Ферменты. Ферментативная активность бактерий

Ферментативная активность микроорганизмов богата и разнообразна. По ней можно установить не только видовую и типовую принадлежность микроба, но и определить его варианты (так называемые биовары). Рассмотрим основные ферментативные свойства и их качественное определение.

Расщепление углеводов (сахаролитическая активность), т. е. способность расщеплять сахара и многоатомные спирты с образованием кислоты или кислоты и газа, изучают на средах Гисса, которые содержат тот или иной углевод и индикатор. Под действием образующейся при расщеплении углевода кислоты индикатор изменяет окраску среды. Поэтому эти среды названы "пестрый ряд". Микробы, не ферментирующие данный углевод, растут на среде, не изменяя ее. Наличие газа устанавливают по образованию пузырьков в средах с агаром или по скоплению его в "поплавке" на жидких средах. "Поплавок" - узкая стеклянная трубочка с запаянным концом, обращенным вверх, которую до стерилизации помещают в пробирку со средой (рис. 18).


Рис. 18. Изучение сахаролитической активности микроорганизмов. I - "пестрый ряд": а - жидкая среда с углеводами и индикатором Андреде; б - полужидкая среда с индикатором ВР: 1 - микроорганизмы не ферментируют углевод; 2 - микроорганизмы ферментируют углевод с образованием кислоты; 3 - микроорганизмы ферментируют углевод с образованием кислоты и газа; II - колонии микроорганизмов, не разлагающих (бесцветные) и разлагающих лактозу (фиолетовые на среде ЭМС - слева, красные на среде Эндо - справа)

Кроме того, сахаролитическую активность изучают на средах Эндо, ЭМС, Плоскирева. Микроорганизмы, сбраживая до кислоты находящийся в этих средах молочный сахар (лактозу), образуют окрашенные колонии - кислота изменяет цвет имеющегося в среде индикатора. Колонии микробов, не ферментирующих лактозу, бесцветны (см. рис. 18).

Молоко при росте микробов, сбраживающих лактозу, свертывается.

При росте микроорганизмов, образующих амилазу, на средах с растворимым крахмалом происходит его расщепление. Об этом узнают, прибавив к культуре несколько капель раствора Люголя - цвет среды не изменяется. Нерасщепленный крахмал дает с этим раствором синее окрашивание.

Протеолитические свойства (т. е. способность расщеплять белки, полипептиды и т. п.) изучают на средах с желатином, молоком, сывороткой, пептоном. При росте на желатиновой среде микробов, ферментирующих желатин, среда разжижается. Характер разжижения, вызываемый разными микробами, различен (рис. 19). Микробы, расщепляющие казеин (молочный белок), вызывают пептонизацию молока - оно приобретает вид молочной сыворотки. При расщеплении пептонов могут выделяться индол, сероводород, аммиак. Их образование устанавливают с помощью индикаторных бумажек. Фильтровальную бумагу заранее пропитывают определенными растворами, высушивают, нарезают узенькими полосками длиной 5-6 см и после посева культуры на МПБ помещают под пробку между нею и стенкой пробирки. После инкубации в термостате учитывают результат. Аммиак вызывает посинение лакмусовой бумажки; при выделении сероводорода на бумажке, пропитанной 20% раствором свинца ацетата и натрия гидрокарбоната, происходит образование свинца сульфата - бумажка чернеет; индол вызывает покраснение бумажки, пропитанной раствором щавелевой кислоты (см. рис. 19).





Рис. 19. Протеолитические свойства микроорганизмов. 1 - формы разжижения желатина; II - определение сероводорода; III - определение индола: 1 - отрицательный результат; 2 - положительный результат

Помимо указанных сред, способность микроорганизмов расщеплять различные питательные субстраты определяют с помощью бумажных дисков, пропитанных определенными реактивами (системы индикаторные бумажные "СИБ"). Эти диски опускают в пробирки с исследуемой культурой и уже через 3 ч инкубации в термостате при 37° С по изменению цвета дисков судят о разложении углеводов, аминокислот, белков и т. д.

Гемолитические свойства (способность разрушать эритроциты) изучают на средах с кровью. Жидкие среды при этом становятся прозрачными, а на плотных средах вокруг колонии появляется прозрачная зона (рис. 20). При образовании метгемоглобина среда зеленеет.



