Индуцированное и спонтанное излучение атомов. Излучение и поглощение света атомами

Спонтанное излучение.

Рассмотрим в некоторой среде два энергетических уровня 1 и2 с энергиями и ( < ).Предположим, что атом или молекула вещества находится первоначально в состоянии соответствующая уровню 2 .Поскольку < атом будет стремится перейти на уровень 1.Следовательно, из атома должна соответствующая разность энергий - .Когда эта энергия высвобождается в виде электромагнитной волны, процесс называется спонтанным излучением. При этом частота излучаемой волны опред-ся формулой (полученной Планком):

Т.о. спонтанное излучение хар-ся испусканием фотона с энергией - при переходе атома с уровня 2 на 1.(рис.)

Вероятность спонтанного излучения можно опред-ть следующим образом. Предположим,что в момент времени t на уровне 2 находится атомов в единице обьёма. Скорость перехода ( /dt)спонт. Этих атомов в следствии спонтанного излучения на низший уровень,очевидно, пропорционально .Следовательно можно написать:

( /dt)спонт. =A (2)

Множитель А представляет собой вероятность спонтанного излучения и называется коэфиц. Энштейна А.Величину =1\А называют спонтанным временем жизни. Численное значение А () зависит от конкретного перехода, участвующего в излучении.

Вынужденное излучение.

Предположим, что атом нах. на уровни 2 и на вещество падает электромагнитная волна с частотой опред-й выражением (1) - \h (т.е. с частотой равной частоте спонтанно испущенной волны).Поскольку частоты падающей волны и излучения, связанное с атомным переходом, равны друг другу, имеется конечная вероятность того, что падающая волна вызовет переход с 2→1.При этом разность энергий - выделится в виде элект-й волны, которая добавится к падающей.Это и есть явление вынужденного перехода.

Между процессами спонтанного и вынужденного излучения есть существенное отличие. В случае спонтанного излучения атом испускает электромагнитную волну,фаза которой не имеет опред-й связи с фазой волны, излучаемым другим атомом. Более того испущенная волна может иметь любое направление распространения. В случае же вынужденного излучения,поскольку процесс инициируется подающей волной, излучение любого атома добавляется к этой волне в той же фазе. Падающая волна определяет также направление распространения испущенной волны. Процесс вынужденного излучения можно описать с помощью уравнения:

( /dt)вын.= (3)

Где ( /dt)вын.- скорость перехода 2→1 за счёт вынужденного излучения,а .Как и коэ-т А определяемый выражением (2), имеет также размерность (время)^-1.Однако в отличии от А зависит не только от конкретного перехода, но и от интенсивности падающей электромагнитной волны.Точнее,для плоской волны, можно написать:

где F-плотность потока фотонов в падающей волне, -величина имеющая размерность площади (сечение вынужденного излучения) и зависящая от хар-к данного перехода.

4.Поглощение.Коэффициенты поглощения.

Предположим что атом первоначально находится на уровне 1. Если это основной уровень, то атом будет оставаться на нем до тех пор, пока на него не подействует какое-либо внешнее возмущение. Пусть на вещество попадет элетромагнитная волна с частотой , определяемой выражением: 2 - E 1 )/ h .

