Раздели фигуры на части по одной клеточки. Разрезание и складывание фигур

С листом клетчатой бумаги при помощи ножниц можно решить множество самых разнообразных и интересных задач. Эти задачи не только интересны или забавны. В них заключается часто практическое разрешение и доказательство иногда очень сложных геометрических вопросов.

Начнем с главного правила разрезания и складывания: Два многоугольника называются равносоставленными, если один из них можно разбить (разрезать) на некоторые другие многоугольники, из которых затем можно составить второй многоугольник.

Равносоставленные многоугольники, конечно, имеют одинаковую площадь (равновелики), и поэтому свойство равносоставленности позволяет иногда получить формулы для вычисления площадей или сравнивать площади фигур (как говорят, методом разбиения или разложения ). Примером является сравнение (вычисление) площадей параллелограмма и прямоугольника.

Общий вопрос о равносоставленности двух многоугольников далеко не простой. Существует удивительная теорема, в которой утверждается, что из любого данного многоугольника, посредством разрезания его на части, может быть сконструирован любой другой многоугольник той же площади.

В этой теореме речь идет о так называемых простых многоугольниках. Простой многоугольник – это такой многоугольник, у которого граница состоит из одной замкнутой линии без самопересечений, и в каждой вершине этой ломаной сходится ровно два ее звена. Важным свойством простого многоугольника является тот факт, что он имеет, по крайней мере, одну внутреннюю диагональ.

Заметим, что для допустимого превращения прямоугольника в квадрат нам (рисунок 3) понадобилось разбить его на три части. Однако это разбиение не является единственным. Можно, например, привести пример разбиения прямоугольника на четыре части (рисунок 4).

https://pandia.ru/text/78/456/images/image005_116.gif" width="356" height="391 src=">

Вопрос о том, какое наименьшее число разрезов достаточно, чтобы сконструировать из одной фигуры другую, остается открытым и по сегодняшний день.

Задача 1.

У одной женщины был прямоугольный коврик размером 27 на 36 дюймов два противоположных его угла истрепались (рисунок 5) и их пришлось отрезать, но она хотела именно прямоугольный коврик. Она дала эту работу мастеру и он справился. Каким путем он это сделал?



Решение задачи видно из рисунка 6.

https://pandia.ru/text/78/456/images/image009_72.gif" width="286" height="240 src=">

Если зубчатую часть A вынуть из зубчатой части B и затем снова вдвинуть ее между зубьев части B, переместив на один зуб вправо, то получится желанный прямоугольник.

Задача 2.

Как из пяти одинаковых квадратов путем разрезания составить квадрат.

Как показано на рисунке 7, четыре квадрата нужно разрезать на треугольник и трапецию. Четыре трапеции приложить к сторонам пятого квадрата и, наконец, приложим треугольники катетами к основаниям трапеций.

https://pandia.ru/text/78/456/images/image011_68.gif" width="382" height="271 src=">

Задача 3.

Разрезать квадрат на семь таких частей, чтобы, сложив их, получить три равных квадрата. (Рисунки 8, 9)

https://pandia.ru/text/78/456/images/image013_60.gif" width="188" height="189 src=">

Задача 4.

Разрезать квадрат на восемь частей так, чтобы сложив их, получить два квадрата, один из которых вдвое меньше другого.

Из рисунка 10 видно, как нужно разрезать квадрат. Решение схоже с решением предыдущей задачи. На рисунке 11 показано, как нужно сложить части, чтобы получить два искомых квадрата.

Обучающий тур

Задачи для самостоятельного решения командами «младшей» возрастной группы

Задача 1

Улитка ползёт вверх по столбу высотой 10 м. За день она поднимается на 5 м, а за ночь - опускается на 4 м. За какое время улитка доберётся от подножья до вершины столба?

Задача 2

Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?

Задача 3

Зайцы пилят бревно. Они сделали 10 распилов. Сколько получилось чурбачков?