Рис. 20. Гемолиз вокруг колоний, растущих на агаре с кровью

Сохранение культур

Выделенные и изученные культуры (штаммы), представляющие ценность для науки или производства, хранят в музеях живых культур. Общесоюзный музей находится в Государственном НИИ стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича (ГИСК).

Задача хранения - поддержать жизнеспособность микроорганизмов и предупредить их изменчивость. Для этого надо ослабить или прекратить обмен в микробной клетке.

Один из самых совершенных методов длительного сохранения культур - лиофилизация - высушивание в вакууме из замороженного состояния позволяет создать состояние анабиоза. Высушивание проводят в специальных аппаратах. Хранят культуры в запаянных ампулах при температуре 4° С, лучше при -30-70° С.

Восстановление высушенных культур. Сильно нагревают кончик ампулы в пламени горелки и прикасаются к нему ватным тампоном, слегка * смоченным холодной водой, чтобы на стекле образовались микротрещины, через которые воздух медленно просочится внутрь ампулы. При этом, проходя через разогретые края трещин, воздух стерилизуется.

* (При избытке воды на тампоне она может попасть в ампулу и нарушить стерильность культуры: ее засосет через образовавшиеся микротрещины, так как в ампуле вакуум. )

Внимание! Не забывайте, что в запаянной ампуле вакуум. Если воздух в нее попадает сразу через большое отверстие, может распылиться находящаяся в ампуле культура и произойти ее выброс.

Дав войти воздуху, быстро пинцетом надламывают и удаляют верхушку ампулы. Слегка обжигают отверстие и стерильной пастеровской пипеткой или шприцем вносят в ампулу растворитель (бульон или изотонический раствор). Перемешивают содержимое ампулы и засевают на среды. Рост восстановленных культур в первых посевах может быть замедлен.

Длительно сохранять культуры можно также в жидком азоте (-196° С) в специальных приборах.

Методы непродолжительного сохранения культур следующие: 1) субкультивирование (периодические пересевы на свежие среды) с интервалами, зависящими от свойств микроорганизма, среды и условий культивирования. Между пересевами культуры хранят при 4° С; 2) сохранение под слоем масла. Культуру выращивают в агаре столбиком высотой 5-6 см, заливают стерильным вазелиновым маслом (слой масла примерно 2 см) и хранят вертикально в холодильнике. Сроки хранения у разных микроорганизмов разные, поэтому из пробирок периодически высевают культуру, чтобы проверить ее жизнеспособность; 3) хранение при -20-70° С; 4) хранение в запаянных пробирках. По мере надобности сохраняемый материал высевают на свежую среду.

Контрольные вопросы

1. Что входит в понятие "бактериологическое исследование"?

2. Какой должна быть культура для такого исследования?

3. Что такое колония микробов, культура, штамм, клон?

4. Что входит в понятие "культуральные свойства микробов"?

Задание

1. Изучите и опишите несколько колоний. Пересейте их на скошенный агар и на сектор.

2. Изучите и опишите характер роста - культуры на скошенном агаре. Определите чистоту и морфологию культуры в окрашенном препарате.

3. Пересейте культуру со скошенного агара на бульон и на дифференциально-диагностические среды. Изучите и запишите в протокол характер роста культуры на этих средах и ее ферментативные свойства.

(активаторы - повышают, ингибиторы - понижают) Белковые ферменты синтезируются на рибосомах , а РНК - в ядре.

Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).
Наука о ферментах называется энзимологией , а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения .

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком , а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии.

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ , - Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза , алкогольдегидрогеназа
  • КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы , переносящие фосфатную группу, как правило, с молекулы АТФ .
  • КФ 3: Гидролазы , катализирующие гидролиз химических связей. Пример: эстеразы , пепсин , трипсин , амилаза , липопротеинлипаза
  • КФ 4: Лиазы , катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.
  • КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счет гидролиза АТФ . Пример: ДНК-полимераза

Кинетические исследования

Кривая насыщения химической реакции, иллюстрирующая соотношение между концентрацией субстрата [S] и скоростью реакции v

Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса - Ментен (см. рис.). На сегодняшний момент описано несколько механизмов действия ферментов. Например, действие многих ферментов описывается схемой механизма «пинг-понг».

