Деятельность современных международных астрономических исследовательских центров и космических обсерваторий. Реферат: Астрономические обсерватории мира


После того, как человек впервые побывал в космосе, было запущено множество пилотируемых спутников и роботизированных научно-исследовательских станций, которые принесли человеку множество новых и полезных знаний. При этом среди огромного количества космических проектов есть те, которые выделяются в первую очередь огромными денежными суммами в них вложенными. О самых дорогих космических проектах и пойдёт речь в нашем обзоре.

1. Космическая обсерватория Gaia


$ 1 млрд
Если учитывать стоимость постройки, наземной инфраструктуры и запуска, космическая обсерватория Gaia обошлась в $ 1 млрд, что на 16% превысило первоначальный бюджет. Также данный проект был завершен на два года позже ожидаемых сроков. Целью миссии Gaia, которая была финансирована Европейским космическим агентством, является создание 3D-карты примерно 1 млрд звезд и других космических объектов, составляющих около 1% нашей галактики - Млечного Пути.

2. Космический аппарат Juno


$ 1,1 млрд
Первоначально ожидалось, что проект Juno будет стоить $ 700 млн, но к июню 2011 года стоимость превысила $ 1,1 млрд. Juno был запущен в августе 2011 года и, как ожидается, достигнет Юпитера 18 октября 2016 года. После этого космический аппарат будет выведен на орбиту Юпитера для изучения состава, гравитационного поля и магнитного поля планеты. Миссия завершится в 2017 году после того, как Juno облетит вокруг Юпитера 33 раза.

3. Космическая обсерватория Herschel


$ 1,3 млрд
Проработавшая с 2009 по 2013 год космическая обсерватория Herschel была построена Европейским космическим агентством и по сути являлась самым большим инфракрасным телескопом, когда-либо запущенным на орбиту. В 2010 году стоимость проекта составила $ 1,3 млрд. Эта цифра включает в себя расходы на запуск космического корабля и научные расходы. Прекратила работу обсерватория 29 апреля 2013 года, когда закончилась охлаждающая жидкость, хотя первоначально ожидалось, что она прослужит только до конца 2012 года.

4. Космический корабль Galileo


$ 1,4 млрд
18 октября 1989 года беспилотный космический корабль Galileo был выведен на орбиту, а 7 декабря 1995 года он достиг планеты Юпитер. Целью миссии Юпитер являлось изучение Юпитера и его спутников. Исследование самой большой планеты Солнечной системы обошлось отнюдь не дешево: вся миссия стоила примерно $ 1,4 млрд. К началу 2000-х годов интенсивное излучение Юпитера повредило Galileo, к тому же подходило к концу топливо, поэтому было принято решение разбить аппарат о поверхность Юпитера, чтобы предотвратить загрязнение спутников планеты земными бактериями.

5. Магнитный альфа-спектрометр


$ 2 млрд
Магнитный альфа-спектрометр AMS-02 является одним из самых дорогих оборудований на борту Международной космической станции. Это устройство, которое способно обнаружить антиматерию в космических лучах, было сделано в попытке доказать существование темной материи. Первоначально предполагалось, что программа AMS будет стоить $ 33 млн, но расходы выросли до ошеломляющих $ 2 млрд после ряда осложнений и технических проблем. ASM-02 был установлен на Международной космической станции в мае 2011 года и в настоящее время прибор измеряет и записывает 1000 космических лучей в секунду.

6. Марсоход Curiosity


$ 2,5 млрд
Марсоход Curiosity, который обошелся $ 2,5 млрд (при первоначальном бюджете в $ 650 млн), был успешно приземлен на поверхность Марса в кратере Гейл 6 августа 2012 года. Его миссией являлось определить, обитаем ли Марс, а также изучить климат планеты и ее геологические особенности.

7. Cassini- Huygens


$ 3,26 млрд
Проект "Кассини-Гюйгенс" был разработан для изучения удаленных объектов Солнечной системы и, в первую очередь, планеты Сатурн. Этот автономный роботизированный космический корабль, который был запущен в 1997 году и достиг орбиты Сатурна в 2004 году, включал в себя не только орбитальный комплекс, но и атмосферный посадочный модуль, который был спущен на поверхность крупнейшего спутника Сатурна, Титана. Стоимость проекта в $ 3,26 млрд была разделена между НАСА, Европейским космическим агентством и Итальянским космическим агентством.

8. Орбитальная станция Мир

$ 4,2 млрд
Орбитальная космическая станция "Мир" прослужила 15 лет - с 1986 до 2001 года, когда она сошла с орбиты и была затоплена в Тихом океане. "Миру" принадлежит рекорд самого длительного непрерывного пребывания в космосе: космонавт Валерий Поляков провел 437 дней и 18 часов на борту космической станции. "Мир" выступал в качестве научно-исследовательской лаборатории по изучению микрогравитации, а также на станции проводили опыты в области физики, биологии, метеорологии и астрономии.

9. ГЛОНАСС


$ 4,7 млрд
Так же, как Соединенные Штаты и Европейский Союз, России имеет собственную систему глобального позиционирования. Считается, что за период функционирования ГЛОНАСС с 2001 по 2011 годы был потрачено $ 4,7 млрд, а на работу системы в 2012 - 2020 годах было выделено $ 10 млрд. ГЛОНАСС в настоящее время состоит из 24 спутников. Разработка проекта началась в Советском Союзе в 1976 году и была завершена в 1995 году.

10. Спутниковая навигационная системы Galileo


$ 6,3 млрд
Спутниковая навигационная система Galileo является ответом Европы на американскую систему GPS. Система стоимостью $ 6,3 млрд в данный момент действует как дублирующая сеть на случай отключения GPS, поскольку запуск и полное использование всех 30 спутников планируется закончить только до 2019 года.

11. Космический телескоп James Webb


$ 8,8 млрд
Начали разрабатывать космический телескоп James Webb еще в 1996 году, а запуск планируется на октябрь 2018 года. Основной вклад в проект стоимостью $ 8,8 млрд внесли НАСА, Европейское космическое агентство и Канадское космическое агентство. Проект уже столкнулся с множеством проблем относительно финансирования и его чуть не отменили в 2011 году.

12. Система глобального позиционирования GPS


$ 12 млрд
Система глобального позиционирования (GPS) - группа из 24 спутников, которые позволяют любому желающему определить свое местоположение в любой точке мира. Первоначальная стоимость отправки спутников в космос составила примерно $ 12 млрд, но ежегодные эксплуатационные расходы оцениваются в общей сложности в $ 750 млн. Поскольку сейчас тяжело представить мир без GPS и Google Maps, система оказалась чрезвычайно полезной не только для военных целей, но для повседневной жизни.

13. Космические проекты серии Apollo


$ 25,4 млрд
За всю историю исследования космоса проект "Аполлон" стал не только одним из самых эпохальных, но и одним из самых дорогостоящих. Окончательная стоимость, как сообщил Конгресс Соединенных Штатов в 1973 году, составила $ 25,4 млрд. НАСА провела симпозиум в 2009 году во время которого было подсчитано, что стоимость проекта Apollo составила бы $ 170 млрд, если пересчитать его на курс 2005 года. Президент Кеннеди сыграл важную роль в формировании программы Apollo, лихо пообещав, что нога человека в итоге ступит на Луну. Его цель была достигнута в 1969 году во время миссии "Аполлон 11", когда Нейл Армстронг и Базз Олдрин прогулялись по Луне.

