Решение матрицы с помощью метода ньютона практика. Метод касательных

Метод Ньютона (метод касательных)

Пусть корень уравнения f(x)=0 отделен на отрезке , причем первая и вторая производные f’(x) и f""(x) непрерывны и знакопостоянны при хÎ .

Пусть на некотором шаге уточнения корня получено (выбрано) очередное приближение к корню х n . Тогда предположим, что следующее приближение, полученное с помощью поправки h n , приводит к точному значению корня

x = х n + h n . (1.2.3-6)

Считаяh n малой величиной, представим f(х n + h n) в виде ряда Тейлора, ограничиваясь линейными слагаемыми

f(х n + h n) »f(х n) + h n f’(х n). (1.2.3-7)

Учитывая, что f(x) = f(х n + h n) = 0, получим f(х n) + h n f ’(х n) » 0.

Отсюда h n » - f(х n)/ f’(х n). Подставим значение h n в (1.2.3-6) и вместо точного значения корня x получим очередное приближение

Формула (1.2.3-8) позволяет получить последовательность приближенийх 1 ,х 2 , х 3 …, которая при определенных условиях сходится к точному значению корняx, то есть

Геометрическая интерпретация метода Ньютона состоит в следующем
(рис.1.2.3-6). Примем за начальное приближение x 0 правый конец отрезка b и в соответствующей точке В 0 на графике функции y = f(x) построим касательную. Точка пересечения касательной с осью абсцисс принимается за новое более точное приближение х 1 . Многократное повторение этой процедуры позволяет получить последовательность приближений х 0 , х 1 , х 2 , . . ., которая стремится к точному значению корня x.

Расчетная формула метода Ньютона (1.2.3-8) может быть получена из геометрического построения. Так в прямоугольном треугольнике х 0 В 0 х 1 катет
х 0 х 1 = х 0 В 0 /tga. Учитывая, что точка В 0 находится на графике функции f(x), а гипотенуза образована касательной к графику f(x) в точке В 0 , получим

(1.2.3-9)

(1.2.3-10)

Эта формула совпадает с (1.2.3-8) для n-го приближения.

Из рис.1.2.3-6 видно, что выбор в качестве начального приближения точки а может привести к тому, что следующее приближение х 1 окажется вне отрезка , на котором отделен корень x . В этом случае сходимость процесса не гарантирована. В общем случае выбор начального приближения производится в соответствии со следующим правилом: за начальное приближение следует принять такую точку х 0 Î,в которой f(х 0)×f’’(х 0)>0, то есть знаки функции и ее второй производной совпадают.

Условия сходимости метода Ньютона сформулированы в следующей теореме.

Если корень уравнения отделен на отрезке , причем f’(х 0)и f’’(х) отличны от нуля и сохраняют свои знаки при хÎ , то, если выбрать в качестве начального приближения такую точку х 0 Î, что f(х 0).f¢¢(х 0)>0, то корень уравнения f(x)=0может быть вычислен с любой степенью точности.

Оценка погрешности метода Ньютона определяется следующим выражением:

(1.2.3-11)

где -- наименьшее значение при

Наибольшее значение при

Процесс вычислений прекращается, если ,

где -- заданная точность.

Кроме того, условием достижения заданной точности при уточнении корня методом Ньютона могут служить следующие выражения:

Схема алгоритма метода Ньютона приведена на рис. 1.2.3-7.

Левая часть исходного уравнения f(x) и ее производная f’(x)в алгоритме оформлены в виде отдельных программных модулей.

Рис. 1.2.3-7. Схема алгоритма метода Ньютона

Пример 1.2.3-3.Уточнить методом Ньютона корни уравнения x-ln(x+2) = 0при условии, что корни этого уравнения отделены на отрезках x 1 Î[-1.9;-1.1] и x 2 Î [-0.9;2].

Первая производная f’(x) = 1 – 1/(x+2) сохраняет свой знак на каждом из отрезков:

f’(x)<0 при хÎ [-1.9; -1.1],

f’(x)>0 при хÎ [-0.9; 2].

Вторая производная f"(x) = 1/(x+2) 2 > 0 при любых х.

Таким образом, условия сходимости выполняются. Поскольку f""(x)>0на всей области допустимых значений, то для уточнения корня за начальное приближение x 1 выберем х 0 =-1,9(так какf(-1,9)×f”(-1.9)>0). Получим последовательность приближений:

Продолжая вычисления, получим следующую последовательность первых четырех приближений: -1.9; –1.8552, -1.8421; -1.8414. Значение функции f(x) в точке x=-1.8414 равно f(-1.8414)=-0.00003.

Для уточнения корня x 2 Î[-0.9;2] выберем в качестве начального приближениях 0 =2 (f(2)×f”(2)>0). Исходя из х 0 = 2, получим последовательность приближений: 2.0;1.1817; 1.1462; 1.1461. Значение функции f(x) в точке x=1.1461 равно f(1.1461)= -0.00006.

Метод Ньютона обладает высокой скоростью сходимости, однако на каждом шаге он требует вычисления не только значения функции, но и ее производной.

Метод хорд

Геометрическая интерпретация метода хорд состоит в следующем
(рис.1.2.3-8).

Проведем отрезок прямой через точки A и B. Очередное приближение x 1 является абсциссой точки пересечения хорды с осью 0х. Построим уравнение отрезка прямой:

Положим y=0и найдем значение х=х 1 (очередное приближение):

Повторим процесс вычислений для получения очередного приближения к корню - х 2 :

В нашем случае (рис.1.2.11) и расчетная формула метода хорд будет иметь вид

Эта формула справедлива, когда за неподвижную точку принимается точка b, а в качестве начального приближения выступает точка a.

Рассмотрим другой случай (рис. 1.2.3-9), когда .

Уравнение прямой для этого случая имеет вид

Очередное приближение х 1 при y = 0

Тогда рекуррентная формула метода хорд для этого случая имеет вид

Следует отметить, что за неподвижную точку в методе хорд выбирают тот конец отрезка , для которого выполняется условие f (x)∙f¢¢ (x)>0.

