекулы до удара о стенку летят с одинаковой скоростью , направленной по нормали к стенке. Будем также считать удар абсолютно упругим. При этих условиях скорость молекулы при ударе будет изменять направление на обратное, оставаясь неизменной по модулю. Следовательно, скорость молекулы после удара будет равна . Соответственно импульс молекулы до удара равен , а после удара он равен ( - масса молекулы). Вычтя из конечного значения импульса его начальное значение, найдем сообщаемое стенкой приращение импульса молекулы. Оно равно . Согласно третьему закону Ньютона стенке сообщается при ударе импульс, равный .

Если за единицу времени на единицу площади стенки приходится ударов, то за время об участок поверхности стенки ударяют молекул. Молекулы сообщают участку за время суммарный импульс, равный по модулю . В силу второго закона Ньютона этот импульс равен произведению силы , действующей на участок , на время . Таким образом,

Откуда .

Разделив силу на площадь участка стенки , получим давление газа на стенку:

Нетрудно сообразить, что число ударов в единицу времени зависит от скорости молекул, ибо чем быстрее они летят, тем чаще ударяются о стенку, и от числа молекул в единице объема, ибо чем больше молекул, тем больше и число наносимых ими ударов. Следовательно, можно считать, что пропорционально и , т. е. пропорционально

Для того чтобы рассчитать с помощью молекулярной теории давление газа, мы должны знать следующие характеристики микромира молекул: массу , скорость и число молекул в единице объема. Для того чтобы найти эти микрохарактеристики молекул, мы должны установить, от каких характеристик макромира зависит давление газа, т. е. установить на опыте законы газового давления. Сравнив эти опытные законы с законами, рассчитанными при помощи молекулярной теории, мы получим возможность определить характеристики микромира, например скорости газовых молекул.

Итак, установим, от чего зависит давление газа?

Во-первых, давление зависит от степени сжатия газа, т. е. оттого, сколько молекул газа находится в данном объеме. Например, нагнетая в автомобильную шину все больше воздуха или сжимая (уменьшая объем) закрытую камеру, мы заставляем газ все сильнее давить на стенки камеры.

Во-вторых, давление зависит от температуры газа. Известно, например, что мяч становится более упругим, если его подержать вблизи нагретой печи.

Обычно изменение давления вызывается обеими причинами сразу: и изменением объема, и изменением температуры. Но можно осуществить процесс так, что при изменении объема температура будет меняться ничтожно мало или при изменении температуры объем практически останется неизменным. Этими случаями мы сперва и займемся, сделав предварительно еще следующее замечание. Мы будем рассматривать газ в состоянии равновесия. Это значит, что в газе установилось как механическое, так и тепловое равновесие.

Механическое равновесие означает, что не происходит движения отдельных частей газа. Для этого необходимо, чтобы давление газа было во всех его частях одинаково, если пренебречь незначительной разницей давления в верхних и нижних слоях газа, возникающей под действием силы тяжести.

Тепловое равновесие означает, что не происходит передачи теплоты от одного участка газа к другому. Для этого необходимо, чтобы температура во всем объеме газа была одинакова.

Где бы ни находился газ: в воздушном шаре, автомобильной шине, или металлическом баллоне - он заполняет собой весь объём сосуда, в котором находится.

Давление газа возникает совсем по другой причине, нежели давление твёрдого тела. Оно образуется в результате ударов молекул о стенки сосуда.

Давление газа на стенки сосуда

Двигаясь хаотично в пространстве, молекулы газа сталкиваются между собой и со стенками сосуда, в котором находятся. Сила удара одной молекулы мала. Но так как молекул очень много, и сталкиваются они с большой частотой, то, действуя сообща на стенки сосуда, они создают значительное давление. Если в газ помещено твёрдое тело, то оно также подвергается ударам молекул газа.