14. Международная космическая станция


$ 160 млрд
Международная космическая станция является одной из самых дорогих построек в истории человечества. По состоянию на 2010 год ее стоимость составила ошеломляющие $ 160 млрд, но эта цифра продолжает постоянно расти из-за эксплуатационных затрат и все новых дополнений к станции. С 1985 по 2015 год НАСА вложило около $ 59 млрд в проект, Россия внесла около $ 12 млрд, а Европейское космическое агентство и Япония внесли по $ 5 млрд. Каждый рейс космического шаттла с оборудованием для постройки Международной космической станции стоил $ 1,4 млрд.

15. Программа NASA Space Shuttle Program


$ 196 млрд
В 1972 году стартовала программа Space Shuttle по разработке космических кораблей-челноков многоразового использования. В рамках программы прошло 135 полетов на 6 шаттлах или "многоразовых космических орбитальных самолетах", два из которых (Columbia и Challenger) взорвались, в результате чего погибло 14 астронавтов. Последний запуск шаттла произошел 8 июля 2001 года, когда в космос был отправлен челнок Atlantis (приземлился он 21 июля 2011 года).

Есть космические проекты и среди .

Космические обсерватории играют большую роль в развитии астрономии. Величайшие научные достижения последних десятилетий в опираются на знания, полученные при помощи космических аппаратов.

Большой объём информации о небесных телах не доходит до земли т.к. ей мешает атмосфера которой мы дышим. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности нашей планеты. Для изучения космоса в этих диапазонах необходимо вывести телескоп за пределы атмосферы. Результаты исследований полученные с помощью космических обсерваторий перевернули представление человека о вселенной.

Первые космические обсерватории существовали на орбите недолго, но развитие технологий позволило создать новые инструменты для исследования вселенной. Современный космический телескоп - уникальный комплекс который разрабатывается и эксплуатируется совместно учеными многих стран в течении нескольких десятков лет. Наблюдения полученные с помощью многих космических телескопов доступны для бесплатного использования учёными и просто любителями астрономии со всего мира.

Инфракрасные телескопы

Предназначены для проведения космических наблюдений в инфракрасном диапазоне спектра. Недостатком этих обсерваторий является их большой вес. На орбиту помимо телескопа приходится выводить охладитель, который должен уберечь ИК-приёмник телескопа от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Это привело к тому, что за всю историю космических полётов на орбите работало очень мало инфракрасных телескопов.

Хаббловский космический телескоп

Изображение ESO

24 апреля 1990 г. с помощью американского шаттла "Дискавери" STS-31 была выведена на орбиту крупнейшая околоземная обсерватория - космический телескоп "Хаббл" весом более 12т. Этот телескоп результат совместного проекта НАСА и Европейского космического агентства. Работа космического телескопа "Хаббл" рассчитана на длительный срок. полученные с его помощью данные доступны на сайте телескопа для бесплатного пользования астрономами всего мира.

Ультрафиолетовые телескопы

Озоновый слой окружающий нашу атмосферу практически полностью поглощает ультрафиолетовое излучение Солнца и звёзд, поэтому УФ-кванты можно регистрировать только за его пределами. Интерес астрономов к УФ-излучению обусловлен тем, что в этом диапазоне спектра излучает самая распространённая молекула во Вселенной - молекула водорода. Первый ультрафиолетовый телескоп-рефлектор с диаметром зеркала 80 см был выведен на орбиту в августе 1972 г. на совместном американо-европейском спутнике "Коперник".

Рентгеновские телескопы

Рентгеновские лучи доносят до нас из космоса информацию о мощных процессах связанных с рождением звёзд. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их по одиночке, с точным указанием времени регистрации. Благодаря тому, что детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес, рентгеновские телескопы устанавливались на многих орбитальных станциях и даже межпланетных космических кораблях. Всего в космосе побывало более сотни таких инструментов.

Гамма-телескопы

Гамма-излучение имеет близкую природу к рентгеновскому излечению. Для регистрации гамма-лучей используются методы схожие с методами применяемыми для исследований рентгеновского излучения. Поэтому зачастую на космических телескопах исследуют одновременно как рентгеновские, так и гамма-лучи. Гамма-излучение принимаемое этими телескопами доносит до нас информацию о процессах, происходящих внутри атомных ядер, а также о превращениях элементарных частиц в космосе.

Электромагнитный спектр, исследуемый в астрофизике

Длинны волн Область спектра Прохождение сквозь земную атмосферу Приемники излучения Методы исследования
<=0,01 нм Гамма-излучение Сильное поглощение
0,01-10 нм Рентгеновское излучение Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Счетчики фотонов, ионизационные камеры, фотоэмульсии, люминофоры В основном внеатмосферные (космические ракеты, искусственные спутники)
10-310 нм Далекий ультрафиолет Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Внеатмосферные
310-390 нм Близкий ультрафиолет Слабое поглощение Фотоэлектронные умножители, фотоэмульсии С поверхности Земли
390-760 нм Видимое излучение Слабое поглощение Глаз, фотоэмульсии, фотокатоды, полупроводниковые приборы С поверхности Земли
0,76-15 мкм Инфракрасное излучение Частые полосы поглощения H2O, CO2, и др. Частично с поверхности Земли
15 мкм - 1 мм Инфракрасное излучение Сильное молекулярное поглощение Болометры, термопары, фотосопротивления, специальные фотокатоды и фотоэмульсии С аэростатов
> 1 мм Радиоволны Пропускается излучение с длинной волны около 1 мм, 4,5 мм, 8 мм и от 1 см до 20 м Радиотелескопы С поверхности Земли