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Для активных центров некоторых ферментов характерно явление кооперативности .

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам. Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты демонстрируют высокий уровень стереоспецифичности, региоселективности и хемоселективности.

Модель «ключ-замок»

Гипотеза Кошланда об индуцированом соответствии

Более реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты - слишком большие или слишком маленькие - не подходят к активному центру

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответстия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния.

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой . Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Еще один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин (протеаза , участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе . Неактивная форма транспортируется в желудок , где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например,

Ферментативная активность почв [от лат. Fermentum - закваска] -способность почвы проявлять каталитическое воздействие на процессы превращения экзогенных и собственных органических и минеральных соединений благодаря имеющимся в ней ферментам. Характеризуя ферментативную активность почв, имеют в виду суммарный показатель активности. Ферментативная активность различных почв неодинакова и связана с их генетическими особенностями и комплексом взаимодействующих экологических факторов. Уровень ферментативной активности почв определяется активностью различных ферментов (инвертазы, протеаз, уреазы, дегидрогеназ, каталазы, фосфатаз), выражаемой количеством разложенного субстрата за единицу времени на 1 г почвы.

Биокаталитическая активность почв зависит от степени обогащенности их микроорганизмами и от типа почв. Активность ферментов изменяется по генетическим горизонтам, которые отличаются по содержанию гумуса, типам реакций, окислительно-восстановительным потенциалом и другими показателями по профилю.

В целинных лесных почвах интенсивность ферментативных реакций в основном определяют горизонты лесной подстилки, а в пахотных - пахотные слои. Все биологически менее активные генетические горизонты, находящиеся под горизонтами А или Ап, имеют низкую активность ферментов. Активность их незначительно возрастает при окультуривании почв. После освоения лесных почв под пашню ферментативная активность образованного пахотного горизонта по сравнению с лесной подстилкой резко снижается, но по мере его окультуривания повышается и в сильно окультуренных почвах приближается или превышает показатели лесной подстилки.

Ферментативная активность отражает состояние плодородия почв и внутренние изменения, происходящие при сельскохозяйственном использовании и повышении уровня культуры земледелия. Эти изменения обнаруживаются как при вовлечении целинных и лесных почв в культуру, так и при различных приемах их использования .

По всей Беларуси в пахотных почвах ежегодно теряется до 0,9 т/га гумуса. В результате эрозии ежегодно безвозвратно уносится с полей 0,57 т/га гумуса. Причинами дегумификации почв являются усиление минерализации почвенного органического вещества, отставание процессов новообразования гумуса от минерализации в связи с недостаточным поступлением в почву органических удобрений и снижения ферментативной активности почвы .

Биохимические превращения органического вещества почвы происходят в результате микробиологической деятельности под влиянием ферментов. ферментативный активность почва микроорганизм

Особую роль играют ферменты в жизнедеятельности животных, растений и микроорганизмов. Почвенные ферменты участвуют при распаде растительных, животных и микробных остатков, а также синтезе гумуса. В результате питательные вещества из трудно усвояемых соединений переходят в легко доступные формы для растений и микроорганизмов. Ферменты отличаются высокой активностью, строгой специфичностью действия и большой зависимостью от различных условий внешней среды. Благодаря каталитической функции они обеспечивают быстрое протекание в организме или вне его огромного числа химических реакций .

Совместно с другими критериями ферментативная активность почв может служить надёжным диагностическим показателем для выяснения степени окультуренности почв. В результате исследований 4, с. 91 установлена зависимость между активностью микробиологических и ферментативных процессов и проведением мероприятий, повышающих плодородие почв. Обработка почв, внесение удобрений существенно изменяют экологическую обстановку развития микроорганизмов.

В настоящее время в биологических объектах обнаружено несколько тысяч индивидуальных ферментов, а несколько сотен из них выделено и изучено. Известно, что живая клетка может содержать до 1000 различных ферментов, каждый из которых ускоряет ту или иную химическую реакцию .