Проведём несложный опыт. Под колокол воздушного насоса поместим завязанный воздушный шарик, не полностью наполненный воздухом. Так как воздуха в нём мало, шарик имеет неправильную форму. Когда же мы начнём откачивать воздух из-под колокола, шарик станет раздуваться. Через некоторое время он примет форму правильного шара.

Что же произошло с нашим шариком? Ведь он был завязан, следовательно, количество воздуха в нём осталось прежним.

Всё объясняется довольно просто. Во время движения молекулы газа сталкиваются с оболочкой шарика снаружи и внутри него. Если воздух откачивается из колокола, молекул становится меньше. Уменьшается плотность, а значит и частота ударов молекул о наружную оболочку также уменьшается. Следовательно, давление снаружи оболочки падает. А так как внутри оболочки число молекул осталось прежним, то внутреннее давление превышает наружное. Газ давит изнутри на оболочку. И по этой причине она постепенно раздувается и принимает форму шара.

Закон Паскаля для газов

Молекулы газа очень подвижны. Благодаря этому давление они передают не только в направлении действия силы, вызывающей это давление, но и равномерно по всем направлениям. Закон о передаче давления сформулировал французский учёный Блез Паскаль: «Давление, производимое на газ или жидкость, передаётся без изменений в любую точку по всем направлениям ». Этот закон называют основным законом гидростатики - науки о жидкости и газе в состоянии равновесия.

Закон Паскаля подтверждается опытом с прибором, который называют шаром Паскаля . Этот прибор представляет собой шар из твёрдого вещества с проделанными в нём крошечными отверстиями, соединённый с цилиндром, по которому двигается поршень. Шар заполняется дымом. При сжатии поршнем дым выталкивается из отверстий шара одинаковыми струйками.

Давление газа вычисляют по формуле:

где е lin - средняя кинетическая энергия поступательного движения молекул газа;

n - концентрация молекул

Парциальное давление. Закон Дальтона

На практике чаще всего нам приходится встречаться не с чистыми газами, а с их смесями. Мы дышим воздухом, являющимся смесью газов. Выхлопные газы автомобилей - тоже смесь. При сварке уже давно не применяется чистый углекислый газ. Вместо него также используют газовые смеси.

Газовой смесью называют смесь газов, не вступающих в химические реакции между собой.

Давление отдельного компонента газовой смеси называется парциальным давлением .

Если предположить, что все газы смеси являются идеальными газами, то давление смеси определяется законом Дальтона: «Давление смеси идеальных газов, не взаимодействующих химически, равно сумме парциальных давлений».

Его величина определяется по формуле:

Каждый газ в смеси создаёт парциальное давление. Его температура равна температуре смеси.

Давление газа можно изменить, меняя его плотность. Чем больше газа будет закачано в металлический баллон, тем больше в нём будет молекул, ударяющихся о стенки, и тем выше станет его давление. Соответственно, откачивая газ, мы разрежаем его, и давление снижается.

Но давление газа также можно изменить, изменив его объём или температуру, то есть, сжав газ. Сжатие проводят, воздействуя силой на газообразное тело. В результате такого воздействия уменьшается занимаемый им объём, повышается давление и температура.

Газ сжимается в цилиндре двигателя при движении поршня. На производстве высокое давление газа создают, сжимая его с помощью сложных устройств - компрессоров, которые способны создать давление до нескольких тысяч атмосфер.




Поведение молекул атмосферы Атмосфера состоит из газов, а почему молекулы не улетают в мировое пространство? Атмосфера состоит из газов, а почему молекулы не улетают в мировое пространство? Как все тела, молекулы газов, входящих в состав воздушной оболочки Земли, притягиваются к Земле. Как все тела, молекулы газов, входящих в состав воздушной оболочки Земли, притягиваются к Земле. Чтобы покинуть Землю, они должны обладать скоростью не меньше 11,2 км/с, это вторая космическая скорость. Большинство молекул имеют скорость меньше 11,2 км/с. Чтобы покинуть Землю, они должны обладать скоростью не меньше 11,2 км/с, это вторая космическая скорость. Большинство молекул имеют скорость меньше 11,2 км/с. А почему атмосфера не оседает на поверхность Земли? А почему атмосфера не оседает на поверхность Земли? Молекулы газов, составляющих атмосферу, движутся непрерывно и беспорядочно. Молекулы газов, составляющих атмосферу, движутся непрерывно и беспорядочно.