Космические обсерватории

Агентство, страна Название обсерватории Область спектра Год запуска
CNES & ESA, Франция, Европейский Союз COROT Видимое излучение 2006
CSA, Канада MOST Видимое излучение 2003
ESA & NASA, Европейский Союз, США Herschel Space Observatory Инфракрасное 2009
ESA, Европейский Союз Darwin Mission Инфракрасное 2015
ESA, Европейский Союз Gaia mission Видимое излучение 2011
ESA, Европейский Союз International Gamma Ray
Astrophysics Laboratory (INTEGRAL)
Гамма-излучение, Рентген 2002
ESA, Европейский Союз Planck satellite Микроволновое 2009
ESA, Европейский Союз XMM-Newton Рентген 1999
IKI & NASA, Россия, США Spectrum-X-Gamma Рентген 2010
IKI, Россия RadioAstron Радио 2008
INTA, Испания Low Energy Gamma Ray Imager (LEGRI) Гамма-излучение 1997
ISA, INFN, RSA, DLR & SNSB Payload for Antimatter Matter
Exploration and Light-nuclei Astrophysics (PAMELA)
Particle detection 2006
ISA, Израиль AGILE Рентген 2007
ISA, Израиль Astrorivelatore Gamma ad
Immagini LEggero (AGILE)
Гамма-излучение 2007
ISA, Израиль Tel Aviv University Ultraviolet
Explorer (TAUVEX)
Ультрафиолет 2009
ISRO, Индия Astrosat Рентген, Ультрафиолет, Видимое излучение 2009
JAXA & NASA, Япония, США Suzaku (ASTRO-E2) Рентген 2005
KARI, Корея Korea Advanced Institute of
Science and Technology Satellite 4 (Kaistsat 4)
Ультрафиолет 2003
NASA & DOE, США Dark Energy Space Telescope Видимое излучение
NASA, США Astromag Free-Flyer Элементарные частицы 2005
NASA, США Chandra X-ray Observatory Рентген 1999
NASA, США Constellation-X Observatory Рентген
NASA, США Cosmic Hot Interstellar
Spectrometer (CHIPS)
Ультрафиолет 2003
NASA, США Dark Universe Observatory Рентген
NASA, США Fermi Gamma-ray Space Telescope Гамма-излучение 2008
NASA, США Galaxy Evolution Explorer (GALEX) Ультрафиолет 2003
NASA, США High Energy Transient Explorer 2
(HETE 2)
Гамма-излучение, Рентген 2000
NASA, США Hubble Space Telescope Ультрафиолет, Видимое излучение 1990
NASA, США James Webb Space Telescope Инфракрасное 2013
NASA, США Kepler Mission Видимое излучение 2009
NASA, США Laser Interferometer Space
Antenna (LISA)
Гравитационное 2018
NASA, США Nuclear Spectroscopic Telescope
Array (NuSTAR)
Рентген 2010
NASA, США Rossi X-ray Timing Explorer Рентген 1995
NASA, США SIM Lite Astrometric Observatory Видимое излучение 2015
NASA, США Spitzer Space Telescope Инфракрасное 2003
NASA, США Submillimeter Wave Astronomy
Satellite (SWAS)
Инфракрасное 1998
NASA, США Swift Gamma Ray Burst Explorer Гамма-излучение, Рентген, Ультрафиолет,
Видимое излучение
2004
NASA, США Terrestrial Planet Finder Видимое излучение, Инфракрасное
NASA, США Wide-field Infrared Explorer
(WIRE)
Инфракрасное 1999
NASA, США Wide-field Infrared Survey
Explorer (WISE)
Инфракрасное 2009
NASA, США WMAP Микроволновое 2001

«Космическая жизнь» - ПЕРВАЯ ЖЕНЩИНА КОСМОНАВТ Валентина Терешкова. Наша Вселенная. Первые советские космонавты. Юрий алексеевич гагарин. Солнечная система. Белка и стрелка. Космодром Байконур. Выход в открытый космос. Луна-спутник земли. Первооткрыватели космоса ЛАЙКА. Космический корабль «ВОСТОК». ПРОЕКТ "Космический мир или Жизнь в космосе".

«Космические войска» - Предназначены для развертывания системы связи и обеспечения управления войсками. Инженерные. Военно-учебные заведения (9). Научно-исследовательский институт (1). Первыми элементами тыла войск были постоянные военные обозы, появившиеся в 70-е гг. Способность одновременно наносить удары по многим стратегическим объектам.

«Космический человек» - Сергей Павлович Королёв(1907-1966г). Человек должен во чтобы то ни стало полететь к звездам и другим планетам. Немногие из заключенных сумели выжить. Затем наступит невесомость. Но работы ученого-самоучки мало кого интересовали. Королев делал все новые и новые летательные аппараты. Идея запуска в космос ракет с исследовательскими целями начала претворяться в жизнь.

«Космическое путешествие» - Космическое путешествие. Юрий Алексеевич Гагарин – первый космонавт Земли. Первопроходцы космических просторов.

«Освоение космического пространства» - Было бы здорово. Счастлив ли я, отправляясь в космический полет? Стоимость путевки – 100 тысяч долларов. Полет к Солнцу: миссия выполнима. Путешествие на Марс начинается. Отели будущего: ночлег в космосе. За 1 час 48 минут Юрий Гагарин облетел земной шар и благополучно приземлился. Освоение дальнего космоса.

«Космические загадки» - По мнению специалистов, к Земле приближается астероид диаметром три километра. Энергия тьмы. В последний раз, например, вымерли динозавры. Кони, почувствовав неуверенную руку возницы, понесли. Изучить космические явления и загадки природы. Бог Зевс-Громовержец, чтобы спасти Землю, метнул молнию в колесницу.

«Чандра» одна из «великих обсерваторий НАСА» наряду с космическими телескопами «Хаббл» и «Спитцер», специально предназначена для обнаружения рентгеновского излучения от горячих и энергичных областей Вселенной.

Благодаря высокой разрешающей способности и чувствительности «Чандра» наблюдает за разными объектами от ближайших планет и комет до самых отдалённых известных квазаров. Телескоп отображает следы взорвавшихся звёзд и остатки сверхновых, наблюдает за областью вблизи сверхмассивной чёрной дыры в центре Млечного Пути и обнаруживает другие чёрные дыры во Вселенной.

«Чандра» внёс вклад в исследование природы тёмной энергии, позволил сделать шаг вперёд на пути к её изучению, прослеживает разделение тёмной материи от нормальной материи в столкновениях между скоплениями галактик.

Телескоп вращается по орбите отдалённой от поверхности Земли до 139 000 км. Такая высота позволяет избегать тени Земли во время наблюдений. Когда «Чандра» запускали в космос, он был самым крупным из всех спутников запущенных ранее с помощью шаттла.

В честь 15-летия космической обсерватории публикуем подборку из 15 фотографий, сделанных телескопом «Чандра». Полная галерея изображений с Chandra X-ray Observatory на Flickr .

Эта спиральная галактика в созвездии Гончие Псы отдалена от нас примерно на 23 миллиона световых лет. Она известна как NGC 4258 или M106.

Скопление звёзд в оптическом изображении от Digitized Sky Survey по центру туманности Пламя или NGC 2024. Сопоставлены изображения, полученные телескопами Чандра и Спитцер, которые показаны в виде наложения и демонстрируют, как мощные рентгеновские и инфракрасные изображения помогают в изучении областей звёздообразования.

Это составное изображение показывает звёздное скопление в центре так называемой NGC 2024 или туманности Пламя, которая находится на расстоянии около 1400 световых лет от Земли.

Центавр А - пятая по яркости в небе галактика, поэтому она часто привлекает внимание астрономов-любителей. Находится всего в 12 миллионах световых лет от Земли.

Галактика Фейерверк или NGC 6946 - спиральная галактика среднего размера примерно в 22 миллионах световых лет от Земли. В прошлом веке в её пределах наблюдали взрыв восьми сверхновых звёзд, из-за яркости она и получила название Фейерверк.

Область светящегося газа в рукаве Стрельца галактики Млечный Путь это туманность NGC 3576, которая находится примерно в 9000 световых лет от Земли.

Такие звёзды, как Солнце могут стать удивительно фотогеничными на закате жизни. Хорошим примером служит планетарная туманность Эскимос NGC 2392, которая находится примерно в 4200 световых лет от Земли.

Останки сверхновой W49B возрастом около тысячи лет находятся на расстоянии около 26 000 световых лет от нас. Взрывы сверхновых, которые разрушают массивные звёзды, как правило, симметричны, с более или менее равномерным распределением звёздного материала во всех направлениях. В W49B мы видим исключение.

Это великолепное изображение с четырьмя планетарными туманностями в окрестностях Солнца: туманность NGC 6543 или Кошачий глаз, а также NGC 7662, NGC 7009 и NGC 6826.

Это составное изображение показывает суперпузырь в Большом Магеллановом Облаке (БМО / LMC), небольшой галактике-спутнице Млечного Пути, что находится примерно в 160 000 световых лет от Земли.