В таком случае существует конечная вероятность того, что атом перейдет на верхний уровень 2. Разность энергий E 2 - E 1 ,необходимаяя для того, чтобы атом совершил переход, берется из энергии падающей электромагнитной волны. В этом заключается процес поглащения. По аналогии с (dN 2 / dt ) вых = - W 21 N 2 вероятность поглощения W 12 определяется уравнением: dN 1 / dt = - W 12 N 1 , где N 1 – число атомов в еденице объема, которые в данный момент времени находятся на уровне 1. Кроме того, так же, как и в выражении W 21 = 21 F , можно написать: W 12 = 12 F . Здесь 12 некоторая площадь(сечение поглощения), которая зависит только от конкретного перехода. Предположим теперь, что каждому атому можно поставить в соответствие эффективное сечение поглощения фотонов а в том смысле, что если фотон попадает в это сечение, то он будет поглощен атомом. Если площадь поперечного сечения электромагнитной волны в среде обозначить черех S , то число освещенных волной атомов среды в слое толщиной dz равно N 1 Sdz и тогда полное сечение поглощения будет равно а N 1 Sdz . Следовательно, относительное изменение числа фотонов ( dF / F ) в слое толщиной dz среды равно: dF / F = - а N 1 Sdz / S . Видно, что = а , поэтому величине можно придать смысл эффективнорго сечения поглощения. Взаимодействие излучнеия с веществом можно описывать по-другому, определив коэфициент с помощью выражения: = ( N 1 N 2 ). Если N 1 > N 2 , то величина называется коэфициентом поглощения. Коэфициент поглощения можно найти как: (2 2 /3 n 0 c 0 h )( N 1 N 2 ) 2 g t ( ) . Поскольку зависит от населенностей двух уровней, это не самый подходящий параметр для описания взаимодействия в тех случаях, екогда населенности уровней изменяются как например в лазере. Однако достоинством данного параметра является то, что он может быть непосредственно измерен. Действительно, dF = - Fdz . Поэтому, отношение плотности потока фотонов, прошедшего в среду на глубину l , к плотности падающего потока фотонов равно F ( l )/ F (0)= exp (- l ) . Экспериментальные измерения этого отношения при использовании достаточно монохроматического излучения дают значение для этой конкретной длины волны падающего света. Соответствующее сечение перехода получается из выражения = ( N 1 N 2 ) , если известны неселенности N 1 и N 2 . Прибор для измерения коэфициента поглощения называется абсорбционным спектрофотометром.

Зако́н Бугера - Ламберта - Бера - физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

где I0 - интенсивность входящего пучка, l - толщина слоя вещества, через которое проходит свет, kλ - коэффициент поглощения (не путать с безразмерным показателем поглощения κ, который связан с kλ формулой kλ = 4πκ / λ, где λ - длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Переход возбужденной системы (атома, молекулы) с верхних энергетических уровней на нижние может происходить либо спонтанно, либо индуцированно.

Спонтанным называется самопроизвольный (самостоятельный) переход, обусловленный только факторами, действующими внутри системы и свойственными ей. Эти факторы определяют среднее время пребывания системы в возбужденном состоянии; согласно соотношению Гейзенберга (см. § 11),

Теоретически это время может иметь различные значения в пределах:

т. е. зависит от свойств системы - разброса значений энергии возбужденного состояния (за характеристику системы обычно принимается среднее значение времени пребывания в возбужденных состояниях в зависимости от среднего значения Следует учесть также воздействие на систему окружающего пространства («физического вакуума»), в котором даже в отсутствие электромагнитных волн существует, согласно квантовой теории, флуктуирующее поле («вакуумные флуктуации»); это поле может стимулировать переход бужденной системы к низшим уровням и должно быть включено в число неустранимых факторов, вызывающих спонтанные переходы.

Индуцированным называется вынужденный (стимулированный) переход в энергетически низшее состояние, вызванное каким-нибудь внешним воздействием на возбужденную систему: тепловыми столкновениями, взаимодействием с соседними частицами или проходящей через систему электромагнитной волной. Однако в литературе установилось более узкое определение: индуцированным называется переход, вызванный только электромагнитной волной, причем той же частоты, которая излучается системой при этом переходе (поля других частот не будут резонировать с собственными колебаниями системы,

поэтому их стимулирующее действие будет слабым). Так как «носителем» электромагнитного поля является фотон, то из этого определения следует, что при индуцированном излучении внешний фотон, стимулирует рождение нового фотона такой же частоты (энергии).