Таким образом, если за неподвижную точку приняли точку а, то в качестве начального приближения выступает х 0 = b, и наоборот.

Достаточные условия, которые обеспечивают вычисление корня уравнения f(x)=0 по формуле хорд, будут теми же, что и для метода касательных (метод Ньютона), только вместо начального приближения выбирается неподвижная точка. Метод хорд является модификацией метода Ньютона. Разница состоит в том, что в качестве очередного приближения в методе Ньютона выступает точка пересечения касательной с осью 0Х,а в методе хорд – точка пересечения хорды с осью 0Х – приближения сходятся к корню с разных сторон.

Оценка погрешности метода хорд определяется выражением

(1.2.3-15)

Условие окончания процесса итераций по методу хорд

(1.2.3-16)

В случае, если M 1 <2m 1 , то для оценки погрешности метода может быть использована формула | x n -x n -1 |£e.

Пример 1.2.3-4. Уточнить корень уравнения e x – 3x = 0, отделенный на отрезке с точностью 10 -4 .

Проверим условие сходимости:

Следовательно, за неподвижную точку следует выбрать а=0, а в качестве начального приближения принять х 0 =1, поскольку f(0)=1>0 и f(0)*f"(0)>0.



Ключевые слова:

Цель работы: изучить методы решения нелинейных уравнений с одним неизвестным и апробировать их в опытно-экспериментальной работе.

Задачи работы:

  1. Проанализировать специальную литературу и выбрать наиболее рациональные способы решения нелинейных уравнений, позволяющие глубоко изучить и усвоить данную тему всем выпускникам средней школы.
  2. Разработать некоторые аспекты методики решения нелинейных уравнений с применением ИКТ.
  3. Изучить методы решения нелинейных уравнений:

‒ Шаговый метод

‒ Метод деления пополам

‒ Метод Ньютона

Введение.

Без математической грамотности невозможно успешное освоение методов решения задач по физике, химии, биологии и другим предметам. Весь комплекс естественных наук построен и развивается на базе математических знаний. Например, исследование ряда актуальных задач математической физики приводит к необходимости решения нелинейных уравнений. Решение нелинейных уравнений необходимо в нелинейной оптике, физике плазмы, теории сверхпроводимости и физике низких температур. По этой теме есть достаточное количество литературы, но во многих учебниках и статьях трудно разобраться ученику средней школы. В данной работе рассмотрены методы решения нелинейных уравнений, которые можно использовать при решении прикладных задач физики, химии. Интересным представляется аспект применения информационных технологий к решению уравнений и задач по математике.

Шаговый метод.

Пусть требуется решить нелинейное уравнение вида уравнение F(x)=0. Предположим также, что нам задан некоторый интервал поиска . Требуется найти интервал [а,b] длиной h, содержащий первый корень уравнения, начиная с левой границы интервала поиска.

Рис. 1. Шаговый метод

Решить подобную задачу можно несколькими способами. Шаговый метод является наиболее простым из численных методов решения неравенств, но для достижения большой точности необходимо существенно уменьшить шаг, а это сильно увеличивает время расчётов. Алгоритм решения уравнений с помощью данного метода состоит из двух этапов.

I этап. Отделение корней.

На этом этапе определяются участки, на каждом из которых находится только один корень уравнения. Есть несколько вариантов реализации этого этапа:

  • Подставляем значения X (желательно с каким-то достаточно мелким шагом) и смотрим где функция сменит знак. Если функция сменила знак, это значит, что на участке между предыдущим и текущим значением X лежит корень (если функция не меняет характер возрастания/убывания, то можно утверждать, что корень на этом интервале один).
  • Графический метод. Строим график и оцениваем на каких интервалах лежит один корень.
  • Исследуем свойства конкретной функции.

II этап. Уточнение корней.

На данном этапе значение корней уравнения, определенных ранее, уточняется. Как правило на этом этапе используются итерационные методы. Например, метод половинного деления (дихотомии) или метод Ньютона.

Метод половинного деления

Быстрый и достаточно простой численный метод решения уравнений, основанный на последовательном сужении интервала, содержащего единственный корень уравнения F(x)=0 до того времени, пока не будет достигнута заданная точность Е. Данный метод обычно используется при решении квадратных уравнений и уравнений высших степеней. Однако у данного метода есть существенный недостаток - если на отрезке [а,b] содержится более одного корня, то с его помощью не удастся добиться хороших результатов.

Рис. 2. Метод дихотомии

Алгоритм данного метода следующий:

‒ Определить новое приближение корня х в середине отрезка [а;b]: х=(а+b)/2.

‒ Найти значения функции в точках а и х: F(a) и F(x).

‒ Проверить условие F(a)*F(x)

‒ Перейти к пункту 1 и вновь поделить отрезок пополам. Алгоритм продолжить до того времени, пока не будет выполнено условие |F(x)|

Метод Ньютона

Самый точный из численных методов решения; подходит для решения очень сложных уравнений, но усложняется необходимостью вычисления производных на каждом шаге. заключается в том, что если x n - некоторое приближение к корню уравнения , то следующее приближение определяется как корень касательной к функции f(x), проведенной в точке x n .

Уравнение касательной к функции f(x) в точке x n имеет вид:

В уравнении касательной положим y = 0 и x = x n +1 .

Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

Сходимость метода касательных квадратичная, порядок сходимости равен 2.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Без всяких изменений метод обобщается на комплексный случай. Если корень x i является корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие , в противной ситуации сходимость есть лишь в некоторой окрестности корня.