Когда радиационные ветры от массивных молодых звёзд воздействуют на облака холодного газа, они могут формировать новые звёздные поколения. Возможно, как раз этот процесс запечатлён в туманности Хобот слона (официальное название IC 1396A).

Изображение центральной области галактики, внешне напоминающей Млечный Путь. Но она содержит гораздо более активную сверхмассивную чёрную дыру в белой области. Расстояние между галактикой NGC 4945 и Землёй составляет около 13 миллионов световых лет.

Это составное изображение передаёт красивый рентгеновский и оптический вид на остаток сверхновой Кассиопея А (Cas A), расположенной в нашей галактике примерно в 11 000 световых лет от Земли. Это останки массивной звезды, которая взорвалась около 330 лет назад.

За взрывом сверхновой в созвездии Тельца наблюдали астрономы на Земле в 1054 году. Спустя почти тысячу лет мы видим супер плотный объект под названием нейтронная звезда, оставшийся после взрыва, который постоянно извергает сильнейший поток излучений в расширяющуюся область Крабовидной туманности. Рентгеновские данные телескопа «Чандра» дают представление о работе этого могучего космического «генератора», который производит энергию в размере 100 000 Солнц.

Интересно, когда возникла астрономия? Точно на этот вопрос не ответит никто. Вернее, астрономия сопутствовала человеку всегда. Восходы и заходы Солнца определяют ритм жизни, являющийся биологическим ритмом человека. Распорядок жизни скотоводческих народов определялся сменой фаз Луны, земледельческих – сменой времён года. Ночное небо, положение звёзд на нём, изменение положений – всё это подмечалось ещё в те времена, от которых не осталось каких – либо письменных свидетельств. Тем не менее, именно задачи практики – в первую очередь ориентировка во времени и ориентировка в пространстве – явились стимулом для возникновения астрономических знаний.

Меня заинтересовал вопрос: где и как древние учёные получали эти знания, строили ли они специальные сооружения для наблюдений за звёздным небом? Оказалось, что строили. Также интересно было узнать о знаменитых обсерваториях мира, об истории их создания и об учёных, которые в них работали.

Например, в Древнем Египте учёные для астрономических наблюдений располагались на вершинах или ступенях высоких пирамид. Эти наблюдения были вызваны практической необходимостью. Население Древнего Египта – это земледельческие народы, уровень жизни которых зависел от сбора урожая. Обычно с марта начинался период засухи, длящейся около четырёх месяцев. В конце июня далеко на юге, в районе озера Виктория, начинались обильные дожди. Потоки воды устремлялись в реку Нил, ширина которой в это время достигала 20 км. Тогда египтяне уходили из долины Нила на близлежащие возвышенности, а когда Нил входил в обычное своё русло, в плодородной, увлажненной его долине начинался сев.

Проходило ещё четыре месяца, и жители собирали обильный урожай. Очень важно было вовремя узнать, когда начнется разлив Нила. История повествует, что ещё 6000 лет назад египетские жрецы умели это делать. С пирамид или других высоких мест они старались заметить утром на востоке в лучах зари первое появление самой яркой звезды Сотис, которую мы теперь называем Сириусом. До этого примерно в течение семидесяти дней Сириус – украшение ночного неба – был невидим. Первое же утреннее появление Сириуса для египтян было сигналом того, что наступает время разлива Нила и надо уходить от его берегов.

Но не только пирамиды служили для астрономических наблюдений. В городе Луксоре находится известная древняя крепость Карнак. Там, недалеко от большого храма Амона – Ра, расположено небольшое святилище Ра – Горахте, что переводится как «Солнце, сияющее над краем неба». Название это дано не случайно. Если в день зимнего солнцестояния наблюдатель стоит у алтаря в зале, который носит название «Высокий покой Солнца», и смотрит в направлении входа в здание, он видит восход Солнца в этот единственный день года.

Есть и ещё один Карнак – приморский городок во Франции, на Южном побережье Бретани. Случайно или нет совпадение египетского и французского названий, но в окрестностях Карнака бретанского тоже обнаружено несколько древнейших обсерваторий. Эти обсерватории сооружены из огромных камней. Один из них – Камень Фей – тысячи лет возвышался над землёй. Его длина 22.5 метра, а вес – 330 тонн. Карнакские камни обозначают направления на точки неба, в которых бывает виден заход Солнца в день зимнего солнцестояния.

Древнейшими астрономическими обсерваториями доисторичес– кого периода считаются некоторые загадочные сооружения на Британских островах. Самая впечатляющая и наиболее подробно исследованная обсерватория – Стоунхендж в Англии. Это сооружение состоит из четырёх больших каменных кругов. В центре находится та называемый «алтарный камень» пяти - метровой длины. Его окружает целая система кольцевых и дугообраз – ных ограждений и арок высотой до 7.2 метра и весом до 25 тонн. Внутри кольца стояло пять каменных арок в виде подковы, вогнутостью обращённой на северо – восток. Каждая из глыб весила около 50 тонн. Каждая арка состояла из двух камней, служивших опорами, и камня, перекрывавшего их сверху. Такая конструкция получила название «трилит». Сейчас сохранилось только три таких трилита. Вход в Стоунхендж находится на северо-востоке. В направлении входа стоит каменный столб, наклонённый к центру круга – Пяточный камень. Предполагают, что он служил ориентиром, соответствующим восходу Солнца в день летнего Солнцестояния.

Стоунхендж был одновременно храмом и прообразом астрономической обсерватории. Щели каменных арок служили визирами, строго фиксировавшими направления из центра сооружения в различные точки на горизонте. Древние наблюдатели фиксировали точки восходов и заходов Солнца и Луны, определяли и предсказывали наступление дней летнего и зимнего солнцестояния, весеннего и осеннего равноденствия и, возможно, пытались предсказывать лунные и солнечные затмения. Как храм Стоунхендж служил величественным символом, местом религиозных церемоний, как астрономический инструмент – как бы гигантской вычислительной машиной, позволявшей жрецам – служителям храма предсказывать смену времён года. В целом Стоунхендж представляет собой величественное и, по-видимому, в древности красивое сооружение.

Перенесемся теперь мысленно в XV век н. э. Около 1425 года в окрестностях Самарканда было завершено строительство величайшей в мире обсерватории. Она была создана по замыслу правителя обширной области Средней Азии, астронома – Мухаммеда - Тарагай Улугбека. Улугбек мечтал проверить старые звёздные каталоги и внести в них свои исправления.

Обсерватория Улугбека уникальна. Цилиндрическое трёхэтажное здание со множеством помещений имело высоту около 50 метров. Его цоколь был украшен яркой мозаикой, а на внутренних стенах здания виднелись изображения небесных сфер. С крыши обсерватории виднелся открытый горизонт.

В специально вырытой махте разместился колоссальный секстант Фархи – шестидесятиг-радусная дуга, выложенная мраморными плитами, имеющая радиус около 40 метров. Такого инструмента история астрономии ещё не знала. С помощью уникального прибора, ориентированного по меридиану, Улугбек с помощниками вёл наблюдения за Солнцем, планетами и некоторыми звёздами. В те времена Самарканд стал астрономической столицей мира, а слава Улугбека перешагнула далеко за границы Азии.