Под действием силы тяжести верхние слои воздуха атмосферы сжимают нижние. Под действием силы тяжести верхние слои воздуха атмосферы сжимают нижние. Прилегающий к Земле слой сжат больше всего. Прилегающий к Земле слой сжат больше всего. Земная поверхность и тела на ней испытывают давление всей толщи воздуха (по закону Паскаля) –атмосферное давление. Земная поверхность и тела на ней испытывают давление всей толщи воздуха (по закону Паскаля) –атмосферное давление.






Исторический факт Впервые весомость воздуха привела людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами - вода не поднималась выше 10,3м. Впервые весомость воздуха привела людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами - вода не поднималась выше 10,3м. Поиски причин упрямства воды и опыты с более тяжелой жидкостью - ртутью, предпринятые в 1643г. Торричелли, привели к открытию атмосферного давления. Поиски причин упрямства воды и опыты с более тяжелой жидкостью - ртутью, предпринятые в 1643г. Торричелли, привели к открытию атмосферного давления.


Опыт Отто фон Герике В 1654 году магдебургский бургомистр и физик Отто фон Герике показал на рейхстаге в Регенсбурге один опыт, который теперь во всём мире называют опытом с магдебургскими полушариями. В 1654 году магдебургский бургомистр и физик Отто фон Герике показал на рейхстаге в Регенсбурге один опыт, который теперь во всём мире называют опытом с магдебургскими полушариями.






Атмосферное давление и человек Атмосферное давление не ощущается человеком и животными. Атмосферное давление не ощущается человеком и животными. Ткани, кровяносные сосуды и стенки других полостей тела подвергаются наружному давлению атмосферы. Ткани, кровяносные сосуды и стенки других полостей тела подвергаются наружному давлению атмосферы. Кровь и другие жидкости и газы, заполняющие эти полости, оказывают изнутри такое же давление. Кровь и другие жидкости и газы, заполняющие эти полости, оказывают изнутри такое же давление.





Дыхание Механизм вдоха заключается в следующем: мышечным усилием мы увеличиваем объем грудной клетки, при этом давление воздуха внутри легких становится меньше атмосферного, и атмосферное давление вталкивает порцию воздуха в область меньшего давления. Механизм вдоха заключается в следующем: мышечным усилием мы увеличиваем объем грудной клетки, при этом давление воздуха внутри легких становится меньше атмосферного, и атмосферное давление вталкивает порцию воздуха в область меньшего давления. Как происходит выдох? Как происходит выдох?


Домашнее задание Интересная информация на сайте Классная физика Можно ответить на вопросы на отдельную оценку Интересная информация на сайте Классная физика Можно ответить на вопросы на отдельную оценку §40 §40 Заполнить карточку Заполнить карточку Проделать и объяснить письменно один из опытов Проделать и объяснить письменно один из опытов