Метод Ньютона (метод касательных) обычно применяется в том случае, если уравнение f(x) = 0 имеет корень , и выполняются условия:

1) функция y= f(x) определена и непрерывна при ;

2) f(a)·f(b) (функция принимает значения разных знаков на концах отрезка [a;b ]);

3) производные f"(x) и f""(x) сохраняют знак на отрезке [a;b ] (т. е. функция f(x) либо возрастает, либо убывает на отрезке [a;b ], сохраняя при этом направление выпуклости);

Смысл метода заключается в следующем: на отрезке [a;b ] выбирается такое число x 0 , при котором f(x 0) имеет тот же знак, что и f""(x 0), т. е. выполняется условие f(x 0)·f""(x) > 0 . Таким образом, выбирается точка с абсциссой x 0 , в которой касательная к кривой y=f(x) на отрезке [a;b ] пересекает ось Ox . За точку x 0 сначала удобно выбирать один из концов отрезка.

Рассмотрим данный алгоритм на конкретном примере.

Пусть нам дана возрастающая функция y = f(x) =x 2– 2, непрерывная на отрезке (0;2), и имеющая f "(x) =2x>0 и f ""(x) = 2> 0 .

В нашем случае уравнение касательной имеет вид: y-y 0 =2x 0 ·(x-x 0). В качестве точки x 0 выбираем точку B 1 (b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B 1 , и обозначаем точку пересечения касательной и оси Ox точкой x 1 . Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6. Ox: x 1 =

Рис. 3. Построение первой касательной к графику функции f(x)

y=f(x) Ox через точку x 1 , получаем точку В 2 =(1.5; 0.25) . Снова проводим касательную к функции y = f(x) в точке В 2 , и обозначаем точку пересечения касательной и Ox точкой x 2 .

Уравнение второй касательной: y-2.25=2*1.5(x-1.5), y = 3x - 4.25. Точка пересечения касательной и оси Ox: x 2 = .

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x 2 , получаем точку В 3 и так далее.

Рис. 4. Построение второй касательной к графику функции f(x)

Первое приближение корня определяется по формуле:

= 1.5.

Второе приближение корня определяется по формуле:

=

Третье приближение корня определяется по формуле:

Таким образом, i -ое приближение корня определяется по формуле:

Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e - до выполнения неравенства |xi-xi-1|

В нашем случае, сравним приближение, полученное на третьем шаге с реальным ответом. Как видно, уже на третьем шаге мы получили погрешность меньше 0.000002.

Решение уравнения при помощи САПР MathCAD

Для простейших уравнений вида f (x ) = 0 решение в MathСAD находится с помощью функции root .

root(f (х 1 , x 2 , … ) , х 1 , a, b ) - возвращает значение х 1 , принадлежащее отрезку [ a, b ] , при котором выражение или функция f (х ) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.

Рис. 5. Решение нелинейного уравнения в MathCAD (функция root)

Если в результате применения данной функции возникает ошибка, то это может означать, что уравнение не имеет корней, или корни уравнения расположены далеко от начального приближения, выражение имеет локальные max и min между начальным приближением и корнями.

Чтобы установить причину ошибки, необходимо исследовать график функции f (x ). Он поможет выяснить наличие корней уравнения f (x ) = 0 и, если они есть, то определить приблизительно их значения. Чем точнее выбрано начальное приближение корня, тем быстрее будет найдено его точное значение.

Если начальное приближение неизвестно, то целесообразно использовать функцию solve . При этом если уравнение содержит несколько переменных, нужно указать после ключевого слова solve список переменных, относительно которых решается уравнение.

Рис. 6. Решение нелинейного уравнения в MathCAD (функция solve)

Заключение

В ходе исследования были рассмотрены как математические методы, так и решение уравнений с использованием программирования в САПР MathCAD. Различные методы имеют свои достоинства и недостатки. Следует отметить, что применение того или иного метода зависит от начальных условий заданного уравнения. Те уравнения, которые хорошо решаются известными в школе методами разложения на множители и т. п., не имеет смысла решать более сложными способами. Прикладные задачи математики, важные для физики, химии и требующие сложных вычислительных операций при решении уравнений успешно решаются, например, с помощью программирования. Их же хорошо решать методом Ньютона.

Для уточнения корней можно применять несколько методов решения одного и того же уравнения. Именно это исследование и легло в основу данной работы. При этом легко проследить, какой метод наиболее удачен при решении каждого этапа уравнения, а какой метод на данном этапе лучше не применять.

Изученный материал, с одной стороны, способствует расширению и углублению математических знаний, привитию интереса к математике. С другой стороны, задачи реальной математики важно уметь решать тем, кто собирается приобрести профессии технического и инженерного направления. Поэтому данная работа имеет значение для дальнейшего образования (например, в высшем учебном заведении).

Литература:

  1. Митяков С. Н. Информатика. Комплекс учебно-методических материалов. - Н. Новгород: Нижегород. гос. техн. ун-т.,2006
  2. Вайнберг М. М., Треногин В. А. Теория ветвления решений нелинейных уравнений. М.: Наука, 1969. - 527 с.
  3. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся ВТУЗов - М.: Наука, 1986.
  4. Омельченко В. П., Курбатова Э. В. Математика: учебное пособие. - Ростов н/Д.: Феникс, 2005.
  5. Савин А. П. Энциклопедический словарь юного математика. - М.: Педагогика, 1989.
  6. Корн Г., Корн Т. Справочник по математики для научных работников и инженеров. - М.: Наука, 1973.
  7. Кирьянов Д. Mathcad 15/MathcadPrime 1.0. - С-Пб.: БХВ-Петербург, 2012.
  8. Черняк А., Черняк Ж., Доманова Ю. Высшая математика на базе Mathcad. Общий курс. - С-Пб.: БХВ-Петербург, 2004.
  9. Поршнев С., Беленкова И. Численные методы на базе Mathcad. - С-Пб.: БХВ-Петербург, 2012.

Ключевые слова: нелинейные уравнения, прикладная математика, САПР MathCAD, метод Ньютона, шаговый метод, метод дихотомии. .