Интерес к применению ферментов вызван еще и тем, что постоянно возрастают требования по увеличению безопасности технологических процессов. Присутствуя во всех биологических системах, являясь одновременно продуктами и инструментами этих систем, ферменты синтезируются и функционируют при физиологических условиях (pH, температура, давление, присутствие неорганических ионов), после чего легко выводятся, подвергаясь разрушению до аминокислот. Как продукты, так и отходы большинства процессов, протекающих с участием ферментов, являются нетоксичными и легко разрушаемыми. Кроме того, во многих случаях, ферменты, используемые в промышленности, получают экологически безопасным путем. От небиологических катализаторов ферменты отличают не только безопасность и повышенная способность к биодеградации, но и специфичность действия, мягкие условия протекания реакций и высокая эффективность. Эффективность и специфичность действия ферментов позволяет получать целевые продукты с высоким выходом, что делает использование ферментов в промышленности экономически выгодным. Применение ферментов способствует сокращению расхода воды и энергии в технологических процессах, уменьшает выбросы в атмосферу CO2, снижает риск загрязнения окружающей среды побочными продуктами технологических циклов .

Применением передовой агротехники можно изменять в благоприятную сторону микробиологические процессы не только пахотного, но и подпахотного слоев почвы.

При непосредственном участии внеклеточных ферментов происходит разложение органических соединений почвы. Так, протеолитические ферменты расщепляют белковые вещества и до аминокислот.

Уреаза разлагает мочевину до СО2 и NH3. Образующийся аммиак и аммонийные соли служат источником азотного питания растений и микроорганизмов.

Инвертаза и амилаза участвуют в расщеплении углеводов. Ферменты группы фосфатов разлагают фосфорорганические соединения почвы и играют важную роль в фосфатном режиме последней.

Для характеристики общей ферментативной активности почвы обычно используют наиболее распространенные ферменты, свойственные подавляющему большинству почвенной микрофлоры - инвертазу, каталазу, протеазу и другие .

В условиях нашей республики проводилось немало исследований 16, с. 115 по изучению изменения уровня плодородия и ферментативной активности почв при антропогенном воздействии, однако полученные данные не дают исчерпывающий ответ на характер изменений из-за сложности сопоставления результатов в виду различия условий проведения опытов и методик исследований.

В связи с этим поиск оптимального решения проблемы улучшения гумусного состояния почвы и ее ферментативной активности в конкретных почвенно-климатических условиях на основе разработки ресурсосберегающих приемов основной обработки почвыё применения почвозащитных севооборотов, способствующих сохранению структуры, предотвращению переуплотнения почвы и улучшению их качественного состояния и восстановлению плодородия почв при минимальных затратах, весьма актуален.

Понятие о ферментах

Ферментами (энзимами) называют растворимые или связанные с мембранами белки, наделенные каталитической активностью.(Кроме белков каталитическую активность в организме могут проявлять некоторые РНК (рибозимы) и антитела (абзимы), однако они в тысячи раз менее эффективны, чем ферменты.) Эти названия произошли от латинского «fermentatio» - брожение и греческого «en zym» - внутри закваски. Они напоминают о первых источниках ферментов. Биохимии, которая изучает ферменты, называется энзимология . На схемах и в уравнениях реакций молекулы ферментов обозначают - Е . Вещества, превращения которых катализируют ферменты, называют субстратами (S) . Продукты энзиматической реакцииобозначают - Р . Так как ферменты являются белками, их получают в гомогенном виде теми же способами, что и другие белки. Для ферментов характерны физико-химические свойства, присущие белкам.

Отличие ферментов от неорганических катализаторов:

а) ускоряют реакции значительно эффективнее;

б) наделены высокой специфичностью действия;

в) подвергаются регуляции в физиологических условиях;

г) действуют в мягких условиях.

Строение ферментов

Ферментами могут являться как простые, так и сложные (конъюгированные) белки, в состав которых могут входить липиды, углеводы, ионы металлов, азотистые основания, производные витаминов. В организме ферменты могут функционировать как в растворимом состоянии, так и в виде нерастворимых комплексов или входить в состав биологических мембран.

Отличительной особенностью ферментов является наличие активного центра . Активный центр - это уникальная комбинация сближенных в пространстве аминокислотных остатков, которая обеспечивает:

а) узнавание молекулы субстрата,

б) связывание субстрата с ферментом,

в) осуществление каталитического превращения (в случае сложного фермента в акте катализа также принимает участие кофермент, входящий в состав активного центра).