Рассмотрим важнейшие особенности спонтанного и индуцированного переходов на одном простом идеализированном примере. Допустим, что в объеме V с зеркальными стенками имеется одинаковых систем (атомов, молекул), из которых в начальный фиксированный момент времени некоторая часть переведена в возбужденное состояние с энергией суммарная избыточная энергия в этом объеме будет равна Для спонтанных переходов характерно следующее:

1) процесс перехода возбужденных систем в нормальные состояния (т. е. излучение избыточной энергии растянут во времени. Одни системы пребывают в возбужденном состоянии малое время для других это время больше. Поэтому поток (мощность) излучения будет с течением времени изменяться, достигнет максимума в некоторый момент и затем будет асимптотически убывать до нуля. Среднее значение потока излучения будет равно

2) момент времени, когда начинается излучение одной системы, и местонахождение этой системы совершенно не связаны с моментом излучения и местонахождением другой, т. е. между излучающими системами нет «согласованности» (корреляции) ни в пространстве, ни во времени. Спонтанные переходы являются совершенно случайными процессами, разбросанными во времени, по объему среды и по всевозможным направлениям; плоскости поляризации и электромагнитных излучений от различных систем имеют вероятностный разброс, поэтому сами излучатели не являются источниками когерентных волн.

Для характеристики индуцированных переходов допустим, что в рассматриваемый объем V в момент времени вводится один фотон с энергией, в точности равной Имеется некоторая вероятность того, что этот фотон при одном из столкновений с невозбужденной системой поглотится ею; эта вероятность будет учтена ниже в более общем случае (когда в объеме V происходит взаимодействие рассматриваемых систем с фотонным газом). Будем полагать, что фотон не поглощается, многократно отражается от стенок сосуда и при столкновениях с возбужденными системами стимулирует излучение таких же фотонов, т. е. вызывает индуцированные переходы. Однако каждый появившийся при этих переходах новый фотон будет также возбуждать индуцированные переходы. Так как скорости фотонов велики, а размеры объема V малы, то понадобится очень малое время для того, чтобы все имеющиеся в начальный момент времени возбужденные системы были вынуждены перейти в нормальное состояние. Следовательно, для индуцированных переходов характерно следующее:

1) время необходимое для излучения избыточной энергии может быть регулируемо и сделано очень малым, поэтому поток излучения может быть очень большим;

2) кроме того, фотон, вызвавший переход, и фотон такой же энергии (частоты), появившийся при этом переходе, находятся в одинаковой фазе, имеют одинаковые поляризацию и направление движения. Следовательно, электромагнитные волны, образующиеся при индуцированном излучении, когерентны.

Однако не каждое столкновение фотона с возбужденной системой приводит к ее переходу в нормальное состояние, т. е. вероятность индуцированного перехода в каждом «акте взаимодействия» фотона с системой не равна единице. Обозначим эту вероятность через Допустим, что в данный момент времени в объеме V имеется фотонов и каждый из них в среднем может иметь столкновений в единицу времени. Тогда число индуцированных переходов в единицу времени , следовательно, и число появившихся фотонов в объеме V будет равно

Обозначим число возбужденных систем в объеме V через Число столкновений фотонов с возбужденными системами будет пропорционально концентрации таких систем, т. е. Тогда может быть выражено в зависимости от :

где шинд учитывает все другие факторы, кроме числа фотонов и числа возбужденных систем

Увеличение числа фотонов в объеме V будет происходить также и вследствие спонтанного излучения. Вероятность спонтанного перехода есть обратная величина среднего времени пребывания в возбужденном состоянии Следовательно, число фотонов, появляющихся в единицу времени вследствие спонтанных переходов, будет равно

Уменьшение числа фотонов в объеме V будет происходить в результате их поглощения невозбужденными системами (при этом будет увеличиваться число возбужденных систем). Так как не каждый «акт взаимодействия» фотона с системой сопровождается поглощением, то следует ввести вероятность реализации поглощения Число столкг новений в единицу времени одного фотона с невозбужденными системами будет пропорционально числу таких систем поэтому по аналогии с (2.83) можно для убыли фотонов написать:

Найдем разность между интенсивностями процессов излучения и поглощения фотонов, т. е. процессов перехода систем из высших уровней на низшие и обратно:

В зависимости от значения в рассматриваемом объеме могут происходить следующие изменения;

1) если то в этом объеме будет происходить постепенное уменьшение плотности фотонного газа, т. е. поглощение лучистой энергии. Необходимым условием для этого является малая концентрация возбужденных систем: Лвозб

2) если то в системе установится равновесное состояние при некоторой определенной концентрации возбужденных систем и плотности лучистой энергии;

3) если (что возможно при больших значениях то в рассматриваемом объеме будет происходить увеличение плотности фотонного газа (лучистой энергии).