Аннотация: Статья посвящена изучению методов решения нелинейных уравнений, в том числе, с использованием системы автоматизированного проектирования MathCAD. Рассмотрены шаговый метод, методы половинного деления и Ньютона, приведены подробные алгоритмы применения данных методов, а также проведен сравнительный анализ указанных методов.

Федеральное агентство по образованию

Сочинский государственный университет туризма и курортного дела

Факультет информационных технологий и математики

Кафедра общей математики

Курсовая работа по дисциплине

«Численные методы»

«Метод Ньютона и его модификации решения систем нелинейных уравнений»

Выполнила:

студентка 3 курса

группы 06-ИНФ

Лавренко М.В.

Проверил:

доцент, кандидат

педагогических наук


В связи с развитием новой вычислительной техники инженерная практика наших дней все чаще и чаще встречается с математическими задачами, точное решение которых получить весьма сложно или невозможно. В этих случаях обычно прибегают к тем или иным приближенным вычислениям. Вот почему приближенные и численные методы математического анализа получили за последние годы широкое развитие и приобрели исключительно важное значение.

В данной курсовой работе рассматривается знаменитый метод Ньютона и его модификация решения систем нелинейных уравнений. Решение систем нелинейных уравнений – одна из трудных задач вычислительной математики. Трудность состоит в том, чтобы определить: имеет ли система решение, и, если – да, то сколько. Изучается сходимость основного и упрощенного методов Ньютона и метода, получаемого из метода Ньютона применением итерационного процесса для приближенного обращения матриц Якоби.

А так же коротко описываются: методы ложного положения, метод секущих, метод Стеффенсена, который чаще оказывается лучшим выбором для решения систем нелинейных уравнений нежели метод секущих или метод ложного положения.


Знаменитый метод Ньютона является одним из наиболее эффективных методов решения самых разных нелинейных задач. Расчётную формулу метода можно получить, используя различные подходы. Рассмотрим два из них.

1) Метод касательных.

Выведем расчётную формулу метода для решения нелинейного уравнения

из простых геометрических соображений. Пусть - заданное начальное приближение к корню . В точке с координатами проведём касательную к графику функции и за новое приближение примем абсциссу точки пересечения этой касательной с осью . Аналогично за приближение примем абсциссу точки пересечения с осью касательной, проведённой к графику в точке с координатами . Продолжая этот процесс далее, получим последовательность приближённой к корню .

Уравнение касательной, проведённой к графику функции

в точке имеет вид: . (1.1)

Полагая в равенстве (1.1)

, замечаем, что при выполнении условия абсцисса точки пересечения касательной с осью удовлетворяет равенству: . (1.2)

Выражая из него

, получаем расчётную формулу метода Ньютона : , . (1.3)

Благодаря такой геометрической интерпретации этот метод часто называют методом касательных .

Пусть требуется решить систему уравнений

(1) - заданные, нелинейные (среди них могут быть и линейные)

вещественнозначные функции п вещественных переменных

. Обозначив , ,

данную систему (2.1) можно записать одним уравнением

(2)

относительно векторной функции F векторного аргумента х. Таким образом, исходную задачу можно рассматривать как зада­чу о нулях нелинейного отображения

В этой постановке она является прямым обобщением основной задачи предыдущей главы - задачи построения методов нахождения нулей одномерных нелинейных отображений. Фактически это та же задача, только в пространствах большей размерности. Поэтому можно как заново строить методы ее решения на основе разработанных выше подходов, так и осуществлять формальный перенос выведенных для скалярного случая расчетных формул. В любом случае следует позаботиться о правомочности тех или иных операций над векторными переменными и векторными функциями, а также о сходимости получаемых таким способом итерационных процессов. Часто теоремы сходимости для этих процессов являются тривиальными обобщениями соответствующих результатов, полученных для методов решения скалярных уравнений. Однако не все результаты и не все методы можно перенести со случая п = 1 на случай п ≥2. Например, здесь уже не будут работать методы дихотомии, поскольку множество векторов не упорядочено. В то же время, переход от n = 1 до n 2 вносит в задачу нахождения нулей нелинейного отображения свою специфику, учет которой приводит к новым методам и к различным модификациям уже имеющихся. В частности, большая вариативность методов решения нелинейных систем связана с разнообразием способов, которыми можно решать линейные алгебраические задачи, возникающие при пошаговой линеаризации данной нелинейной вектор-функции F ( x ).

2) Метод линеаризации.

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«Приднестровский государственный университет им. Т.Г. Шевченко»

Рыбницкий филиал

Кафедра физики, математики и информатики

Курсовая работа

по дисциплине: «Практикум по решению задач на ЭВМ»

«Метод Ньютона для решения нелинейных уравнений»

Выполнила:

студентка III курса;

330 й группы

специальности: «Информатика

с доп. специальностью английский

Нистор А. Г..

Проверила:

преподаватель Панченко Т. А.


Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, при что выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а также создания своего собственного программного обеспечения, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования высокого уровня и численные методы.

Численные методы разрабатывают и исследуют, как правило, высококвалифицированные специалисты-математики. Для большинства пользователей главной задачей является понимание основных идей и методов, особенностей и областей применения. Однако, пользователи хотят работать с ЭВМ не только как с высокоинтеллектуальным калькулятором, а еще и как с помощником в повседневной работе, хранилищем информации с быстрым и упорядоченным доступом, а так же с источником и обработчиком графической информации. Все эти функции современной ЭВМ я предполагаю продемонстрировать в настоящей курсовой работе.

Цели и задачи.

Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Данная работа состоит из трёх разделов, заключения и приложения. Первый раздел - теоретический и содержит общие сведения о методе Ньютона. Второй – это практическая часть. Здесь описывается метод Ньютона разобранный на конкретных примерах. Третий посвящён тестированию программы и анализу получившихся результатов. В заключении представлен вывод о проделанной работе.

Цельюданной курсовой работы является программная реализация метода Ньютона для решения нелинейных уравнений.

Для этого необходимо выполнить следующие задачи:

1. Изучить необходимую литературу.