Почему пассажирам самолетов перед подъемом рекомендуется удалить чернила из авторучек? Почему пассажирам самолетов перед подъемом рекомендуется удалить чернила из авторучек? Как стеклянную трубочку набрать воду? Как стеклянную трубочку набрать воду? Зачем в крышках бидонов для смазочных масел делают не одно, а два отверстия? Зачем в крышках бидонов для смазочных масел делают не одно, а два отверстия? Зачем в крышке фарфорового чайника делают отверстие? Зачем в крышке фарфорового чайника делают отверстие? Почему трудно вытащить ноги, увязшие в размокшей глине? Почему трудно вытащить ноги, увязшие в размокшей глине? Кому легче ходить по грязи? Лошади, имеющей сплошное копыто, очень трудно вытащить ногу из глубокой грязи. Под ногой, когда она ее поднимает, образуется разреженное пространство и атмосферное давление препятствует вытаскиванию ноги. В этом случае нога работает как поршень в цилиндре. Лошади, имеющей сплошное копыто, очень трудно вытащить ногу из глубокой грязи. Под ногой, когда она ее поднимает, образуется разреженное пространство и атмосферное давление препятствует вытаскиванию ноги. В этом случае нога работает как поршень в цилиндре. Внешнее, огромное по сравнению с возникшим, атмосферное давление не дает поднять ногу. При этом сила давления на ногу может достигать 1000 Н. Внешнее, огромное по сравнению с возникшим, атмосферное давление не дает поднять ногу. При этом сила давления на ногу может достигать 1000 Н. Намного легче передвигаться по такой грязи жвачным животным, у которых копыта состоят из нескольких частей и при вытаскивании ноги из грязи сжимаются, пропуская воздух в образовавшееся углубление. Намного легче передвигаться по такой грязи жвачным животным, у которых копыта состоят из нескольких частей и при вытаскивании ноги из грязи сжимаются, пропуская воздух в образовавшееся углубление.


Атмосферное давление и погода Атмосферное давление помогает предсказывать погоду, что необходимо людям разных профессий - летчикам, агрономам, радистам, полярникам, медикам, ученым. Если атмосферное давление повышается, то погода будет хорошей: холодной – зимой, жаркой – летом; если резко падает, то можно ожидать появления облачности, насыщения воздуха влагой. Понижение давления летом предвещает похолодание, зимой – потепление. Атмосферное давление помогает предсказывать погоду, что необходимо людям разных профессий - летчикам, агрономам, радистам, полярникам, медикам, ученым. Если атмосферное давление повышается, то погода будет хорошей: холодной – зимой, жаркой – летом; если резко падает, то можно ожидать появления облачности, насыщения воздуха влагой. Понижение давления летом предвещает похолодание, зимой – потепление. Атмосферное давление увеличивается, если будут происходить перемещения масс воздуха вниз (нисходящие потоки). Опускается с больших высот сухой воздух, поэтому погода будет хорошей, без осадков. Понижается же атмосферное давление при восходящих потоках воздуха. Вверх поднимается воздух, обильно насыщенный водяными парами. Вверху он охлаждается, что приводит к появлению облачности, выпадению осадков – погода при этом ухудшается. Атмосферное давление увеличивается, если будут происходить перемещения масс воздуха вниз (нисходящие потоки). Опускается с больших высот сухой воздух, поэтому погода будет хорошей, без осадков. Понижается же атмосферное давление при восходящих потоках воздуха. Вверх поднимается воздух, обильно насыщенный водяными парами. Вверху он охлаждается, что приводит к появлению облачности, выпадению осадков – погода при этом ухудшается.


Что произошло бы на Земле, если бы воздушная атмосфера вдруг исчезла? на Земле установилась бы температура приблизительно С на Земле установилась бы температура приблизительно С замерзли бы все водные пространства, а суша покрылась бы ледяной корой замерзли бы все водные пространства, а суша покрылась бы ледяной корой наступила бы полная тишина, так как звук в пустоте не распространяется наступила бы полная тишина, так как звук в пустоте не распространяется небо стало бы черным, поскольку окраска небесного свода зависит от воздуха; не стало бы сумерек, зорь, белых ночей небо стало бы черным, поскольку окраска небесного свода зависит от воздуха; не стало бы сумерек, зорь, белых ночей прекратилось бы мерцание звезд, а сами звезды были бы видны не только ночью, но и днем (днем мы их не видим из-за рассеивания частичками воздуха солнечного света) прекратилось бы мерцание звезд, а сами звезды были бы видны не только ночью, но и днем (днем мы их не видим из-за рассеивания частичками воздуха солнечного света) погибли бы животные и растения погибли бы животные и растения

Мякишев Г.Я. Давление газа в сосуде //Квант. - 1987. - № 9. - С. 41-42.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Зависит ли давление газа на стенку сосуда от материала стенки и ее температуры? Попробуем ответить на этот вопрос.