Активный центр возникает в тот момент, когда белок сворачивается и принимает свою нативную (активную) конформацию. Структура активного центра может изменятся при взаимодействии с субстратом. По образному выражению Д. Кошланда субстрат подходит к активному центру как рука к перчатке.

Одна молекула фермента, особенно если она состоит из нескольких субъединиц, может содержать более одного активного центра.

В активном центре имеются два участка. Первый участок отвечает за узнавание и связывание субстрата. Он называется субстрат-связывающим участком или якорной площадкой. Второй участок называется каталитическим, в его состав входят аминокислотные остатки, принимающие участие в акте катализа.

Ферменты представляют белки, сильно различающиеся по молекулярной массе и сложности строения. Примером фермента с небольшой молекулой является рибонуклеаза, состоящая из одной субъединицы с молекулярной массой 13700 Дa. (У рибонуклеазы определена аминокислотная последовательность. В 1969 г. рибонуклеаза была синтезирована в лаборатории Б.Меррифилда в Нью-Йорке.) Многие ферменты состоят из нескольких субъединиц, например, лактатдегидрогеназа состоит из четырех субъединиц двух видов. К настоящему времени известно несколько мультиферментных комплексов, состоящих из десятков различных субъединиц и нескольких типов коферментов. Например, пируватдегидрогеназный комплекс состоит из 60 субъединиц трех типов и пяти типов кофакторов. Молекулярная масса такого комплекса составляет 2,3 * 10 6 - 10 * 10 6 Дa в зависимости от источника фермента. Молекула фермента может быть меньше, чем молекула субстрата. Например: молекулы ферментов амилазы и рибонуклеазы меньше, чем молекулы их субстратов – крахмала и РНК.

Белковая часть сложных ферментов каталитически неактивна и называется апоферментом . Связывание апофермента с небелковым компонентом приводит к образованию каталитически активного фермента (холофермента):

Многие ферменты содержат в своем составе ион металла, который может выполнять различные функции:

а) участвовать в связывании субстрата и процессе его каталитического превращения;

б) способствовать присоединению кофермента к молекуле фермента;

в) стабилизировать третичную структуру фермента (например Са 2+ в амилазе);

г) связываясь с субстратом, образовывать истинный субстрат, на который действует фермент.

Многие коферменты являются производными витаминов, поэтому нарушение обмена веществ при витаминной недостаточности обусловлено снижением активности определенных ферментов.

Некоторые ферменты наряду с активным центром содержат аллостерический (регуляторный) центр - участок белковой глобулы,вне активного центра, где могут связываться вещества, регулирующие ферментативную активность. Эти вещества называют аллостерическими эффекторами (аллостерическими активаторами или ингибиторами) . В результате связывания эффектора с аллостерическим центром происходит изменение структуры белка, приводящее к изменению пространственного расположения аминокислотных остатков в активном центре и, в итоге, к изменению ферментативной активности.

Ферменты, встречающиеся в одном организме и катализирующие одну и ту же химическую реакцию, но с различной первичной структурой белка, называются изоферментами. Изоферменты отличаются друг от друга по таким физико-химическим свойствам, как молекулярная масса, термостабильность, субстратная специфичность, электрофоретическая подвижность. Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты или их субъединицы. Например, фермент лактатдегидрогеназа (ЛДГ), катализирующая обратимую реакцию окисления лактата до пирувата, имеет четыре субъединицы двух типов М и Н, комбинация этих субъединиц лежит в основе формирования пяти изоферментов ЛДГ (рис.1). Для диагностики заболеваний сердца и печени необходимо исследование изоферментного спектра ЛДГ в сыворотке крови, поскольку ЛДГ 1 и ЛДГ 2 активны в сердечной мышце и почках, а ЛДГ 4 и ЛДГ 5 - а скелетных мышцах и печени.

Рис.1 Строение различных изоферментов ЛДГ.

Измерение ферментативной активности

Определение активности ферментов осуществляется путем измерения скорости катализируемых реакций. Скорость ферментативных реакций измеряют по убыли концентрации субстрата или увеличению концентрации продукта за единицу времени:

v = -ΔС S /Δτ , v = ΔC P /Δτ ,

где ΔС S – изменение молярной концентрации субстрата (моль/л),

ΔC P - изменение молярной концентрации продукта реакции (моль/л),

Δτ - изменение времени (мин, сек).