Задача 4

Бублик режут на сектора. Сделали 10 разрезов. Сколько получилось кусков?

Задача 5

На большом круглом торте сделали 10 разрезов так, что каждый разрез идёт от края до края и проходит через центр торта. Сколько получилось кусков?

Задача 6

У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого - четыре. Как это могло быть?

Задача 7

Зайцы снова пилят бревно, но теперь уже оба конца бревна закреплены. Десять средних чурбачков упали, а два крайних так и остались закреплёнными. Сколько распилов сделали зайцы?

Задача 8

Как разделить блинчик тремя прямолинейными разрезами на 4,5, 6, 7 частей?

Задача 9

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?

Задача 10

Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?

Задача 11

На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?

Задача 12

Во сколько раз лестница на четвёртый этаж дома длиннее, чем лестница на второй этаж этого же дома?

Задача 13

У Джузеппе есть лист фанеры, размером 22× 15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3× 5. Как это сделать?

Задача 14

В Волшебной Стране свои волшебные законы природы, один из которых гласит: «Ковёр-самолёт будет летать только тогда, когда он имеет прямоугольную форму».

У Ивана-царевича был ковёр-самолёт размером 9 × 12. Как-то раз Змей Горыныч подкрался и отрезал от этого ковра маленький коврик размером 1 × 8. Иван-царевич очень расстроился, и хотел было отрезать ещё кусочек 1 × 4, чтобы получился прямоугольник 8 × 12, но Василиса Премудрая предложила поступить по-другому. Она разрезала ковёр на три части, из которых волшебными нитками сшила квадратный ковёр-самолёт размером 10× 10.

Сможете ли вы догадаться, как Василиса Премудрая переделала испорченный ковёр?

Задача 15

Когда Гулливер попал в Лилипутию, он обнаружил, что там все вещи ровно в 12 раз короче, чем на его родине. Сможете ли вы сказать, сколько лилипутских спичечных коробков поместится в спичечный коробок Гулливера?

Задача 16

На мачте пиратского корабля развевается двухцветный прямоугольный флаг, состоящий из чередующихся чёрных и белых вертикальных полос одинаковой ширины. Общее число полос равно числу пленных, находящихся в данный момент на корабле. Сначала на корабле было 12 пленных, а на флаге - 12 полос; затем два пленных сбежали. Как разрезать флаг на две части, а затем сшить их, чтобы площадь флага и ширина полос не изменились, а число полос стало равным 10?

Задача 17

В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?

Задача 18

Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т. е. имела общие участки границы) с тремя другими?

DIV_ADBLOCK245">

Задача 24

На линейке длиной 9 см нет делений. Нанесите на неё три промежуточных деления так, чтобы ею можно было измерять расстояние от 1 до 9 см с точностью до 1 см.

Задача 25

Около каждой вершины треугольника напишите какие-нибудь числа, возле каждой стороны треугольника напишите сумму чисел, стоящих на концах этой стороны. Теперь каждое число, стоящее около вершины, сложите с числом, стоящим около противоположной стороны. Как вы думаете, почему получились одинаковые суммы?

Задача 26

Чему равна площадь треугольника со сторонами 18, 17, 35?

Задача 27

Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.

Задача 28

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Задача 29

Легко можно разрезать квадрат на два равных треугольника или два равных четырехугольника. А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

Задача 30

Пошёл Иван-царевич искать похищенную Кощеем Василису Прекрасную. Навстречу ему Леший.

Знаю, - говорит, - я дорогу в Кощеево Царство, случалось, ходил туда. Шёл я четыре дня и четыре ночи. За первые сутки я прошёл треть пути-прямой дорогой на север. Потом повернул на запад, сутки продирался лесом и прошёл вдвое меньше. Третьи сутки я шёл лесом, уже на юг, и вышел на прямую дорогу, ведущую на восток. Прошагал я по ней за сутки 100 вёрст и попал в Кощеево царство. Ты ходок такой же резвый, как и я. Иди, Иван-царевич, глядишь, на пятый день будешь в гостях у Кощея.