2. Обзорно рассмотреть существующие методы по решению нелинейных уравнений.

3. Изучить метод Ньютона для решения нелинейных уравнений.

4. Рассмотреть решение нелинейных уравнений методом Ньютона на конкретных примерах.

5. Разработать программу для решения нелинейных уравнений методом Ньютона.

6. Проанализировать получившиеся результаты.

Рассмотрим задачу нахождения корней нелинейного уравнения

Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область , в которой существует корень уравнения или начальное приближение к корню x 0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке , по крайней мере, одного корня уравнения (1) следует из условия Больцано:

f(a)*f(b)<0 (2)

При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке . Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной , то можно утверждать о существовании единственного корня на заданном отрезке.

При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

где вещественные коэффициенты.

а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.

б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов . Замена х на –х в уравнении (3) позволяет таким же способом оценить число отрицательных корней.

На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью . Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения . Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

, (4)


где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

или малости невязки:

Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

1.1 Обзор существующих методов решения нелинейных уравнений

Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

1)Метод итераций . При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x 0 и точность ε. Первое приближение решения x 1 находим из выражения x 1 =f(x 0), второе - x 2 =f(x 1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f"(x)|<1.

2)Метод Ньютона . При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x 0 и точность ε. Затем в точке(x 0 ,F(x 0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x 1 . В точке (x 1 ,F(x 1)) снова строим касательную, находим следующее приближение искомого решения x 2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой x i+1 =x i -F(x i)\ F’(x i). Условие сходимости метода касательных F(x 0)∙F""(x)>0, и др.

3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле С к =а к +в к /2.

Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (а к)* f (в к)<0.

Процесс деления отрезка проводится до тех пор, пока длина текущего интервала неопределённости не будет меньше заданной точности, то есть

в к – а к < E. Тогда в качестве приближенного решения уравнения будет точка, соответствующая середине интервала неопределённости.

4). Метод хорд . Идея метода состоит в том, что на отрезке строится хорда стягивающая концы дуги графика функции y=f(x), а точка c, пересечения хорды с осью абсцисс, считается приближенным значением корня

c = a - (f(a)Ч (a-b)) / (f(a) - f(b)),

c = b - (f(b)Ч (a-b)) / (f(a) - f(b)).

Следующее приближение ищется на интервале или в зависимости от знаков значений функции в точках a,b,c

x* О , если f(с)Ч f(а) > 0 ;

x* О , если f(c)Ч f(b) < 0 .


Если f"(x) не меняет знак на , то обозначая c=x 1 и считая начальным приближением a или b получим итерационные формулы метода хорд с закрепленной правой или левой точкой.

x 0 =a, x i+1 = x i - f(x i)(b-x i) / (f(b)-f(x i), при f "(x)Ч f "(x) > 0 ;

x 0 =b, x i+1 = x i - f(x i)(x i -a) / (f(x i)-f(a), при f "(x)Ч f "(x) < 0 .

Сходимость метода хорд линейная.

1.2 Алгоритм метода Ньютона

Построим эффективный алгоритм вычисления корней уравнения. Пусть задано начальное приближение . Вычислим в этой точке значение функции и её производной . Рассмотрим графическую иллюстрацию метода:

.


(8)

Продолжая этот процесс, получим известную формулу Ньютона:

(9)

Приведем простейшую рекурсивную подпрограмму-функцию:

function X_Newt(x,eps:real):real;

y:=x-f(x)/f1(x);

if abs(f(x)) > eps

then X_Newt:=X_Newt(y,eps)

Метод Ньютона (касательных) характеризуется квадратичной скоростью сходимости, т.е. на каждой итерации удваивается число верных знаков. Однако этот метод не всегда приводит к нужному результату. Рассмотрим этот вопрос подробнее.

Преобразуем уравнение (1) к эквивалентному уравнению вида:

В случае метода касательных . Если известно начальное приближение к корню x=x 0 , то следующее приближение найдем из уравнения x 1 =g(x 0), далее x 2 =g(x 1),... Продолжая этот процесс, получим рекуррентную формулу метода простой итерации

x k+1 =g(x k) (11)

Итерационный процесс продолжается до тех пор, пока не будут выполнены условия (5-7).

Всегда ли описанный вычислительный процесс приводит к искомому решению? При каких условиях он будет сходящимся? Для ответа на эти вопросы опять обратимся к геометрической иллюстрации метода.

Корень уравнения представляется точкой пересечения функций y=x и y=g(x). Как видно из рис. 3(а), если выполняется условие , то процесс сходится, иначе – расходится (рис3(б)).


Итак, для того чтобы итерационный процесс был сходящимся и приводил к искомому результату, требуется выполнение условия:

Переход от уравнения f(x)=0 к уравнению х=g(x) можно осуществлять различными способами. При этом важно, чтобы выбранная функция g(x) удовлетворяла условию (12). К примеру, если функцию f(x) умножить на произвольную константу q и добавить к обеим частям уравнения (1) переменную х, то g(x)=q*f(x)+x . Выберем константу q такой, чтобы скорость сходимости алгоритма была самой высокой. Если 1

Метод Ньютона обладает высокой скоростью сходимости, однако он не всегда сходится. Условие сходимости , где g(x) = x – f(x)/ f’(x), сводится к требованию .

В практических расчетах важно выбирать начальное значение как можно ближе к искомому значению, а в программе устанавливать «предохранитель от зацикливания».

Недостатком метода является и то, что на каждом шаге необходимо вычислять не только функцию, но и ее производную. Это не всегда удобно. Одна из модификаций метода Ньютона - вычисление производной только на первой итерации:

(13)

Другой метод модификации – замена производной конечной разностью

(14)

Тогда (15)

Геометрический смысл такого изменения алгоритма Ньютона состоит в том, что от касательной мы приходим к секущей. Метод секущих уступает методу Ньютона в скорости сходимости, но не требует вычисления производной. Заметим, что начальные приближения в методе секущих могут располагаться как с разных сторон от корня, так и с одной стороны.