Наблюдения Улугбека дали результаты. В 1437 году он закончил основную работу по составлению звёздного каталога, включающего сведения о 1019 звёздах. В обсерватории Улугбека впервые была измерена важнейшая астрономическая величина – наклон эклиптики к экватору, составлены астрономические таблицы для звёзд и планет, определены географические координаты различных мест Средней Азии. Улугбеком написана теория затмений.

В Самаркандской обсерватории вместе с учёным работали многие астрономы и математики. Фактически при этом учреждении образовалось настоящее научное общество. И трудно сказать, какие бы идеи родились в нём, получи оно возможность развиваться дальше. Но в результате одного из заговоров Улугбека убили, а обсерваторию разрушили. Ученики учёного спасли только рукописи. Про него говорили, что он «протянул руку к наукам и добился многого. Перед его глазами небо стало близким и опустилось вниз».

Лишь в 1908 году археолог В. М. Вяткин нашёл остатки обсерва - тории, а в 1948 году благодаря усилиям В.А. Шишкина она была раскопана и частично реставрирована. Сохранившаяся часть обсерватории является уникальным архитектурным и историческим памятником и тщательно охраняется. Рядом с обсерваторией был создан музей Улугбека.

Точность измерения, достигнутая Улугбеком, оставалась непревзойдённой более века. Но в 1546 году в Дании родился мальчик, которому суждено было достичь ещё более высоких вершин в дотелескопической астрономии. Звали его Тихо Браге. Он верил астрологам и даже сам пытался предсказывать будущее по звёздам. Однако научные интересы одержали победу над заблуждениями. В 1563 году Тихо приступил к первым самостоятельным астрономическим наблюдениям. Широкую известность ему принёс трактат о Новой звезде 1572 года, которую он обнаружил в созвездии Кассиопеи.

В 1576 году датский король отвёл Тихо остров Вен около берегов Швеции для строительства там большой астрономической обсерватории. На средства, отпущенные королём, Тихо в 1584 году соорудил две обсерватории, внешне похожие на роскошные замки. Одну из них Тихо назвал Ураниборг, то есть замком Урании, музы астрономии, вторая получила наименование Стьернеборг – «звёздный замок». На острове Вен находились мастерские, где под руководством Тихо изготовляли изуми – тельные по точности угломерные астрономические инструменты.

Двадцать один год продолжалась деятельность Тихо на острове. Ему удалось открыть новые, неизвестные ранее неравенства в движе-нии Луны. Им составлены таблицы видимого движения Солнца и планет, более точные, чем раньше. Замечателен звёздный каталог, на создание которого датский астроном затратил 7 лет. По количеству звёзд (777) каталог Тихо уступает каталогам Гиппарха и Улугбека. Но зато координаты звёзд Тихо измерил с большей точностью, чем его предшественники. Этот труд ознаменовал собой начало новой эры в астрологии – эры точности. Он не дожил всего лишь несколько лет до того момента, когда был изобретён телескоп, значительно расширивший возможности астрономии. Говорят, что последними его словами перед кончиной были: «Кажется, жизнь моя не была бесцельной». Счастлив человек, который может такими словами подытожить свой жизненный путь.

Во второй половине XVII и в начале XVIII веков в Европе одна за другой стали возникать научные обсерватории. Выдающиеся географические открытия, морские и сухопутные путешествия потребовали более точного определения размеров земного шара, новых способов определения времени и координат на суше и на море.

И вот со второй половины XVII века в Европе, в основном по ини-циативе выдающихся учёных, начали создаваться государственные астрономические обсерватории. Первой из них была обсерватория в Копенгагене. Строилась она с 1637 по 1656 годы, но в 1728 году сгорела.

По инициативе Ж. Пикара французский король Людовик XIV, король – «Солнце», любитель балов и войн, выделил средства для постройки Парижской обсерватории. Её строительство было начато в 1667 году и продолжалось до 1671 года. Получилось величественное здание, напоминающее замок, с наблюдательными площадками сверху. По предложению Пикара, на пост директора обсерватории был приглашён Жан Доминик Кассини, уже зарекомендовавший себя как опытный наблюдатель и талантливый практик. Такие качества директора Парижской обсерватории сыграли огромную роль в её становлении и развитии. Астрономом были обнаружены 4 спутника Сатурна: Япет, Рея, Тетис и Диона. Мастерство наблюдателя позволило Кассини выявить, что кольцо Сатурна состоит из 2-х частей, разделённых тёмной полосой. Это деление получило название «щель Кассини».

Жан Доминик Кассини и астроном Жан Пикар в 1672-1674 годах создали первую современную карту Франции. Полученные значения отличались высокой точностью. В результате западное побережье Франции оказалось почти на 100 км ближе к Парижу, чем на старых картах. Рассказывают, что по этому поводу король Людовик XIV шутливо посетовал – «Мол, по милости топографов территория страны уменьшилась в большей степени, чем увеличила её королевская армия».

История Парижской обсерватории неразрывно связана с именем великого датчанина - Оле Кристенсена Рёмера, приглашённого Ж. Пикаром для работы в Парижской обсерватории. Астроном доказал по наблюдениям затмений спутника Юпитера, конечность скорости света и измерил её значение – 210000 км /с. Это открытие, сделанное в 1675 году, принесло Рёмеру мировую известность и позволило ему стать членом Парижской академии наук.

В создании обсерватории активно участвовал голландский астроном Христиан Гюйгенс. Этот учёный известен многими достижениями. В частности он открыл спутник Сатурна Титан – один из самых больших спутников в солнечной системе; обнаружил полярные шапки на Марсе и полосы на Юпитере. Кроме того, Гюйгенс изобрёл окуляр, который сейчас носит его имя, и создал точные часы – хронометр.

Астроном и картограф Жозеф Никола Делиль работал в Парижской обсерватории помощником Жана Доминика Кассини. В основном он занимался изучением комет, руководил наблюдениями прохождения Венеры по диску Солнца. Такие наблюдения помогли узнать о существова-нии атмосферы у этой планеты, а главное – уточнить астрономическую единицу – расстояние до Солнца. В 1761 году Делиль был приглашён царём Петром I в Россию.

Шарль Месье в юности получил только начальное образование. Математику и астрономию он позже изучил самостоятельно и стал опытным наблюдателем. С 1755 года работая в Парижской обсерватории, Месье систематически вёл поиски новых комет. Труды астронома увенчались успехом: с 1763 по 1802 годы он открыл 14 комет, а всего наблюдал 41.

Месье составил первый в истории астрономии каталог туманностей и звёздных скоплений – типовые наименования, введённые им, используются до настоящего времени.

Доминик Франсуа Араго – директор Парижской обсерватории с 1830 года. Этот астроном впервые изучил поляризацию излучения солнечной короны, кометных хвостов.

Араго был талантливым популяризатором науки и с 1813 по 1846 годы регулярно читал в Парижской обсерватории лекции для широкой публики.

Никола Луи де Лакайль, сотрудник этой обсерватории с 1736 года, организовал экспедицию в Южную Африку. Там, на мысе Доброй На-дежды, были проведены наблюдения звёзд Южного полушария. В результате на звёздной карте появились названия более 10 тысяч новых светил. Лакайль завершил деление южного неба, выделив 14 созвездий, которым дал названия. В 1763 году был опубликован первый каталог звёзд Южного полушария, автором которого считается Лакайль.

Единицы измерения массы (килограмм) и длины (метр) были определены в Парижской обсерватории.