Кинетические исследования желательно проводить при насыщающей концентрации субстрата, в противном случае фермент не будет иметь возможность проявить максимальную активность.

Единицы активности ферментов:

Международная единица фермента (U) - это такое количество фермента, которое катализирует превращение 1 мкмоль субстрата за 1 минуту при температуре 25 о С и оптимальном рН среды.

В системе СИ единицей фермента является катал (кат) –это такое количество фермента, которое катализирует превращение одного мольсубстрата за 1 секунду. Нетрудно подсчитать, что:

1 U = (1 * 10 -6 М)/60 с = 1,67 * 10 -8 М с-1 = 1, 67 * 10 -8 кат = 16,7 нкат.

Часто определяют удельную активность препаратов фермента делением активности навески препарата фермента, выраженной в (U), на массу навески в миллиграммах:

А уд = U/масса препарата (мг)

При очистке ферментов удельная активность увеличивается. По возрастанию удельной активности можно судить об эффективности стадий очистки и чистоте ферментного препарата.

Для оценки активности высокоочищенных, гомогенных препаратов ферментов делением числа международных единиц (U) фермента в образце на количество вещества фермента (мкмоль) в этом образце рассчитывают молярную активность (число оборотов). По физическому смыслу молярная активность - это число молекул субстрата, подвергающихся превращению на одной молекуле фермента за 1 минуту или за 1секунду. Например: для уреазы, ускоряющей гидролиз мочевины, молярная активность составляет 30000, трипсина - 102, глюкозоксидазы - 17000 циклов в секунду.

Свойства ферментов

4.1. Механизм действия. Ферменты не смещают равновесие катализируемых реакций в сторону образования продуктов, таким образом, константа равновесия реакции остается постоянной. Как и все катализаторы, ферменты лишь уменьшают время достижения этого равновесия. В большинстве случаев ферменты ускоряют реакции в 10 7 - 10 14 раз. В основе эффективности ферментативного катализа лежит сильное снижение энергии активации реакции за счет превращения субстрата в продукт через переходные состояния.

4.2. Специфичность действия . Специфичность связывания с субстратом и пути протекания ферментативной реакции определяются апоферментом. Специфичность действия ферментов определяет направленный обмен веществ в организме.

О ферментах говорят, что они имеют узкую субстратную специфичность , если они действуют на очень небольшой круг субстратов. Иногда можно говорить об абсолютной субстратной специфичности, например, каталаза катализирует только одну реакцию - разложение пероксида водорода:

Для большинства ферментов характерна относительная (широкая, групповая) субстратная специфичность , когда они катализируют группу однотипных реакций. Например, алкогольдегидрогеназа катализирует превращения спиртов в альдегиды, причем в качестве субстратов могут выступать метанол, этанол, пропанол и другие спирты. Интересным является тот факт, что алкогольдегидрогеназа может окислять и нелинейные спирты, а также спиртовую группу, входящую в состав сложных молекул, в частности, этот фермент может катализировать превращение ретинола в ретиналь. Естественно, ферменты, наделенные широкой субстратной специфичностью, катализируют превращения субстратов с различной эффективностью.

Ферменты наделены также стереохимической специфичностью : их активный центр распознает молекулы субстратов по пространственной конфигурации. Например, оксидазы L-аминокислот активны только в отношении L-аминокислот и совершенно не действуют на их D-аналоги. Для окислительного дезаминирования D-аминокислот в живых организмах имеются оксидазы D-аминокислот, не действующие на L-аминокислоты. Именно способность активного центра связываться с определенными стереоизомерами субстрата лежит в основе функционирования таких ферментов, как рацемазы, которые превращают одни стереоизомеры в другие.

Специфичность путей превращения заключается в том, что один субстрат под действием разных ферментов может превращаться в продукты, различающиеся по структуре и роли в метаболизме.

Приведем пример: оксидазы L-аминокислот действуют на L-аминокислоты, превращая их в альфа-кетокислоты с образованием аммиака и пероксида водорода.