Очевидно, что уменьшение или увеличение энергии излучения будет иметь место не только в изолированном объеме с отражающими стенками, но и в том случае, когда поток монохроматической лучистой энергии (поток фотонов частотой распространяется в среде, содержащей возбужденные частицы избыточной энергией

Найдем относительное изменение числа фотонов, приходящееся на один фотон и на одну систему; воспользовавшись (2.86), (2.83), (2.84) и (2.85), получим

Заметим, что в равновесном состоянии (которое возможно только при положительной температуре согласно формуле (2.42), приведенной в § 12, отношение равно

Статистическая сумма в знаменателе в данном случае состоит только из двух слагаемых, соответствующих: 1) системам в нормальных состояниях с энергией и 2) возбужденным системам о энергией Из этой формулы следует, что при бесконечно большой положительной температуре Это означает, что путем повышения температуры невозможно достигнуть состояния, при котором число возбужденных систем было бы больше числа невозбужденных. было больше, чем Мневозб, т. е. необходимо, чтобы число фотонов, появляющихся при переходах на низшие уровни, было больше числа фотонов, поглощаемых за то же время). Выше было указано, что такое состояние не может быть достигнуто повышением температуры. Поэтому для получения среды, способной усиливать проходящий через нее лучистый поток, необходимо использовать другие (не температурные) способы возбуждения атомов и молекул.

Можно показать, что может быть больше (т. е. N) только при отрицательной температуре, т. е. при неравновесном состоянии рассматриваемой среды. Если, кроме того, это неравновесное состояние является метастабильным (см. ч. II, § 3), то можно при помощи подходящего внешнего воздействия вызвать скачкообразный переход к равновесному состоянию освобождением избыточной энергии за очень короткое время. Эта идея и лежит в основе работы лазеров.

Состояние среды, при котором верхние энергетические уровни имеют большие коэффициенты заполнения по сравнению с низшими, называется инверсионным. Так как в этом состоянии среда не ослабляет, как обычно, а усиливает проходящее через нее излучение, то в формуле для изменения интенсивности лучистого потока в среде

коэффициент будет отрицательной величиной (следовательно, показатель степени - положительной величиной). Ввиду этого среду в инверсионном состоянии называют средой с отрицательным показателем поглощения. Возможность получения таких сред, их свойства и использование для усиления оптического излучения были установлены и разработаны В. А. Фабрикантом и его сотрудниками (1939-1951).

Мутации (от латинского mutatio – перемена) – это изменение генов и хромосом, проявляющееся в изменении свойств и признаков организмов. Описал их в 1901 году голландский учёный Де Фриз. Он же заложил основы и теории мутаций. Процесс образования мутаций во времени и пространстве называется мутагенез . Вещества, вызывающие мутации в клетках — мутагены.

В зависимости от происхождения различают спонтанные и индуцированные мутации.

Генеративные и соматические мутации.

Мутации могут возникать на всех стадиях развития организма и поражать гены и хромосомы как в половых клетках, так и в соматических. Поэтому по типу клеток различают генеративные и соматические мутации . Генеративные мутации происходят в половых клетках и в этом случае передаются следующим поколениям. Соматические мутации происходят в любых других соматических клетках организма; они провоцируют рак, нарушают иммунную систему, уменьшают продолжительность жизни. Соматические мутации не передаются по наследству. Большая часть канцерогенных веществ вызывает мутации в соматических клетках.

Спонтанные и индуцированные мутации.

Спонтанные мутации (самопроизвольное изменение в совокупности генов организма данного вида) – те мутации, которые возникают у организмов в нормальных природных условиях без видимых причин; они возникают как ошибки при воспроизведении генетического материала, поскольку редупликация не происходит с абсолютной точностью. Длительное время считалось, что спонтанные мутации являются беспричинными. Сейчас же пришли к выводу, что они являются результатом естественных процессов, протекающих в клетках. Они возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов в клетках организмов. Спонтанная мутация может возникнуть в любой период индивидуального развития и поразить любую хромосому или ген. Частота встречаемости спонтанных мутаций, например, 1:100000.