Запишем в общем виде алгоритм метода Ньютона.

1. Задать начальное приближение х (0) так, чтобы выполнилось условие

f(x (0))*f’’(x (0))>0. (16)

Задать малое положительное число ε , как точность вычислений. Положить к = 0.

2. Вычислить х (к+1) по формуле (9) :


.

3. Если | x (k+1) - x (k) | < ε, то процесс вычисления прекратить и положить х* = x (k+1) . Иначе увеличить к на 1 (к = к + 1) и перейти к пункту 2.

Решим вручную несколько нелинейных уравнений методом Ньютона, а потом сверим результаты с теми, которые получатся при реализации программного продукта.

Пример 1

sin x 2 + cosx 2 - 10x. = 0.

F’(x)=2x cosx 2 - 2x sinx 2 - 10.

F’’(x)=2cosx 2 - 4x 2 sinx 2 - 2sinx 2 - 4x 2 cosx 2 = cosx 2 (2-4x 2) - sinx 2 (2+4x 2).


Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

Пусть x (0) = 0, 565, тогда f(0. 565)*f’’(0. 565) = -4. 387 * (-0. 342) = 1. 5 > 0,

Условие выполняется, значит берём x (0) = 0, 565.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 0. 565 -4. 387 -9. 982 0. 473
1 0. 092 0. 088 -9. 818 0. 009
2 0. 101 0. 000 -9. 800 0. 000
3 0. 101

Отсюда следует, что корень уравнения х = 0, 101.

Пример 2

Решить уравнение методом Ньютона.

cos x – e -x2/2 + x - 1 = 0

Вычисления производить с точностью ε = 0, 001.

Вычислим первую производную функции.

F’(x) = 1 – sin x + x*e -x2/2 .

Теперь вычислим вторую производную от функции.

F’’(x) = e -x2/2 *(1-x 2) – cos x.

Построим приближённый график данной функции.

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

Пусть x (0) = 2, тогда f(2)*f’’(2) = 0. 449 * 0. 010 = 0.05 > 0,

Условие выполняется, значит берём x (0) = 2.

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 2 0. 449 0. 361 1. 241
1 -0. 265 0. 881 0. 881 0. 301
2 -0. 021 0. 732 0. 732 0. 029
3 0. 000 0. 716 0. 716 0. 000
4 1. 089

Отсюда следует, что корень уравнения х = 1. 089.

Пример 3

Решить уравнение методом Ньютона.

Вычисления производить с точностью ε = 0, 001.

Вычислим первую производную функции.

F’(x) = 2*x + e -x .

Теперь вычислим вторую производную от функции.

F’’(x) = 2 - e -x .

Построим приближённый график данной функции.


Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 632 * 1, 632 = 1, 031 > 0,

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 1, 000 0, 632 2, 368 0, 267
1 0, 733 0, 057 1, 946 0, 029
2 0, 704 0, 001 1, 903 0, 001
3 0, 703

Отсюда следует, что корень уравнения х = 0, 703.

Решить уравнение методом Ньютона.

cos x –e -x/2 +x-1=0.

Вычислим первую производную функции.


F’(x) = -sin x + e -x/2 /2+1.

Теперь вычислим вторую производную от функции.

F’’(x) = -cos x - e -x/2 /4.

Построим приближённый график данной функции.

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = -0. 066 * (-0. 692) = 0. 046 > 0,

Условие выполняется, значит берём x (0) = 1.

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 1, 000 -0. 066 0. 462 0. 143
1 1. 161 -0. 007 0. 372 0. 018
2 1. 162 0. 0001. 0. 363 0. 001
3 1. 162

Отсюда следует, что корень уравнения х = 1. 162.

Пример 5

Решить уравнение методом Ньютона.

2+e x - e -x =0.

Вычислим первую производную функции.

F’(x) = e x +e -x .

Теперь вычислим вторую производную от функции.

F’’(x) = e x -e -x .

Построим приближённый график данной функции.

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0)) * f’’(x (0)) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 350 * 2, 350 = 0. 823 > 0,

Условие выполняется, значит берём x (0) = 1.

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 1, 000 0, 350 3, 086 0, 114
1 0, 886 0, 013 2, 838 0, 005
2 0, 881 0, 001 2, 828 0, 000
3 0, 881

Отсюда следует, что корень уравнения х = 0, 881.

3.1 Описание программы

Данная программа создана для работы в текстовом и графическом режиме. Она состоит из модуля Graph, Crt, трёх функций и трёх процедур.

1. модуль Crt предназначен для обеспечения контроля над текстовыми режимами экрана, расширенными кодами клавиатуры, цветами, окнами и звуком;

2. модуль Graph предназначен для обеспечения контроля над графическими объектами;

3. procedure GrafInit - инициализирует графический режим;

4. function VF – вычисляет значение функции;

5. function f1 – вычисляет значение первой производной функции;

6. function X_Newt – реализует алгоритм решения уравнения методом Ньютона.

7. procedure FGraf – реализует построение графика заданной функции f(x);

Ots=35 - константа, определяющая количество точек для отступа от границ монитора;

fmin, fmax – максимальные и минимальные значения функции;

SetColor(4) – процедура, которая устанавливает текущий цвет графического объекта, используя палитру, в данном случае это красный цвет;

SetBkColor(9) – процедура, которая устанавливает текущий цвет фона, используя палитру, в данном случае – это светло-синий цвет.

8. Procedure MaxMinF – вычислят максимальные и минимальные значения функции f(x).

Line – процедура, которая рисует линию из точки с координатами (x1, у1) в точку с координатами (х2, у2);

MoveTo – процедура, перемещающая указатель (СР) в точку с координатами (х, у);

TextColor(5) – процедура, устанавливающая текущий цвет символов, в данном случае – это розовый;

Outtexty(х, у, ‘строка’) – процедура, которая выводит строку, начиная с позиции (х, у)

CloseGraph – процедура, закрывающая графическую систему.