В настоящее время обсерватория имеет три научные базы: Париж, астрофизический отдел в Медоне (Альпы) и радиоастрономическую базу в Нанси. Здесь работают более 700 учёных и техников.

Королевская Гринвичская обсерватория в Великобритании – самая известная в мире. Этому факту она обязана тем, что через ось пассажного инструмента, установленного на ней, проходит «гринвичский меридиан» - нулевой меридиан отсчёта долгот на земле.

Основание Гринвичской обсерватории было положено в 1675 году указом короля Карла II,которым предписывалось построить её в королевском парке близ замка в Гринвиче «на самом высоком холме». Англия в XVII веке становилась «королевой морей», расширяла свои владения, основой развития страны были завоевания далёких колоний и торговля, а стало быть – мореплавание. Поэтому строительство Гринвичской обсерватории обосновывалось прежде всего необходимостью определять долготу места при навигации.

Король поручил столь ответственное дело замечательному архитектору и астроному – любителю Кристоферу Рену, который активно занимался перестройкой Лондона после пожара 1666 года. Пришлось Рену прервать работу по реконструкции знаменитого собора Святого Павла, и буквально за год он спроектировал и построил обсерваторию.

Согласно указу короля, директор обсерватории должен был носить титул Королевского астронома, и эта традиция сохранилась до сих пор. Первым Королевским астрономом стал Джон Флемстид. С 1675 года он руководил работой по оборудованию обсерватории, а также выполнял астрономические наблюдения. Последнее было более приятным занятием, поскольку денег на приобретение инструментов Флемстиду не выделяли, и он тратил полученное от отца наследство. Помогали обсерватории меценаты – богатые друзья директора и любители астрономии. Огромную услугу оказал Флемстиду друг Рена, великий учёный и изобретатель Роберт Гук, - он изготовил и подарил обсерватории несколько приборов. Флемстид был прирождённым наблюдателем – упорным, целеустремлённым и аккуратным. После открытия обсерватории он начал регулярные наблюдения объектов Солнечной системы. Начатые Флемстидом в год открытия обсерватории наблюдения длились более 12 лет, а последующие годы он работал над составлением звёздного каталога. Около 20 тысяч измерений было проведено и обработано с небывалой точностью – 10 угловых секунд. Кроме имевшихся в то время буквенных обозначений, Флемстид ввёл и цифровые: всем звёздам каталога были присвоены номера в возрастания их прямых восхождений. Эта система обозначений дожила до нашего времени, она используется в звёздных атласах, помогая отыскать нужные для наблюдений объекты.

Каталог Флемстида вышел в свет в 1725 году, уже после смерти замечательного астронома. Он содержал 2935 звёзд и полностью занял третий том издаваемой Флемстидом «Британской истории неба», где автор собрал и описал все наблюдения, сделанные до него и за всю его жизнь.

Вторым Королевским астрономом стал Эдмунд Галлей. В «Очерке кометной астрономии» (1705г.) Галлей рассказал о том, как его поразило сходство орбит комет, сиявших на небе в 1531, 1607 и 1682 годах. Подсчитав, что появляются эти небесные тела с завидно точной периодичностью – через 75-76 лет, учёный сделал вывод: три «космические гостьи» на самом деле являются одной и той же кометой. Галлей объяснил небольшую разницу в промежутках времени между её появлениями возмущениями от больших планет, мимо которых комета проходила, и даже отважился предсказать следующее появление «хвостатой звезды»: конец 1758 г. – начало 1759 года. Астроном умер за 16 лет до этого срока, так и не узнав о том, как блестяще подтвердились его расчёты. Комета засияла на Рождество 1758 года, а потом её наблюдали ещё много раз. Астрономы по справедливости присвоили этому космическому объекту имя учёного – она называется «кометой Галлея».

Уже в конце XIX – начале XX в. Английские астрономы поняли, что климатические условия страны не позволят им удержать высокий уровень наблюдений в Гринвичской обсерватории. Начались поиски других мест, где можно было бы установить новейшие мощные и высокоточные телескопы. Прекрасно работала обсерватория близ мыса Доброй Надежды в Африке, но там можно было наблюдать исключительно южное небо. Поэтому в 1954 году при десятом Королевском астрономе – а им стал замечательный учёный и популяризатор науки Хэролд Спенсер-Джонс – был осуществлён перевод обсерватории в Херстмонсо и начато строительство новой обсерватории на Канарских островах, на острове Ла-Пальма.

С переводом в Херстмонсо славная история Гринвичской Королевской обсерватории закончилась. В настоящее время она передана Оксфордскому университету, с которым была тесно связана все 300 лет своего существования, и является музеем истории мировой астрономии.

После создания Парижской и Гринвичской обсерваторий государственные обсерватории стали строиться во многих странах Европы. Одной из первых была построена прекрасно оснащённая обсерватория Петербургской академии наук. Пример этих обсерваторий характерен тем, что наглядно показывает, насколько задачи обсерваторий и само их возникновение было обусловлено практическими потребностями общества.

Звёздное небо было полно нераскрытых тайн, и оно постепенно раскрывало их терпеливым и внимательным наблюдателям. Происходил процесс познания окружающей Землю Вселенной.

Начало XVIII века – переломный момент в русской истории. В это время усиливается интерес к вопросам естествознания, обусловленный экономическим развитием государства и ростом потребностей в научных и технических знаниях. Интенсивно развиваются торговые связи России с другими государствами, укрепляется сельское хозяйство, возникает потребность в освоении новых земель. Путешествия русских землепроходцев способствуют подъёму географической науки, картографии, а следовательно, и практической астрономии. Всё это в совокупности с проводимыми реформами подготовило интенсивное развитие астрономических знаний в России уже в первой четверти VIII века, ещё до учреждения Петром I Академии наук.

Стремление Петра к превращению страны в сильную морскую державу, к увеличению её военной мощи стало дополнительным стимулом развития астрономии. Следует заметить, что перед Европой никогда не стояли такие грандиозные задачи, как перед Россией. Территории Франции, Англии и Германии не шли ни в какое сравнение с пространствами Европы и Азии, которые предстояло освоить и «положить на карту» русским исследователям.

В 1690 году в Холмогорах на Северной Двине, вблизи Архангельска, возникает первая в России астрономическая обсерватория, основанная архиепископом Афанасием (в миру Алексеем Артемьевичем Любимовым). Алексей Артемьевич был одним из образованнейших людей своего времени, знал 24 иностранных языка и обладал огромной властью в своей вотчине. В обсерватории имелись зрительные трубы и угломерные инструменты. Архиепископ лично производил астрономические и метеорологические наблюдения.

Пётр I, много сделавший для развития наук и искусства в России, интересовался и астрономией. Уже в возрасте 16 лет русский царь практически овладел навыками измерений с помощью такого инструмента, как астролябия, и хорошо понимал значение астрономии для мореплавания. Ещё во время своего путешествия по Европе Пётр посетил Гринвичскую и Копенгагенскую обсерватории. В «Истории неба» Флемстида сохранились записи о двух посещениях Петром I Гринвичской обсерватории. Сохранились сведения о том, что Пётр I, будучи в Англии, вёл длительные беседы с Эдмундом Галлеем и даже приглашал его в Россию для организации специальной школы и преподавания астрономии.