Нет,- отвечал Иван-царевич, - если всё так, как ты говоришь, то уже завтра я увижу мою Василису Прекрасную.

Прав ли он? Сколько вёрст прошёл Леший и сколько думает пройти Иван-царевич?

Задача 31

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

https://pandia.ru/text/78/456/images/image023_44.gif" align="left" width="205" height="205 src=">Задача 32

У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30 см * 70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55 см *55 см.

Задача 33

Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.

Задача 34

Разрежьте данный квадрат по сторонам клеток на четыре части так, чтобы все части были одинакового размера и одинаковой формы и чтобы каждая часть содержала по одному кружку и по одной звёздочке.

Задача 35


Автостоянка в Цветочном городе представляет собой квадрат 7x 7 клеточек, в каждой из которых можно поставить машину. Стоянка обнесена забором, одна из сторон угловой клетки удалена (это ворота). Машина ездит по дорожке шириной в клетку. Незнайку попросили разместить как можно больше машин на стоянке таким образом, чтобы любая могла выехать, когда прочие стоят. Незнайка расставил 24 машины так, как показано на рис. Попытайтесь расставить машины по-другому, чтобы их поместилось больше.

Задача 36

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвертом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Задача 37

Предложите способ измерения диагонали обычного кирпича, который легко реализуется на практике (без теоремы Пифагора).

Задача 38

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

Задача 39

https://pandia.ru/text/78/456/images/image033_35.gif" width="411" height="111">

Задача 46

а) Тетраэдр б) куб разрезали по ребрам, выделенным жирными линиями (см. рисунки) и развернули. Нарисуйте получившиеся развертки.

Задача 47

Развертки каких тел изображены на рисунках? Выполните чертежи по рисункам, склейте их так, чтобы получилось геометрическое тело.

1)2) 3) 4)https://pandia.ru/text/78/456/images/image039_30.gif" width="182" height="146 src=">.gif" width="212" height="139">8)

Презентация к уроку наглядной геометрии в 5 классе. Ориентирован на учебное пособие для общеобразовательного учреждения «Наглядная геометрия», 5-6 классы/ И.Ф.Шапрыгин, Л.Н.Ерганжиева - Издательство: Дрофа, 2015 г.

Основное понятие: равенство фигур. Предметные результаты: изображать равные фигуры и обосновывать их равенство; конструировать заданные фигуры из плоских геометрических фигур; создавать и манипулировать образом: расчленять, вращать, совмещать, накладывать. Метапредметные результаты: развитие образного мышления, конструкторских способностей, умения предвосхитить результат, формирование коммуникативных умений.

Личностные результаты: развитие познавательной активности; привитие вкуса к умственной работе. Внутрипредметные и межпредметные связи: планиметрия (равенство фигур, симметрия, площадь, равновеликость и равносоставленность), геометрическая комбинаторика, черчение, технология.

Данный урок - первый из двух по этой теме.

На этом уроке рассматриваются задачи на разрезание фигур. Цель решающего — разрезать указанную фигуру на две или несколько равных частей. Часто для упрощения эту фигуру делят на клетки. В этих задачах неявно вводится понятие равенства фигур (равными называются фигуры, совпадающие при наложении). Это определение используется и для проверки равенства полученных фигур.

Просмотр содержимого документа
«Задачи на разрезание и складывание фигур. Урок 1»

Задачи на разрезание

и складывание фигур

Цель: закрепить умение решать задачи на разрезание.

Наглядная геометрия

5 класс


Эта пословица предостерегает Вас от поспешности в решении задач.

Заданную фигуру, которая для облегчения разделена на равные клетки, надо разрезать на две или несколько частей.

Если эти части можно наложить одна на другую так, что они совпадут (при этом разрешено фигуры переворачивать), то задача решена верно.