Индуцированные мутации возникают в результате действия мутагенов, нарушающих процессы, происходящие в клетке.

Если сравнить частоту спонтанных и индуцированных мутаций клеток организмов при обработке мутагеном и без него, то очевидно, что если частота мутаций повышается в 100 раз в результате воздействия мутагена, то одна мутация будет спонтанная, остальные индуцированные.

Факторы мутагенеза.

В зависимости от локализации в клетке различают генные и хромосомные мутации . Генные, или точечные, мутации заключаются в изменении индивидуальных генов (выпадение, вставка или замена одной пары нуклеотидов. Хромосомные мутации бывают нескольких видов и затрагивают:

    изменение структуры хромосом (крупные перестройки в отдельных фрагментах ДНК):

Делеции (выпадение числа нуклеотидов);

Дупликации (повторение фрагментов ДНК, в результате чего происходит её удлинение);

Инверсии (поворот участка хромосом на 180 0);

Транслокации (перенос участка хромосомы в новое положение в той или уже другой хромосоме).

Мутации, поражающие структуру хромосом, называют хромосомными перестройками , или аберрациями.

    изменение количества хромосом:

Полиплоидия (увеличение кратного набора хромосом);

Гаплоидия (уменьшение всего набора хромосом);

Анеуплоидия (нарушение нормального количества хромосом из-за добавления или удаления одной или более хромосом).

Мутации, затрагивающие изменение числа хромосом в клетках организма, называются геномными . Геном – совокупность генов организма данного вида.

Мутационные процессы происходят не только у человека, но и у животных и растений. Поэтому мы рассматриваем общие закономерности. Хромосомные аберрации встречаются у растений, животных и человека. Ведут к нарушению здоровья. Полиплоидия встречается чаще у растений, у животных и человека – редка (число хромосом может увеличиваться в 3, 4, 5 раз). Гаплоидия встречается также в основном у растений (около 800 видов растений имеют гаплоиды), у животных — очень редка, у человека неизвестна. Анеуплоидия часто встречается у растений, у животных и у человека. Делеции – наиболее частые и опасные формы повреждения хромосом для человека. Некоторые дупликации вредны и даже летальны. Повтор сегмента хромосомы может быть малым, касаясь одиночного гена, или большим, затрагивая большое количество генов. Могут быть и безвредные дупликации. Транслокации происходят в результате разрыва хромосом. Могут иметь размеры от небольших до значительных.

Мутации могут оказаться незамеченными, если они затронули второстепенные участки наследственных структур, но могут приводить к серьёзным расстройствам, вплоть до гибели организма.

Возникшие повреждения в ДНК не обязательно реализуются в мутации. Они могут бесследно исчезнуть, благодаря существующей в клетке эффективной системе восстановления генетических повреждений (репарации). Проявление мутантного гена может быть подавлено действием другого гена. В этом случае мутантный ген может передаваться из поколения в поколение и проявиться только в случае, когда в зародышевой клетке встретятся два идентичных мутантных гена. Некоторые мутации проявляются только в определённых условиях существования. Например, при определённой температуре культивирования мутантных микроорганизмов.

Рис. 1. a - спонтанное излучение фотона; б - вынужденное излучение; в - резонансное поглощение; Е1 и Е2 - уровни энергии атома.

Атом, находясь в возбужденном состоянии а , может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромаг­нитного излучения (испуская фотон с энергией h = E 2 –Е 1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воз­действий называется спонтанным (или самопроизвольным ) излучением . Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамичес­кого равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбуж­денном состоянии 2 , действует внешнее излучение с частотой, удовлетворяющей усло­вию hv = E 2 E 1 , то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv = E 2 E 1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызыва­ющий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

7 Принцип действия лазера

Ла́зер устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества.

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направление распространения, поляризацию и фазу Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические , электрические , химические и др.).