При выводе основного уравнения молекулярно-кинетической теории идеального газа в учебнике «Физика 9» (§7) предполагается, что стенка абсолютно гладкая и столкновения молекул со стенкой происходят по закону абсолютно упругого удара. Другими словами, кинетическая энергия молекулы при ударе не меняется, и угол падения молекулы равен углу отражения. Является ли это предположение оправданным и необходимым?

Коротко можно сказать так: предположение оправдано, но не необходимо.

На первый взгляд кажется, что считать стенку абсолютно гладкой ни в коем случае нельзя - стенка сама состоит из молекул и, значит, гладкой быть не может. Из-за этого угол падения.не может при любом соударении равняться углу отражения. Кроме того, молекулы стенки совершают хаотические колебания около положений равновесия (участвуют в беспорядочном тепловом движении). Поэтому при столкновении с какой-либо молекулой стенки молекула газа может передать часть энергии стенке или, наоборот, увеличить свою кинетическую энергию за счет стенки.

Тем не менее предположение об абсолютно упругом характере соударения молекулы газа со стенкой оправдано. Дело в том, что при вычислении давления в конечном счете важны средние значения соответствующих величин. При условии теплового равновесия между газом и стенкой сосуда кинетическая энергия молекул газа в среднем остается неизменной, т. е. соударения со стенкой не меняют среднюю энергию молекул газа. Если бы это было не так, то тепловое равновесие самопроизвольно нарушалось бы. А это невозможно согласно второму закону термодинамики. Также не может быть преимущественного отражения молекул в каком-либо определенном направлении - иначе сосуд с газом начал бы двигаться, что противоречит закону сохранения импульса. Значит, среднее число молекул, падающих на стенку под некоторым углом, равно среднему числу молекул, отлетающих от стенки под таким же углом. Предположение о зеркальном отражении от стенки каждой отдельной молекулы соответствует этому условию.

Таким образом, считая соударения молекул газа со стенкой упругими, мы получаем для среднего давления такой же результат, как и без этого предположения. Значит, давление газа не зависит от качества обработки стенки (ее гладкости). Однако предположение об абсолютно упругом характере удара сильно упрощает вычисление давления газа, и поэтому оно оправдано.

А зависит ли давление газа на стенку от ее температуры? На первый взгляд - должно зависеть. Если, например, нет теплового равновесия, то молекулы от холодной стенки должны отскакивать с меньшей энергией, чем от горячей.

Однако, даже если одну стенку поддерживать холодной с помощью холодильной установки, то давление на нее все равно не может быть меньше, чем давление на противоположную горячую стенку. Ведь тогда сосуд начал бы двигаться ускоренно без внешних сил, а это противоречит законам механики: освободив закрепленный сосуд со стенками различной температуры, мы не вызовем его смещения. Дело здесь в том, что при данном неравновесном состоянии газа в сосуде концентрация молекул у холодной стенки больше, чем у горячей. Уменьшение кинетической энергии молекул у холодной стенки компенсируется увеличением концентрации молекул и наоборот. В результате давление на холодную и горячую стенки оказывается одним и тем же.

Рассмотрим еще один вариант опыта. Охладим очень быстро одну из стенок. В первый момент давление на нее уменьшится, и сосуд немного сдвинется с места; затем давления выравняются, и сосуд остановится . Но при этом движении центр масс системы останется на месте из-за того, что плотность газа у холодной стенки станет чуть больше, чем у горячей.

Следует отметить, что на самом деле давление не остается строго фиксированной величиной. Оно испытывает флуктуации, и поэтому сосуд слегка «дрожит» на месте. Но амплитуда дрожания сосуда крайне мала.

Итак, окончательно мы пришли к выводу, что давление газа на стенки в сосуде не зависит ни от качества обработки стенок, ни от их температуры.