Решение задач

Местный торговец земельными участками

отхватил по случаю кусок земли необычной

формы (он рассчитывал выгодно продать его частями).

Но каждый, из восьми найденных

им покупателей, хотел иметь

участок не хуже, чем у соседа.

Где торговец должен установить

разделительные изгороди,

чтобы получилось 8

одинаковых участков?

Ответ



Решение задач

Квадрат состоит из 16 одинаковых клеток,

4 из них закрашены. Разрежь квадрат на

4 равные части так, чтобы в каждой их них

было лишь по одной закрашенной клетке.

Клетка может занимать в каждой части любое место.

Ответ (4)


Решение задач

Разрежьте прямоугольник на 4 равные части,

(прмените как можно больше способов).

1 способ

В презентации предлагается только 4 способа решения данной задачи. Возможно, учащиеся предложат другие способы – их тоже необходимо рассмотреть на занятии.

2 способ

3 способ







Составьте из них фигуры. Сколько их получилось?

Получившиеся

фигуры называют

ТРИМИНО .


Возьмите четыре одинаковых квадрата. Составьте из них фигуры.

  • Сколько их получилось?

Получили пять

фигур ТЕТРАМИНО.


Составьте из пяти квадратов

все возможные фигуры.

Сколько их получилось?


Всего существуют 12 элементов пентамино


Вступительное слово учителя:

Небольшая историческая справка: Задачами на разрезание увлекались многие ученые с древнейших времен. Решения многих простых задач на разрезание были найдены еще древними греками, китайцами, но первый систематический трактат на эту тему принадлежит перу Абуль-Вефа. Геометры всерьез занялись решением задач на разрезание фигур на наименьшее число частей и последующее построение другой фигуры в начале 20 века. Одним из основателей этого раздела был знаменитый основатель головоломок Генри Э.Дьюдени.

В наши дни любители головоломок увлекаются решением задач на разрезание прежде потому, что универсального метода решения таких задач не существует, и каждый, кто берется их решать, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. (На занятии мы будем указывать лишь один из возможных примеров разрезания. Можно допустить, что у учащихся может получиться какая-то другая верная комбинация -- не надо этого бояться).

Данное занятие предполагается провести в виде практического занятия. Разбить участников кружка на группы по 2-3 человека. Каждой из групп предоставить заранее подготовленные учителем фигуры. Учащиеся располагают линейкой (с делениями), карандашом, ножницами. Разрешается производить с помощью ножниц лишь прямолинейные разрезы. Разрезав какую-нибудь фигуру на части, необходимо составить другую фигуру из тех же частей.

Задачи на разрезание:

1). Попробуйте разрезать изображенную на рисунке фигуру на 3 равные по форме части:

Подсказка: Маленькие фигуры очень похожи на букву Т.

2). Разрежьте теперь эту фигуру на 4 равные по форме части:

Подсказка: Легко догадаться, что маленькие фигурки будут состоять из 3 клеточек, а фигур из трех клеточек не так много. Их всего два вида: уголок и прямоугольник.

3). Разделите фигуру на две одинаковые части, и из полученных частей сложите шахматную доску.

Подсказка: Предложить начать выполнять задание со второй части, как бы получить шахматную доску. Вспомнить, какую форму имеет шахматная доска (квадрат). Посчитать имеющееся количество клеточек в длину, в ширину. (Напомнить, что клеток должно быть 8).

4). Попробуйте тремя движениями ножа разрезать сыр на восемь равных кусков.

Подсказка: попробовать разрезать сыр вдоль.

Задачи для самостоятельного решения:

1). Вырежьте квадрат из бумаги и выполните следующее:

· разрежьте на такие 4 части, из которых можно составить два равных меньших квадрата.

· разрежьте на пять частей - четыре равнобедренных треугольника и один квадрат - и сложите их так, чтобы получилось три квадрата.


