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы , ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы ). Этот режим работы лазера называют режимом модулированной добротности .

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн ), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости ] . Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера

Атомы и молекулы находятся в определенных энергетических состояниях, находятся на определенных энергетических уровнях. Для того, чтобы изолированный атом изменил свое энергетическое состояние, он должен либо поглотить фотон (получить энергию) и перейти на более высокий энергетический уровень, либо излучить фотон и перейти в более низкое энергетическое состояние.

Если атом находится в возбужденном состоянии, то имеется определенная вероятность, что через некоторое время он перейдет в нижнее состояние и излучит фотон. Эта вероятность имеет две составляющие – постоянную и “переменную”.

Если в области, где находится возбужденный атом отсутствует электромагнитное поле, то процесс перехода атома в нижнее состояние, сопровождаемый излучением фотона и характеризуемый постоянной составляющей вероятности перехода, называется спонтанным излучением.

Спонтанное излучение не когерентно так как при этом различные атомы излучают независимо друг от друга. Если на атом действует внешнее электромагнитное поле с частотой, равной частоте излучаемого фотона, то процесс спонтанного перехода атома в нижнее энергетическое состояние продолжается по-прежнему, при этом фаза испускаемого атомом излучения не зависит от фазы внешнего поля.

Однако, наличие внешнего электромагнитного поля с частотой, равной частоте излучаемого фотона, побуждает атомы испускать излучение, повышает вероятность перехода атома в нижнее энергетическое состояние. В этом случае излучение атома имеет ту же частоту, направление распространения и поляризацию, что и вынуждающее внешнее излучение. Излучение атомов будет находиться в отдельном фазовом состоянии с внешним полем, то есть будет когерентным. Такой процесс излучения называется индуцированным (или вынужденным) и характеризуется “переменной” составляющей вероятности (она тем больше, чем больше плотность энергии внешнего электромагнитного поля). Поскольку на стимулирование перехода энергия электромагнитного поляне расходуется, то энергия внешнего поля увеличивается на величину энергии испущенных фотонов. Эти процессы постоянно происходят вокруг нас, так как световые волны всегда взаимодействуют с веществом.

Однако одновременно протекают и обратные процессы. Атомы поглощают фотоны и становятся возбужденными, а энергия электромагнитного поля уменьшается на величину энергии поглощенных фотонов. В природе существует равновесие между процессами испускания и поглощения, следовательно, в среднем в окружающей нас природе нет процесса усиления электромагнитного поля.



Пусть имеем двухуровневую систему.

Схема переходов в двухуровневой системе

N2 – число атомов в единице объема в возбужденном состоянии 2. N1 – в невозбужденном состоянии 1.

dN2 = - A21 N2 dt,

число атомов в единице объема, покинувших состояние 2. A21 – вероятность спонтанного перехода отдельного атома из состояния 2 в состояние 1. Проинтегрировав, получим

N2 = N20 eA21t,

где N20 – число атомов в состоянии 2 в момент времени t = 0 . Интенсивность спонтанного излучения Ic равна

Ic = (hμ21 dN2) / dt = hμ21 A21 N2 = hμ21 A21 N20 e – A21t,

Интенсивность спонтанного излучения убывает по экспоненциальному закону.

Число атомов, покидающих состояние 2 за время от t до t +dt , равно A21 N2dt , то есть это число атомов, которое прожило время t в состоянии 2. Отсюда среднее время жизни τ атома в состоянии 2 равно

τ = (1 / N20) 21 N2 tdt = A21 e-A21t

dt = (1 / A21)τ = 1 / A21

Ic = hμ21 A21 N20 e – A21t = (hμ21 N20 / τ) · e

Вероятностью индуцированного перехода W21 2 – 1 пропорционально спектральной плотности энергии электромагнитного поля ρν на частоте перехода, то есть

W21 = B21 ρν,

B21 – коэффициент Эйнштейна индуцированного излучения.

Вероятность перехода 1- 2

W12 = B12 ρν,

ρν = (8πhμ321 / c3) · (1 / e -1) формула Планка.