Декарбоксилазы L-аминокислот связываются с теми же субстратами, но катализируют другую реакцию: декарбоксилирование с образованием биогенных аминов и выделением углекислого газа.

Еще одним примером является возможность превращения глюкозо-6 фосфата под действием различных ферментов, по одному из возможных метаболических путей:

4.3. Термолабильность.

Как и многие белки, при повышении температуры ферменты подвергаются термической денатурации, что приводит к нарушению нативной конформации фермента и изменению структуры активного центра. Ферменты млекопитающих начинают заметно денатурировать при температурах выше 40 о С.

В связи с вышесказанным, ферментные препараты желательно хранить при пониженных температурах. Одним из лучших путей сохранения ферментов является их лиофилизация (высушивание при температуре ниже -70 о С в вакууме), переведение в частично денатурированное состояние с помощью солей аммония и помещение в холодильник.

4.4. Зависимость скорости реакции от температуры. Скорость ферментативных реакций, как и любых химических реакций, зависит от температуры. При повышении температуры на 10 о С скорость реакции увеличивается в 2-4 раза согласно правилу Вант-Гоффа. Однако при температурах выше 40 о С существенной становится денатурация ферментов, что приводит к уменьшению суммарной активности (рис. 2):

Рис. 2. Зависимость скорости ферментативной реакции от температуры.

4.5. Зависимость скорости реакции от рН. Зависимость скорости ферментативной реакции от рН имеет колоколообразный вид (рис. 3). Значения рН, при которых наблюдается наиболее высокая скорость ферментативной реакции, называют оптимальными (рН-оптимум). Характер кривых и значение рН-оптимума зависит от природы заряженных групп субстрата и заряженных групп фермента (особенно тех, которые входят в активный центр). Оптимум рН для большинства ферментов лежит в пределах от 6,0 до 8,0 (рис. 3).

Рис. 3. Зависимость скорости ферментативной реакции от рН.

Однако, есть и исключения, например, пепсин наиболее активен при рН 1,5 – 2,0, а щелочная фосфатаза при рН 10,0 – 10,5 (рис. 4)

Рис. 4. Зависимости скорости ферментативной реакции (v) от рН среды.

При экстремальных (очень низких или очень высоких) значениях рН происходит нарушение третичной структуры молекулы фермента, приводящее к потере ферментативной активности.


Похожая информация.


1. Особенности ферментативных реакций

2. Влияние температуры на активность ферментов

3. Влияние рН на активность ферментов

4. Активаторы и ингибиторы ферментов

I . Все ферментативные реакции имеют 4 особенности

· Высокая активность ферментов;

· Обратимость действия ферментов;

· Специфичность действия ферментов;

· Лабильность (чувствительность).

Высокая активность ферментов. Ферменты обуславливают высокую скорость ферментативной реакции, которая характеризуется числом оборотов ферментов – это количество молекул субстрата, которое превращается в продукты реакции при действии одной молекулы фермента в единицу времени. Например, алкогольдегидрогеназа имеет активность 4700 ед., фосфорилаза – 50000 ед., a-амилаза – 16000 ед.

Обратимость действия ферментов установил Данилевский. Под обратимостью действия ферментов понимают образование комплекса ES и его распад, т.е. реакции с участием фермента могут идти как в одну сторону (биосинтез), так и в обратную (распад).

Специфичность действия ферментов - каждый фермент действует только на свой определенный субстрат или группу родственных субстратов. Например, инвертаза действует на сахарозу; a-амилаза – только на крахмал и декстрины; протеазы – на белки.

Существует две тачки зрения, объясняющие специфичность действия ферментов. По образному представлению Э. Фишера “фермент подходит к субстрату как ключ к замку”, т.е. топография активного центра фермента не только высокоупорядочена, но и жестко закреплена. Активной центр фермента соответствует топографии только одного единственного субстрата. Вторая точка зрения, предложена Д. Кошландом - теория индуцированного соответствия фермента и субстрата: конформация фермента, в особенности его активного центра, способна к определенным модификациям. В зависимости от конформационной подвижности активного центра фермент способен взаимодействовать либо с немногими, либо с самыми разными субстратами. Иными словами, в момент образования комплекса ЕS, происходят изменения в структуре как фермента, так и субстрата. В результате чего они адаптируются друг к другу.