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Опыт показывает, что при использовании практических методов обучения удается сформировать у учащихся ряд мыслительных приемов, необходимых для правильного вычленения существенных и несущественных признаков при ознакомлении с геометрическими фигурами. развивается математическая интуиция, логическое и абстрактное мышление, формируется культура математической речи, развиваются математические и конструкторские способности, повышается познавательная активность, формируется познавательный интерес, развивается интеллектуальный и творческий потенциал.В статье приводится ряд практических задач на разрезания геометрических фигур на части с целью составить из этих частей новую фигуру. Ученики работают над заданиями в группах. Затем каждая группа защищает свой проект.

Две фигуры называются равносоставленными, если, определённым образом разрезав одну из них на конечное число частей, можно (располагая эти части иначе) составить из них вторую фигуру. Итак, метод разбиения основан на том, что всякие два равносоставленных многоугольника равновелики. Естественно поставить обратный вопрос: всякие ли два многоугольника, имеющих одинаковую площадь, равносоставлены? Ответ на этот вопрос был дан (почти одновременно) венгерским математиком Фаркашем Бойяи (1832г.) и немецким офицером и любителем математики Гервином (1833г.): два многоугольника, имеющих равные площади, равносоставленны.

Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат.

Задание 1.

Разрежьте прямоугольник a х 2a на такие части, чтобы из них можно было составить квадрат.

Прямоугольник ABCD разрежем на три части по линиям MD и MC (М – середина АВ)

Рисунок 1

Треугольник АMD переместим так, чтобы вершина М совместилась с вершиной С, катет АМ переместится на отрезок DС. Треугольник МВС переместим влево и вниз так, что катет МВ наложится на половину отрезка DС. (Рисунок 1)

Задание 2.

Разрезать равносторонний треугольник на части так, чтобы из них можно было сложить квадрат.

Обозначим данный правильный треугольник АВС. Необходимо разрезать треугольник АВС на многоугольники так, чтобы из них можно было сложить квадрат. Тогда эти многоугольники должны иметь по крайней мере по одному прямому углу.

Пусть К – середина СВ, Т – середина АВ, точки М и Е выберем на стороне АС так, что МЕ=АТ=ТВ=ВК=СК=а , АМ=ЕС=а /2.

Рисунок 2

Проведем отрезок МК и перпендикулярные к нему отрезки ЕР и ТН. Разрежем треугольник на части вдоль построенных линий. Четырехугольник КРЕС повернем по часовой стрелке относительно вершины К так, что СК совместится с отрезком КВ. Четырехугольник АМНТ повернем по часовой стрелке относительно вершины Т так, что АТ совместится с ТВ. Треугольник МЕР переместим так, что в результате получится квадрат. (Рисунок 2)

Задание 3.

Разрезать квадрат на части так, чтобы из них можно было сложить два квадрата.

Обозначим исходный квадрат ABCD. Отметим середины сторон квадрата – точки M, N, K, H. Проведем отрезки МТ, НЕ, КF и NР – части отрезков МС, НВ, КА и ND соответственно.

Разрезав квадрат ABCD по проведенным линиям, получим квадрат PTEF и четыре четырехугольника MDHT, HCKE, KBNF и NAMP.

Рисунок 3

PTEF – уже готовый квадрат. Из оставшихся четырехугольников составим второй квадрат. Вершины A, B, C и D совместим в одну точку, отрезки АМ и ВК, MD и КС, BN и СН, DH и АN совместятся. Точки Р, Т, Е и F станут вершинами нового квадрата. (Рисунок 3)

Задание 4.

Из плотной бумаги вырезаны равносторонний треугольник и квадрат. Разрезать эти фигуры на многоугольники так, чтобы из них можно было сложить один квадрат, при этом части должны полностью его заполнять и не должны пересекаться.