3.2 Тестирование программы

Для тестирования программы возьмем те примеры, которые решали в практической части работы, чтобы сверить результаты и проверить правильность работы программы.

1) sin x 2 + cosx 2 - 10x. = 0.

Введите а = -1

Введите b=1

= [-1, 1]

{вывод графика функции}


Получим: х=0, 0000002

2) cos x – e -x2/2 + x - 1 = 0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

Введите а = -3

Введите b=3

= [-3, 3]

{вывод графика функции}

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим: х=-0, 0000000

3) x 2 - e -x = 0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

Введите а = -1

Введите b=1

= [-1, 1]

Введите точность вычисления eps=0. 01

{вывод графика функции}

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим: х=0, 0000000

4) cos x –e -x/2 +x-1=0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

Введите а = -1,5

Введите b=1,5

= [-1,5, 1,5 ]

Введите точность вычисления eps=0. 001

{вывод графика функции}

Корень уравнения, найденный методом Ньютона:


сделаем проверку, подставив полученный ответ в уравнение.

Получим: х=0, 0008180

5) -2+e x - e -x =0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке .

Введите а = -0,9

Введите b=0,9

= [-0,9, 0,9]

Введите точность вычисления eps=0. 001

{вывод графика функции}

Корень уравнения, найденный методом Ньютона:

Сделаем проверку, подставив полученный ответ в уравнение.

Целью работы было создать программу, которая вычисляет корень нелинейного уравнения методом Ньютона. Исходя из этого, можно сделать вывод, что цель достигнута, так как для ее осуществления были решены следующие задачи:

1.Изучена необходимая литература.

2.Обзорно рассмотрены существующие методы по решению нелинейных уравнений.

3.Изучен метод Ньютона для решения нелинейных уравнений.

4.Рассмотрено решение нелинейных уравнений методом Ньютона на примере.

5.Проведены тестирование и отладка программы.

Список используемой литературы

1. Б.П. Демидович, И.А Марон. Основы вычислительной математики. – Москва, изд. «Наука»; 1970.

2. В.М. Вержбицкий. Численные методы (линейная алгебра и нелинейные уравнения). – Москва, «Высшая школа»; 2000.

3. Н.С.Бахвалов, А.В.Лапин, Е.В.Чижонков. Численные методы в задачах и упражнениях. – Москва, «Высшая школа»; 2000.

4. Мэтьюз, Джон, Г.,Финк, Куртис, Д. Численные методы MATLAB, 3-е издание.- Москва, «Вильяс»; 2001.

Например:

Поставим задачу отыскать действительные корни данного уравнения.

А таковые точно есть! – из статей о графиках функций и уравнениях высшей математики вы хорошо знаете, что график функции-многочлена нечётной степени хотя бы один раз пересекает ось , следовательно, наше уравнение имеет по меньшей мере один действительный корень. Один. Или два. Или три.

Сначала напрашивается проверить, наличие рациональных корней. Согласно соответствующей теореме , на это «звание» могут претендовать лишь числа 1, –1, 3, –3, и прямой подстановкой легко убедиться, что ни одно из них «не подходит». Таким образом, остаются иррациональные значения. Иррациональный корень (корни) многочлена 3-й степени можно найти точно (выразить через радикалы) с помощью так называемых формул Кардано , однако этот метод достаточно громоздок. А для многочленов 5-й и бОльших степеней общего аналитического метода не существует вовсе, и, кроме того, на практике встречается множество других уравнений, в которых точные значения действительных корней получить невозможно (хотя они существуют).

Однако в прикладных (например, инженерных) задачах более чем допустимо использовать приближённые значения, вычисленные с определённой точностью .

Зададим для нашего примера точность . Что это значит? Это значит, что нам нужно отыскать ТАКОЕ приближённое значение корня (корней) , в котором мы гарантированно ошибаемся, не более чем на 0,001 (одну тысячную) .

Совершенно понятно, что решение нельзя начинать «наобум» и поэтому на первом шаге корни отделяют . Отделить корень – это значит найти достаточно малый (как правило, единичный) отрезок, которому этот корень принадлежит, и на котором нет других корней. Наиболее прост и доступен графический метод отделения корней . Построим поточечно график функции :

Из чертежа следует, что уравнение , судя по всему, имеет единственный действительный корень , принадлежащий отрезку . На концах данного промежутка функция принимает значения разных знаков: , и из факта непрерывности функции на отрезке сразу виден элементарный способ уточнения корня: делим промежуток пополам и выбираем тот отрезок, на концах которого функция принимает разные знаки. В данном случае это, очевидно, отрезок . Делим полученный промежуток пополам и снова выбираем «разнознаковый» отрезок. И так далее. Подобные последовательные действия называют итерациями . В данном случае их следует проводить до тех пор, пока длина отрезка не станет меньше удвоенной точности вычислений , и за приближённое значение корня следует выбрать середину последнего «разнознакового» отрезка.

Рассмотренная схема получила естественное название – метод половинного деления . И недостаток этого метода состоит в скорости. Медленно. Очень медленно. Слишком много итераций придётся совершить, прежде чем мы достигнем требуемой точности. С развитием вычислительной техники это, конечно, не проблема, но математика – на то и математика, чтобы искать наиболее рациональные пути решения.

И одним из более эффективных способов нахождения приближённого значения корня как раз и является метод касательных . Краткая геометрическая суть метода состоит в следующем: сначала с помощью специального критерия (о котором чуть позже) выбирается один из концов отрезка. Этот конец называют начальным приближением корня, в нашем примере: . Теперь проводим касательную к графику функции в точке с абсциссой (синяя точка и фиолетовая касательная) :

Данная касательная пересекла ось абсцисс в жёлтой точке, и обратите внимание, что на первом шаге мы уже почти «попали в корень»! Это будет первое приближение корня . Далее опускаем жёлтый перпендикуляр к графику функции и «попадаем» в оранжевую точку. Через оранжевую точку снова проводим касательную, которая пересечёт ось ещё ближе к корню! И так далее. Нетрудно понять, что, используя метод касательных, мы приближаемся к цели семимильными шагами, и для достижения точности потребуется буквально несколько итераций.