Специфичность ферментов играет важную роль в процессе обмена веществ в живом организме. (Если бы фермент не имел уникальных свойств, то в живом организме не было бы обмена веществ)

По признаку специфичности ферменты делятся на 2 группы:

· Абсолютная специфичность – фермент действует только на одно-единственное вещество или катализирует только определенное превращение этого вещества;

· Относительная или групповая специфичность – ферменты действуют сразу на многие субстраты, обладающих рядом общих структурных свойств.


Лабильность (чувствительность) – все ферменты чувствительны к повышению температуры и низким значениям рН, при которых происходит потеря активности ферментов.

II . Важнейшим фактором, от которого зависит активность ферментов, является температура.

Графически зависимость скорости ферментативной реакции от температуры выглядит следующим образом:

При 0°С, а тем более при температурах ниже 0°С действие большинства ферментов прекращается. Повышение температуры (кривая 1) выше 0°С способствует увеличению активности ферментов (увеличивается число столкновений реагирующих веществ). При определенной температуре фермент проявляет максимальную активность. Для большинства ферментов оптимальной температурой действия является 40-50°С. Дальнейшее увеличение температуры приводит к инактивации ферментов (уменьшения активности) вследствие термической денатурации белковой молекулы (кривая 2).

Изменение скорости реакции при повышении температуры на каждые 10°С выражают температурным коэффициентом Q 10 . Температурный коэффициент представляет собой отношение скорость реакции при данной температуре v t +10 к скорости реакции при температуре на 10°С ниже данной:

Величина Q 10 для химических реакций лежит в приделах 2-4, для ферментативной реакции – между 1 и 2; Q 10 ферментативных реакции заметно снижается при повышении температуры.

III . Каждый фермент проявляет своё действие в пределах довольно узкой зоны рН. Графическая зависимость активности фермента от рН имеет вид:

В кислой среде, при низких значениях рН, имеет форму ЕН 2 + , в такой форме он малоактивен. При оптимуме рН фермент обладает максимальной активностью и находится в форме ЕН; при подщелачивании среды, фермент приобретает форму Е - .

Оптимальной активности соответствует определенная область рН, причем каждый фермент имеет свое оптимальное значение рН действия (например, бактериальная a-ами-лаза имеет рН оптимум при 6, а a-амилаза микроскопических грибов – 4,7). Оптимальное значение рН связано с аминокислотным составом ферментов.

Колоколообразная форма кривой объяснится с амфотерной природой ферментов; восходящая и нисходящая ветви этой кривой являются типичными кривыми титрования и определяется значениями рК ионных групп, которые находятся в активном центре ферментов.

Для определения функциональных групп, входящих в активный центр фермента, необходимо определить зависимости активности этого фермента от рН при разных температурах и определить значение рК. Зная значения ΔрК для кислой и щелочной ветви зависимости v = f(pH) находят функциональные группы, которые соответствуют этому значению.

IV . Все вещества, сопровождающие фермент в процессе реакции можно подразделит на активаторы, ингибиторы и нейтральные соединения.

Активаторы – химические соединения, повышающие действие ферментов (например, глютатион активизирует действие протеаз, NaCl увеличивает активность амилаз); ингибиторы – соединения, подавляющие их активность (например, группа –CN подавляет активность дыхательных ферментов, находящихся в цитохромной системе) и нейтральные соединения не оказывают никакого влияния на ферменты.

Процесс ингибирования может быть обратимым и необратимым.

Обратимые ингибиторы бывают:

· Конкурентного действия – ингибитор взаимодействует с функциональными группами активного центра ферментов. Ингибирование в данном случае зависит от концентрации субстрата: если [S] велика, то влияние ингибитора [I] может не проявляться; если же [S] мала, то ингибитор может вытеснить субстрат из соединения с ферментом, действие которого при этом затормаживается. Тройной комплекс ЕSI при конкурентном ингибировании никогда не образуется.

· Бесконкурентное ингибирование наблюдается в том случае, когда ингибитор не способен присоединяться к ферменту, не он может связываться с фермент-субстратным комплексом, переводя его в неактивную форму.

· При смешанном ингибировании ингибитор действует как на участок связывания ES, так и на каталитический центр фермента.