Деление отрицательных чисел, правило, примеры. Умножение и деление отрицательных чисел

Прежде всего, чтобы разобраться можно ли ноль поделить на отрицательное число, следует вспомнить, как вообще выполняется деление отрицательных чисел. Математическая операция деления представляет собой действие, обратное умножению.

Это можно описать следующим образом: если a и b рациональные числа, то разделить a на b, это значит найти такое число с, которое при умножении на b даст в результате число a. Данное определение деления верно как для положительных, так и для отрицательных чисел, если делители отличны от нуля. При этом строго соблюдается условие, что на ноль делить нельзя.

Поэтому, например, чтобы разделить число 32 на число -8, следует найти такое число, которое при умножении на число -8 даст в итоге число 32. Таким числом будет -4, так как

(-4) х (-8) = 32. Знаки при этом складываются, и минус на минус даст в итоге плюс.

Таким образом:

Другие примеры деления рациональных чисел:

21: 7 = 3, так как 7 х 3 = 21,

(−9) : (−3) = 3, так как 3 · (−3) = −9.

Правила деления отрицательных чисел

Чтобы определить модуль частного, необходимо разделить модуль делимого числа на модуль делителя. При этом важно учитывать знак и того, и другого элемента операции.

Чтобы поделить два числа с одинаковыми знаками, нужно модуль делимого разделить на модуль делителя, а перед результатом поставить знак плюс.

Чтобы поделить два числа с разными знаками, нужно модуль делимого разделить на модуль делителя, но перед результатом поставить знак минус, причем неважно, какой именно из элементов, делитель или делимое, был отрицательным.

Указанные правила и соотношения между результатами умножения и деления, известные для положительных чисел, справедливы и для всех рациональных чисел, кроме числа ноль.

Для нуля есть важное правило: частное от деления нуля на любое отличное от нуля число также равно нулю.

0: b = 0, b ≠ 0. Причем b может быть и положительным, и отрицательным числом.

Таким образом, можно сделать вывод, что ноль поделить на отрицательное число можно, причем в результате всегда будет ноль.

Теперь давайте разберемся с умножением и делением .

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом . Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .

Такое же правило справедливо и для действия противоположного умножению – для .

Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.


В центре внимания этой статьи находится деление отрицательных чисел . Сначала дано правило деления отрицательного числа на отрицательное, приведено его обоснования, а после этого приведены примеры деления отрицательных чисел с подробным описанием решений.

Навигация по странице.

Правило деления отрицательных чисел

Прежде чем дать правило деления отрицательных чисел, напомним смысл действия деление. Деление по своей сути представляет нахождение неизвестного множителя по известному произведению и известному другому множителю. То есть, число c является частным от деления a на b , когда c·b=a , и наоборот, если c·b=a , то a:b=c .

Правило деления отрицательных чисел следующее: частное от деления одного отрицательного числа на другое равно частному от деления числителя на модуль знаменателя.

Запишем озвученное правило с помощью букв. Если a и b отрицательные числа, то справедливо равенство a:b=|a|:|b| .

Равенство a:b=a·b −1 легко доказать, отталкиваясь от свойств умножения действительных чисел и определения взаимно обратных чисел. Действительно, на этой основе можно записать цепочку равенств вида (a·b −1)·b=a·(b −1 ·b)=a·1=a , которая в силу смысла деления, упомянутого в начале статьи, доказывает, что a·b −1 есть частное от деления a на b .

А это правило позволяет от деления отрицательных чисел перейти к умножению.

Осталось рассмотреть применение рассмотренных правил деления отрицательных чисел при решении примеров.

Примеры деления отрицательных чисел

Разберем примеры деления отрицательных чисел . Начнем с простых случаев, на которых отработаем применение правила деления.

Пример.

Разделите отрицательное число −18 на отрицательное число −3 , после этого вычислите частное (−5):(−2) .

Решение.

По правилу деления отрицательных чисел частное от деления −18 на −3 равно частному от деления модулей этих чисел. Так как |−18|=18 и |−3|=3 , то (−18):(−3)=|−18|:|−3|=18:3 , осталось лишь выполнить деление натуральных чисел , имеем 18:3=6 .

Аналогично решаем вторую часть задания. Так как |−5|=5 и |−2|=2 , то (−5):(−2)=|−5|:|−2|=5:2 . Этому частному отвечает обыкновенная дробь 5/2 , которую можно записать в виде смешанного числа .

Эти же результаты получаются, если использовать другое правило деления отрицательных чисел. Действительно, числу −3 обратно число , тогда , теперь выполняем умножение отрицательных чисел : . Аналогично, .

Ответ:

(−18):(−3)=6 и .