Верным сподвижником Петра I, сопровождавшим царя во многих военных походах, был один из самых образованных людей своего времени Яков Брюс. Он основал первое учебное заведение в России, в котором начали преподавать астрономию, - «навигацкую школу». Находилась школа в Сухаревой башне, которая, к сожалению, была беспощадно снесена в 30-е годы XX века.

В 1712 году в школе обучалось 517 человек. Перед первыми русскими геодезистами, постигавшими тайны наук в «навигацкой школе», стояла огромная задача. Предстояло обозначить на карте точное положение населенных пунктов, рек и гор не только пространства центральной России, но и обширных территорий, присоединённых к ней в XVII веке и начале XVIII века. Эта трудная работа, выполненная в течение нескольких десятилетий, стала значительным вкладом в мировую науку.

Начало нового периода в развитии астрономической науки тесно связано с учреждением Академии наук. Она была создана по инициативе Петра I, но открылась только в 1725 году, уже после его смерти.

В 1725 году из Парижа в Петербург прибыл французский астроном Жозеф Никола Делиль, приглашенный в качестве академика по астрономии. В башне здания академии наук, расположенного на набережной Невы, Делиль устроил обсерваторию, которую оборудовал приборами, заказанными ещё Петром I. Для наблюдений небесных светил использовались квадранты, секстант, a также отражательные телескопы с зеркалами, зрительные трубы для наблюдений Луны, планет и Солнца. В то время обсерватория считалась одной из самых лучших в Европе.

Делиль положил начало систематическим наблюдениям и точным геодезическим работам в России. За 6 лет под его руководством было составлено 19 больших карт Европейской России и Сибири, основанных на 62 пунктах с астрономически определёнными координатами.

Известным любителем астрономии петровской эпохи был вице-президент Синода архиепископ Феофан Прокопович. Он имел свои собственные инструменты – квадрант радиусом 3 фута и секстант в 7 футов. А также, пользуясь своим высоким положением, в 1736 году брал себе на время телескоп из обсерватории Академии наук. Наблюдения Прокопович проводил не только на своей усадьбе, но и на обсерватории, устроенной А. Д. Меньшико-вым в Ораниенбауме.

На рубеже ХIХ-ХХ веков неоценимый вклад в науку сделал любитель астрономии Василий Павлович Энгельгардт, уроженец Смоленска, юрист по образованию. Он с детства увлекался астрономией, а в 1850-м начал самостоятельно изучать ее. В 70-х годах ХIХ века Энгельгардт уехал в Дрезден, где не только всячески пропагандировал музыку великого русского композитора Глинки и издавал партитуры его опер, но в 1879 году построил обсерваторию. Он имел один из крупнейших - третий в мире в то время - рефрактор диаметром 12" (31 см) и за 18 лет один, без помощников, провел огромное число наблюдений. Эти наблюдения на его же средства обрабатывались в России и были изданы в трех томах в 1886-95 гг. Перечень его интересов очень обширен - это 50 комет, 70 астероидов, 400 туманностей, 829 звезд из каталога Брадлея.

Энгельгардт был удостоен званий члена-корреспондента Императорской Академии Наук (в Петербурге), доктора астрономии и почетного члена Казанского университета, доктора философии университета в Риме и др. В конце жизни, когда ему было уже под 70, Энгельгардт решил передать все инструменты на родину, в Россию - Казанскому университету. Обсерватория под Казанью строилась при его активном участии и была открыта в 1901 году. Она до сих пор носит имя этого любителя, стоявшего вровень с профессиональными астрономами своего времени.

Начало XIX века ознаменовалось в России основанием ряда университетов. Если до этого в стране действовал один университет, Московский, то уже в первой половине столетия открылись Дерптский, Казанский, Харьковский, Петербургский и Киевский. Именно университеты сыграли решающую роль в развитии российской астрономии. Но самое почётное место эта древнейшая наука заняла в Дерптском университете.

Здесь начиналась славная деятельность выдающегося астронома XIX века Василия Яковлевича Струве. Вершиной его деятельности является создание Пулковской обсерватории. В 1832 году Струве был произведён в действительные члены Академии наук, а годом позже стал директором задуманной, но ещё не созданной обсерватории. Местом для будущей обсерватории Струве выбрал Пулковскую гору, холм, расположенный в непосредственной близости от Петербурга, немного южнее города. По требованиям, предъявляемым к условиям астрономических наблюдений в Северном полушарии Земли, южная сторона должна быть «чистой» - неподсвеченной городскими огнями. Строительство обсерватории началось в 1834 году, и через 5 лет, в 1839 году, в присутствии видных учёных и иностранных послов состоялось её торжественное открытие.

Прошло немного времени, и Пулковская обсерватория стала образцовой среди подобных астрономических заведений Европы. Сбылось пророчество великого Ломоносова о том, что «славнейшая из

муз Урания утвердит преимущественно жилище своё в нашем Отечестве».

Главной задачей, которую ставили перед собой сотрудники Пулковской обсерватории, было существенно повысить точность определения положения звёзд, то есть новая обсерватория задумывалась как астрометрическая.

Выполнение программы наблюдений было возложено на директора обсерватории, Струве, и четырёх астрономов, в том числе и на сына Василия Яковлевича – Отто Струве.

Уже через 30 лет после своего основания Пулковская обсерватория снискала всемирную славу «астрономической столицы мира».

Пулковская обсерватория владела богатейшей библиотекой, одной из лучших в мире, - подлинной сокровищницей мировой астрономической литературы. Уже к концу первых 25 лет существования обсерватории каталог библиотеки насчитывал около 20 тысяч названий.

В конце прошлого века стало, что расположение обсерваторий вблизи больших городов создаёт большие трудности для астрономических наблюдений. Особенно неудобны они для астрофизических исследований. В начале XX века пулковские астрономы пришли к решению о создании астрофизического отделения где-нибудь на юге, лучше в Крыму, где климатические условия позволили бы вести наблюдения в течение всего года. В 1906 году в Крым были направлены сотрудники Пулковской обсерватории А. П. Ганский, выдающийся исследователь Солнца, и Г. А. Тихов, в будущем выдающийся исследователь Марса. На горе Кошка, немного выше Симеиза, они неожиданно обнаружили две готовые астрономические башни с куполами, хотя и без телескопов. Оказалось, что эта небольшая обсерватория принадлежит любителю астрономии Н. С. Мальцову. После необходимой переписки Н. С. Мальцов предложил свою обсерваторию в дар Пулковской обсерватории для создания там её южного астрофизического отделения, а в придачу выкупил близлежащие участки земли, чтобы астрономы не испытывали никаких затруднений в будущем. Официальное оформление Симеизской обсерватории как филиала Пулковской обсерватории состоялось в 1912 году. Сам Мальцов после революции проживал во Франции. В 1929 году директор Симеизской обсерватории Неуймин обратился к Мальцову с просьбой написать автобиографию, на что тот ответил отказом: «Я не вижу в своей жизни ничего примечательного, кроме одного эпизода – принятие Пулковской обсерваторией моего дара. Это событие я считаю для себя огромной честью».

В 1908 году с помощью установленного астрографа начались регулярные наблюдения малых планет и переменных звёзд. К 1925 году были открыты малые планеты, комета и большое число переменных звёзд.