Треугольник разрежем на части и составим из них квадрат так, как показано в задании 2. Длина стороны треугольника – 2а . Теперь следует разделить на многоугольники квадрат так, чтобы из этих частей и того квадрата, который получился из треугольника, составить новый квадрат. Возьмем квадрат со стороной 2а , обозначим его LRSD. Проведем взаимно перпендикулярные отрезки UG и VF так, что DU=SF=RG=LV. Разрежем квадрат на четырехугольники.

Рисунок 4

Возьмем квадрат, составленный из частей треугольника. Выложим четырехугольники – части квадрата так, как показано на рисунке 4.

Задание 5.

Крест составлен из пяти квадратов: один квадрат в центре, а остальные четыре прилежат к его сторонам. Разрезать его на такие части, чтобы из них можно было составить квадрат.

Соединим вершины квадратов так, как показано на рисунке 5. Отрежем “внешние” треугольники и переместим их на свободные места внутри квадрата АВСК.

Рисунок 5

Задание 6.

Перекроить два произвольных квадрата в один.

На рисунке 6 показано, как нужно разрезать и переместить части квадратов.

Задачи на разрезание - это та область математики, где, как говорится, мамонт не валялся. Множество отдельных проблем, но по сути нет общей теории. Помимо всем известной теоремы Бойяи-Гервина , других фундаментальных результатов в этой области практически нет. Неопределённость - вечный спутник задач на разрезание. Мы можем, например, разрезать правильный пятиугольник на шесть частей, из которых можно сложить квадрат; однако мы не можем доказать, что пяти частей для этого было бы недостаточно.

С помощью хитрой эвристики, воображения и поллитры нам порой удаётся найти конкретное решение, но, как правило, мы не обладаем подходящим инструментарием, чтобы доказать минимальность этого решения или же его несуществование (последнее, разумеется, относится к случаю, когда мы решение не нашли). Это печально и несправедливо. И как-то раз я взял чистую тетрадку и решил восстановить справедливость в масштабах одной конкретной задачи: разрезания плоской фигуры на две равных (конгруэнтных) части. В рамках этого цикла статей (их, кстати, будет три) мы с вами, камрады, рассмотрим вот этот забавный многоугольник, изображённый ниже, и попытаемся беспристрастно разобраться, можно ли разрезать его на две равных фигуры, или же таки нет.

Введение

Для начала освежим школьный курс геометрии и вспомним, что такое равные фигуры. Яндекс услужливо подсказывает:
Две фигуры на плоскости называются равными, если существует движение, взаимно однозначно переводящее одну фигуру в другую.

Теперь расспросим Википедию про движения. Она расскажет нам, во-первых, что движение - это преобразование плоскости, которое сохраняет расстояния между точками. Во-вторых, там даже приведена классификация движений на плоскости. Все они относятся к одному из следующих трёх типов:
  • Скользящая симметрия (сюда я удобства ради и пользы для включаю зеркальная симметрию , как вырожденный случай, где параллельный перенос производится на нулевой вектор)

Введём некоторые обозначения. Разрезаемую фигуру мы будем называть фигурой A, а две гипотетеческих равных фигуры, на которые мы будто бы можем её разрезать, обзовём B и C соответственно. Часть плоскости, не занятую фигурой A, мы назовём областью D. В тех случаях, когда в качестве разрезаемой фигуры рассматривается конкретный многоугольник с картинки, мы будем называть его A 0 .

Так вот, если фигуру A можно разрезать на две равных части B и C, то существует движение, переводящее B в C. Это движение может быть либо параллельным переносом, либо поворотом, либо скользящей симметрией (начиная с этого момента, я больше не оговариваю, что зеркальная симметрия также считается скользящей). На этом нехитром и, я бы даже сказал, очевидном, базисе и будет строиться наше решение. В этой части мы рассмотрим самый простой случай - параллельный перенос. Поворот и скользящая симметрия попадут во вторую и третью часть соответственно.