При делении дробных рациональных чисел удобнее всего работать с обыкновенными дробями. Но, если удобно, то можно делить и конечные десятичные дроби .

Пример.

Выполните деление числа −0,004 на −0,25 .

Решение.

Модули делимого и делителя равны соответственно 0,004 и 0,25 , тогда по правилу деления отрицательных чисел имеем (−0,004):(−0,25)=0,004:0,25 .

  • либо выполнить деление десятичных дробей столбиком ,
  • либо перейти от десятичных дробей к обыкновенным, после чего разделить соответствующие обыкновенные дроби.

Разберем оба подхода.

Чтобы разделить столбиком 0,004 на 0,25 сначала перенесем запятую на 2 цифры вправо, при этом придем к делению 0,4 на 25 . Теперь выполняем деление столбиком:

Таким образом, 0,004:0,25=0,016 .

А теперь покажем, как бы выглядело решение, если бы мы решили осуществить перевод десятичных дробей в обыкновенные . Так как и , то , и выполняем


В данной статье дается подробный обзор деления чисел с разными знаками . Сначала приведено правило деления чисел с разными знаками. Ниже разобраны примеры деления положительных чисел на отрицательные и отрицательных чисел на положительные.

Навигация по странице.

Правило деления чисел с разными знаками

В статье деление целых чисел было получено правило деления целых чисел с разными знаками . Его можно распространить и на рациональные числа , и на действительные числа , повторив все рассуждения из указанной статьи.

Итак, правило деления чисел с разными знаками имеет следующую формулировку: чтобы разделить положительное число на отрицательное или отрицательное число на положительное, надо делимого разделить на модуль делителя, и перед полученным числом поставить знак минус.

Запишем это правило деления с помощью букв. Если числа a и b имеют разные знаки, то справедлива формула a:b=−|a|:|b| .

Из озвученного правила понятно, что результатом деления чисел с разными знаками является отрицательное число. Действительно, так как модуль делимого и модуль делителя есть положительнее числа, то их частное есть положительное число, а знак минус делает это число отрицательным.

Отметим, что рассмотренное правило сводит деление чисел с разными знаками к делению положительных чисел.

Можно привести другую формулировку правила деления чисел с разными знаками: чтобы разделить число a на число b , нужно число a умножить на число b −1 , обратное числу b . То есть, a:b=a·b −1 .

Это правило можно использовать, когда есть возможность выходить за пределы множества целых чисел (так как далеко не каждое целое число имеет обратное). Иными словами, оно применимо на множестве рациональных, а также на множестве действительных чисел.

Понятно, это правило деления чисел с разными знаками позволяет от деления перейти к умножению.

Это же правило используется при делении отрицательных чисел .

Осталось рассмотреть, как данное правило деления чисел с разными знаками применяется при решении примеров.

Примеры деления чисел с разными знаками

Рассмотрим решения нескольких характерных примеров деления чисел с разными знаками , чтобы усвоить принцип применения правил из предыдущего пункта.

Пример.

Разделите отрицательное число −35 на положительное число 7 .

Решение.

Правило деления чисел с разными знаками предписывает сначала найти модули делимого и делителя. Модуль числа −35 равен 35 , а модуль числа 7 равен 7 . Теперь нам нужно разделить модуль делимого на модуль делителя, то есть, надо разделить 35 на 7 . Вспомнив, как выполняется деление натуральных чисел , получаем 35:7=5 . Остался последний шаг правила деления чисел с разными знаками – поставить минус перед полученным числом, имеем −5 .

Вот все решение: .

Можно было исходить из другой формулировки правила деления чисел с разными знаками. В этом случае сначала находим число, обратное делителю 7 . Этим числом является обыкновенная дробь 1/7 . Таким образом, . Осталось выполнить умножение чисел с разными знаками : . Очевидно, мы пришли к такому же результату.

Ответ:

(−35):7=−5 .

Пример.

Вычислите частное 8:(−60) .

Решение.

По правилу деления чисел с разными знаками имеем 8:(−60)=−(|8|:|−60|)=−(8:60) . Полученному выражению соответствует отрицательная обыкновенная дробь (смотрите знак деления как черта дроби), можно провести сокращение дроби на 4 , получаем .

Запишем все решение кратко: .

Ответ:

.

При делении дробных рациональных чисел с разными знаками их обычно делимое и делитель представляют в виде обыкновенных дробей. Это связано с тем, что с числами в другой записи (например, в десятичной) не всегда удобно выполнять деление.

Пример.

Решение.

Модуль делимого равен , а модуль делителя равен 0,(23) . Чтобы провести деление модуля делимого на модуль делителя, перейдем к обыкновенным дробям.

Осуществим перевод смешанного числа в обыкновенную дробь : , а также