Поскольку касательная определяется через производную функции , то этот урок попал в раздел «Производные» в качестве одного из её приложений. И, не вдаваясь в подробное теоретическое обоснование метода , я рассмотрю техническую сторону вопроса. На практике описанная выше задача встречается примерно в такой формулировке:

Пример 1

С помощью графического метода найти промежуток , на котором находится действительный корень уравнения . Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001

Перед вами «щадящая версия» задания, в которой сразу констатируется наличие единственного действительного корня.

Решение : на первом шаге следует отделить корень графически. Это можно сделать путём построения графика (см. иллюстрации выше) , но такой подход обладает рядом недостатков. Во-первых, не факт, что график прост (мы же заранее не знаем) , а программное обеспечение – оно далеко не всегда под рукой. И, во-вторых (следствие из 1-го) , с немалой вероятностью получится даже не схематичный чертёж, а грубый рисунок, что, разумеется, не есть хорошо.

Ну а зачем нам лишние трудности? Представим уравнение в виде , АККУРАТНО построим графики и отметим на чертеже корень («иксовую» координату точки пересечения графиков) :

Очевидное преимущество этого способа состоит в том, что графики данных функций строятся от руки значительно точнее и намного быстрее. Кстати, заметьте, что прямая пересекла кубическую параболу в единственной точке, а значит, предложенное уравнение и в самом деле имеет только один действительный корень. Доверяйте, но проверяйте;-)

Итак, наш «клиент» принадлежит отрезку и «на глазок» примерно равен 0,65-0,7.

На втором шаге нужно выбрать начальное приближение корня. Обычно это один из концов отрезка. Начальное приближение должно удовлетворять следующему условию:

Найдём первую и вторую производные функции :

и проверим левый конец отрезка:

Таким образом, ноль «не подошёл».

Проверяем правый конец отрезка:

– всё хорошо! В качестве начального приближения выбираем .

На третьем шаге нас ожидает дорога к корню. Каждое последующее приближение корня рассчитывается на основании предшествующих данных с помощью следующей рекуррентной формулы:

Процесс завершается при выполнении условия , где – заранее заданная точность вычислений. В результате за приближённое значение корня принимается «энное» приближение: .

На очереди рутинные расчёты:

(округление обычно проводят до 5-6 знаков после запятой)

Поскольку полученное значение больше , то переходим к 1-му приближению корня:

Вычисляем:

, поэтому возникает потребность перейти ко 2-му приближению:

Заходим на следующий круг:

, таким образом, итерации закончены, и в качестве приближённого значения корня следует взять 2-е приближение, которое в соответствии с заданной точностью нужно округлить до одной тысячной:

На практике результаты вычислений удобно заносить в таблицу, при этом, чтобы несколько сократить запись, дробь часто обозначают через :

Сами же вычисления по возможности лучше провестив Экселе – это намного удобнее и быстрее:

Ответ : с точностью до 0,001

Напоминаю, что эта фраза подразумевает тот факт, что мы ошиблись в оценке истинного значения корня не более чем на 0,001. Сомневающиеся могут взять в руки микрокалькулятор и ещё раз подставить приближенное значение 0,674 в левую часть уравнения .

А теперь «просканируем» правый столбец таблицы сверху вниз и обратим внимание, что значения неуклонно убывают по модулю. Этот эффект называют сходимостью метода, которая позволяет нам вычислить корень со сколь угодно высокой точностью. Но сходимость имеет место далеко не всегда – она обеспечивается рядом условий , о которых я умолчал. В частности, отрезок, на котором изолируется корень, должен быть достаточно мал – в противном случае значения будут меняться беспорядочным образом, и мы не сможем завершить алгоритм.

Что делать в таких случаях? Проверить выполнение указанных условий (см. выше по ссылке) , и при необходимости уменьшить отрезок. Так, условно говоря, если бы в разобранном примере нам не подошёл промежуток , то следовало бы рассмотреть, например, отрезок . На практике мне такие случаи встречались , и этот приём реально помогает! То же самое нужно сделать, если оба конца «широкого» отрезка не удовлетворяют условию (т.е. ни один из них не годится на роль начального приближения) .

Но обычно всё работает, как часы, хотя и не без подводных камней:

Пример 2

Определить графически количество действительных корней уравнения , отделить эти корни и применяя способ Ньютона, найти приближенные значения корней с точностью

Условие задачи заметно ужесточилось: во-первых, в нём содержится толстый намёк на то, что уравнение имеет не единственный корень, во-вторых, повысилось требование к точности, и, в-третьих, с графиком функции совладать значительно труднее.

А поэтому решение начинаем со спасительного трюка: представим уравнение в виде и изобразим графики :


Из чертежа следует, что наше уравнение имеет два действительных корня:

Алгоритм, как вы понимаете, нужно «провернуть» дважды. Но это ещё на самый тяжелый случай, бывает, исследовать приходится 3-4 корня.

1) С помощью критерия выясним, какой из концов отрезка выбрать в качестве начального приближения первого корня. Находим производные функции :

Тестируем левый конец отрезка:

– подошёл!

Таким образом, – начальное приближение.

Уточнение корня проведем методом Ньютона, используя рекуррентную формулу:
– до тех пор, пока дробь по модулю не станет меньше требуемой точности:

И здесь слово «модуль» приобретает неиллюзорную важность, поскольку значения получаются отрицательными:


По этой же причине следует проявить повышенное внимание при переходе к каждому следующему приближению:

Несмотря на достаточно высокое требование к точности, процесс опять завершился на 2-м приближении: , следовательно:

С точностью до 0,0001

2) Найдем приближённое значение корня .

Проверяем на «вшивость» левый конец отрезка:

, следовательно, он не годится в качестве начального приближения.