Случай 1: параллельный перенос

Параллельный перенос задаётся единственным параметром - вектором, на который происходит сдвиг. Введём ещё несколько терминов. Прямую, параллельную вектору сдвига и содержащую хотя бы одну точку фигуры A, будем называть секущей . Пересечение секущей прямой и фигуры A будем называть сечением . Секущую, относительно которой фигура A (за вычетом сечения) целиком лежит в одной полуплоскости, будем называть границей .

Лемма 1. Сечение границей должно содержать более одной точки.

Доказательство: очевидно. Ну или более развёрнуто: докажем от противного. Если эта точка принадлежит фигуре B, то её образ (т.е. точка, в которую она перейдёт при параллельном переносе) принадлежит фигуре C => образ принадлежит фигуре A => образ принадлежит сечению. Противоречие. Если эта точка принадлежит фигуре C, то её прообраз (точка, которая при параллельном переносе перейдёт в неё) принадлежит фигуре B, и далее аналогично. Получается, в сечении должно быть хотя бы две точки.

Руководствуясь этой нехитрой леммой, нетрудно понять, что искомый параллельный перенос может происходить лишь вдоль вертикальной оси (в текущей ориентации картинки) Если бы он был в любом другом направлении, хотя бы одно из граничных сечений состояло бы из единственной точки. Это можно понять, мысленно повращав вектор сдвига и посмотрев, что при этом происходит с границами. Чтобы исключить случай вертикального параллельного переноса, нам понадобится более хитрый инструмент.

Лемма 2. Прообраз точки, находящейся на границе фигуры C, находится либо на границе фигур B и C, либо на границе фигуры B и области D.

Доказательство: неочевидно, но сейчас мы это исправим. Напомню, граничной точкой фигуры называется такая точка, что сколь угодно близко от неё найдутся как точки, принадлежащие фигуре, так и точки, не принадлежащие ей. Соответственно, вблизи граничной точки (назовём её O") фигуры C найдутся как точки фигуры C, так и другие точки, принадлежащие либо фигуре B, либо области D. Прообразами точек фигуры C могут быть только точки фигуры B. Следовательно, сколь угодно близко к прообразу точки O" (будет логично назвать его точкой O) найдутся точки фигуры B. Прообразами точек фигуры B могут быть любые точки, не принадлежащие B (то есть либо точки фигуры С, либо точки области D). Аналогично для точек области D. Следовательно, сколь угодно близко к точке O найдутся либо точки фигуры C (и тогда точка O будет на границе B и C), либо точки области D (и тогда прообраз на границе B и D). Если вы сумеете продраться через все эти буквы, то согласитесь, что лемма доказана.

Теорема 1. Если сечение фигуры A представляет собой отрезок, то его длина кратна длине вектора сдвига.

Доказательство: рассмотрим «дальний» конец этого отрезка (т.е. тот конец, прообраз которого также принадлежит отрезку). Этот конец, очевидно, принадлежит фигуре C и является её граничной точкой. Следовательно, его прообраз (кстати говоря, также лежащий на отрезке и отстоящий от образа на длину вектора сдвига) будет либо на границе B и C, либо на границе B и D. Если он на границе B и C, то возьмём также и его прообраз. Будем повторять эту операцию, пока очередной прообраз не перестанет быть на границе C и не окажется на границе D - а это произойдёт как раз на другом конце сечения. В результате мы получим цепочку прообразов, которые разбивают сечение на некоторое количество маленьких отрезочков, длина каждого из которых равняется длине вектора сдвига. Следовательно, длина сечения кратна длине вектора сдвига, ч.т.д.

Следствие из теоремы 1. Любые два сечения, являющиеся отрезками, должны быть соизмеримы.

Используя это следствие, нетрудно показать, что вертикальный параллельный перенос тоже отпадает.

Действительно, сечение раз имеет длину три клетки, а сечение два - три минус корень из двух пополам. Очевидно, эти величины несоизмеримы.

Вывод

Если фигуру A 0 и можно разрезать на две равные фигуры B и C, то B не переводится в C параллельным переносом. Продолжение следует.