После Великой Октябрьской социалистической революции Симеизская обсерватория стала быстро расширяться. Увеличилось число научных сотрудников; среди них в 1925 году приехали в обсерваторию Г. А. Шайн и его жена П. Ф. Шайн. В те годы советские дипломаты, и в их числе выдающийся большевик Л. Б. Красин, добились от капиталистических государств выполнения поставок научного оборудования, заказанного Академией наук ещё до революции, и заключили новые договоры. Среди другого оборудования из Англии поступил 102-сантиметровый телескоп – крупнейший рефлектор своего времени в СССР. Под руководством Г. А. Шайна он был установлен на Симеизской обсерватории.

Этот рефлектор был снабжён спектрографом, с помощью которого начались спектральные наблюдения в целях изучения физической природы звёзд, их химического состава и происходящих в них процессов.

В 1932 году обсерватория получила фотогелиограф для фотографирования Солнца. Несколькими годами позже был установлен спектрогелиоскоп – инструмент для изучения поверхности Солнца в линии определённого химического элемента. Тем самым Симеизская обсерватория включилась в большую работу по изучению Солнца, явлений, протекающих на его поверхности.

Современные инструменты, актуальность научной тематики и энтузиазм учёных принесли Симеизской обсерватории международное признание. Но началась война. Учёные успели эвакуироваться, но немецко-фашистская оккупация нанесла огромный ущерб обсерватории. Здания обсерватории были сожжены, а оборудование расхищено или разрушено, погибла значительная часть уникальной библиотеки. После войны детали метрового телескопа в виде металлолома были обнаружены в Германии, а зеркало пострадало настолько, что восстановить его не представлялось возможным.

В 1944 году Симеизская обсерватория стала восстанавливаться, и в 1946 году на ней возобновились регулярные наблюдения. Обсерватория существует и поныне и принадлежит Украинской Академии наук.

Перед сотрудниками обсерватории снова встал вопрос, уже поднимавшийся перед войной, о необходимости поиска нового места для обсерватории, поскольку небольшая площадка на горе Кошка, где располагалась обсерватория, ограничивала возможность её дальнейшего расширения.

По результатам ряда астроклиматических экспедиций новое место для обсерватории было выбрано в горах, в 12 км к востоку от Бахчисарая, подальше от освещённых городов южного берега Крыма, от Севастополя и Симферополя. Принималось в расчёт и то, что вершины Яйлы защитят обсерваторию от неблагоприятных южных ветров. Здесь на небольшой плоской вершине, на высоте 600 м над уровнем м

В настоящее время научная деятельность Пулковской обсерватории идет по шести направлениям: небесная механика и звездная динамика; астрометрия; Солнце и солнечно-земные связи; физика и эволюция звезд; радиоастрономия; аппаратура и методика астрономических наблюдений.

Московская обсерватория была построена в 1831 году на окраине Москвы.

В начале ХХ века это было хорошо оснащенное астрономическое учреждение. Обсерватория имела меридианный круг, длиннофокусный астрограф (D = 38 cм, F = 6.4 м), широкоугольную экваториальную камеру (D = 16 см, F=0.82 м), пассажный инструмент и несколько небольших инструментов. На ней велись меридианные и фотографические определения положений звезд, поиски и исследования переменных звезд, изучение двойных звезд; изучалась изменяемость широты и методика астрофотометрических наблюдений.

На обсерватории работали выдающиеся ученые: Ф. А. Бредихин (1831-1904), В. К. Цераский (1849-1925), П. К. Штернберг (1865-1920).

Федор Александрович Бредихин (1831-1904) по окончании Московского университета был отправлен за границу и за 2 года превратился в астронома. Основная научная деятельность - изучение комет и по этой теме он защищает докторскую диссертацию.

Бредихин первым организует спектральные наблюдения в Московской обсерватории. Сначала - только Солнца. А затем и вся работа обсерватории пошла по астрофизическому руслу.

Русский астроном Аристарх Аполлонович Белопольский (1854-1934). Он родился в Москве, в 1877 г. закончил Московский университет.

Аристарху Аполлоновичу Белопольскому (1854-1934) по окончанию курса в Московском университете директор Московской астрономической обсерватории Ф. А. Бредихин предложил на лето заняться систематически фотографией солнечной поверхности при помощи фотогелиографа. И он согласился. Таким образом случайно А. А. Белопольский стал астрономом. Осенью он был представлен к оставлению при университете для подготовки к профессорскому званию по кафедре астрономии. В 1879 году Белопольский получил место сверхштатного ассистента при астрономической обсерватории. Занятия в обсерватории посвящены были систематическим исследованиям процессов на солнечной поверхности (пятна, протуберанцы) и астрометрии (меридианный круг).

В 1886 году он защитил диссертацию на степень магистра астрономии ("Пятна на Солнце и их движение").

Весь московский период научной работы Аристарха Аполлоновича протекал под руководством одного из основоположников отечественной и мировой астрофизики Ф. А. Бредихина.

Работая в Московской обсерватории, А. А. Белопольский наблюдал за положениями избранной группы звезд с помощью меридианного круга. На этом же инструменте он производил наблюдения больших (Марс, Уран) и малых (Виктория, Сафо) планет, а также комет (1881b, 1881c). Там же после окончания университета, с 1877 года по 1888 год, он производил систематическое фотографирование Солнца. Инструментом служил четырехдюймовый фотогелиограф Дальмейра. В этой работе большую помощь ему оказал В. К. Цераский, бывший в то время ассистентом Московской обсерватории.

К этому времени наблюдениями за пятнами было установлено уменьшение угловой скорости вращения Солнца от экватора к полюсам и при переходе из глубоких слоев во внешние.

В 1884 году с помощью гелиографа А. А. Белопольский фотографировал лунное затмение. Обработка фотографий позволила ему определить радиус земной тени.

Уже в 1883 году Аристарх Аполлонович в Московской обсерватории сделал первые в России опыты по прямому фотографированию звезд. Со скромным объективом диаметром 46 мм (относительное отверстие 1:4) он за два с половиной часа получил на пластинке изображения звезд до 8 m ,5.

Павел Карлович Штернберг - профессор, был директором Московской обсерватории с 1916 года.

В 1931 году на базе Московской астрономической обсерватории были объединены три астрономических учреждения: созданные после революции Государственный астрофизический институт, Астрономо-геодезический научно-исследовательский институт и Московская астрономическая обсерватория. С 1932 года объединенный институт, входящий в систему Московского государственного университета, стал именоваться Государственным астрономическим институтом им. П. К. Штернберга, сокращенно ГАИШ.

Директором института с 1956 по 1976 годы был Д. Я. Мартынов. В настоящее время, после 10-летнего директорства Е. П. Аксенова, директором ГАИШ назначен А. М. Черепащук.

В настоящее время сотрудники ГАИШ ведут исследования практически по всем направлениям современной астрономии, от классической фундаментальной астрометрии и небесной механики до теоретической астрофизики и космологии. По многим из научных направлений, например, по внегалактической астрономии, исследованию нестационарных объектов и строению нашей Галактики ГАИШ занимает ведущее место среди астрономических учреждений нашей страны.

Делая реферат, я узнала много интересного об астрономических обсерваториях, об истории их создания. Но больший интерес у меня вызвали учёные, которые в них работали, ведь обсерватории – это не просто сооружения для наблюдений. Самое важное в обсерваториях – это люди, которые в них работали. Именно их знания и наблюдения постепенно накапливались и сейчас составляют такую науку, как астрономию.