Решение уравнений по теореме виета. Формула теоремы виета, и примеры решения

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

Теорема Виета - это понятие знакомо со школьных времен практически каждому. Но «знакомо» ли оно на самом деле? Мало кто сталкивается с ним в повседневной жизни. Но и не все те, кто имеет дело с математикой, порой полностью понимают глубокий смысл и огромное значение этой теоремы.

Теорема Виета во многом облегчает процесс решения огромного количества математических задач, которые в итоге сводятся к решению :

Поняв значимость такого простого и действенного математического инструмента, невольно задумываешься о человеке, впервые его открывшем.

Знаменитый французский ученый, который начинал свою трудовую деятельность как адвокат. Но, очевидно, математика была его призванием. Находясь на королевской службе в качестве советника, он прославился тем, что сумел прочесть перехваченное зашифрованное послание короля Испании в Нидерланды. Это давало французскому королю Генриху III возможность знать обо всех намерениях его противников.

Постепенно приобщаясь к математическим знаниям, Франсуа Виет пришел к выводу, что должна существовать тесная связь между новейшими в то время изысканиями «алгебраистов» и глубоким геометрическим наследием древних. В ходе научных изысканий им была разработана и сформулирована практически вся элементарная алгебра. Он впервые ввел использование буквенных величин в математический аппарат, четко разграничив понятия: число, величина и их отношения. Виет доказал, что, выполняя операции в символьном виде, можно решить задачу для общего случая, практически для любых значений заданных величин.

Его изыскания для решения уравнений больших степеней, чем вторая, вылились в теорему, которая сейчас известна, как обобщенная теорема Виета. Она имеет большой прикладное значение, и ее применение дает возможность быстрого решения уравнений более высоко порядка.

Одно из свойств этой теоремы заключается в следующем: произведение всех n-й степени равно его свободному члену. Это свойство часто употребляется при решении уравнений третьей или четвертой степени с целью понижения порядка многочлена. Если у многочлена n-й степени есть целые корни, то их можно легко определить методом простого подбора. И далее выполнив деление многочлена на выражение (х-х1), получим многочлен (n-1)-й степени.

В конце хочется отметить, что теорема Виета является одной из самых знаменитых теорем школьного курса алгебры. А его имя занимает достойное место среди имен великих математиков.

Любое полное квадратное уравнение ax 2 + bx + c = 0 можно привести к виду x 2 + (b/a)x + (c/a) = 0 , если предварительно разделить каждое слагаемое на коэффициент a перед x 2 . А если ввести новые обозначения (b/a) = p и (c/a) = q , то будем иметь уравнение x 2 + px + q = 0 , которое в математике называется приведенным квадратным уравнением .

Корни приведенного квадратного уравнения и коэффициенты p и q связаны между собой. Это подтверждается теоремой Виета , названной так в честь французского математика Франсуа Виета, жившего в конце XVI века.

Теорема . Сумма корней приведенного квадратного уравнения x 2 + px + q = 0 равна второму коэффициенту p , взятому с противоположным знаком, а произведение корней – свободному члену q .

Запишем данные соотношения в следующем виде:

Пусть x 1 и x 2 различные корни приведенного уравнения x 2 + px + q = 0 . Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q .

Для доказательства подставим каждый из корней x 1 и x 2 в уравнение. Получаем два верных равенства:

x 1 2 + px 1 + q = 0

x 2 2 + px 2 + q = 0

Вычтем из первого равенства второе. Получим:

x 1 2 – x 2 2 + p(x 1 – x 2) = 0

Первые два слагаемых раскладываем по формуле разности квадратов:

(x 1 – x 2)(x 1 – x 2) + p(x 1 – x 2) = 0

По условию корни x 1 и x 2 различные. Поэтому мы можем сократить равенство на (x 1 – x 2) ≠ 0 и выразить p.

(x 1 + x 2) + p = 0;

(x 1 + x 2) = -p.

Первое равенство доказано.

Для доказательства второго равенства подставим в первое уравнение

x 1 2 + px 1 + q = 0 вместо коэффициента p равное ему число – (x 1 + x 2):

x 1 2 – (x 1 + x 2) x 1 + q = 0

Преобразовав левую часть уравнения, получаем:

x 1 2 – x 2 2 – x 1 x 2 + q = 0;

x 1 x 2 = q, что и требовалось доказать.

Теорема Виета хороша тем, что, даже не зная корней квадратного уравнения, мы можем вычислить их сумму и произведение .

Теорема Виета помогает определять целые корни приведенного квадратного уравнения. Но у многих учащихся это вызывает затруднения из-за того, что они не знают четкого алгоритма действия, особенно если корни уравнения имеют разные знаки.

Итак, приведенное квадратное уравнение имеет вид x 2 + px + q = 0, где x 1 и x 2 его корни. Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q.

Можно сделать следующий вывод .

Если в уравнении перед последним членом стоит знак «минус», то корни x 1 и x 2 имеют различные знаки. Кроме того, знак меньшего корня совпадает со знаком второго коэффициента в уравнении.

Исходя из того, что при сложении чисел с разными знаками их модули вычитаются, а перед полученным результатом ставится знак большего по модулю числа, следует действовать следующим образом:

  1. определить такие множители числа q, чтобы их разность была равна числу p;
  2. поставить перед меньшим из полученных чисел знак второго коэффициента уравнения; второй корень будет иметь противоположный знак.

Рассмотрим некоторые примеры.

Пример 1 .

Решить уравнение x 2 – 2x – 15 = 0.

Решение .

Попробуем решить данное уравнение с помощью предложенных выше правил. Тогда можно точно сказать, что данное уравнение будет иметь два различных корня, т.к. D = b 2 – 4ac= 4 – 4 · (-15) = 64 > 0.

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Это будут числа 3 и 5. Перед меньшим числом ставим знак «минус», т.е. знак второго коэффициента уравнения. Таким образом, получим корни уравнения x 1 = -3 и x 2 = 5.

Ответ. x 1 = -3 и x 2 = 5.

Пример 2 .

Решить уравнение x 2 + 5x – 6 = 0.

Решение .

Проверим, имеет ли данное уравнение корни. Для этого найдем дискриминант:

D = b 2 – 4ac= 25 + 24 = 49 > 0. Уравнение имеет два различных корня.

Возможные множители числа 6 - это 2 и 3, 6 и 1. Разность равна 5 у пары 6 и 1. В этом примере коэффициент второго слагаемого имеет знак «плюс», поэтому и меньшее число будет иметь такой же знак. А вот перед вторым числом будет стоять знак «минус».

Ответ: x 1 = -6 и x 2 = 1.

Теорему Виета можно записать и для полного квадратного уравнения. Так, если квадратное уравнение ax 2 + bx + c = 0 имеет корни x 1 и x 2 , то для них выполняются равенства

x 1 + x 2 = -(b/a) и x 1 · x 2 = (c/a) . Однако применение этой теоремы в полном квадратном уравнении довольно проблематично, т.к. при наличии корней, хотя бы один из них является дробным числом. А работать с подбором дробей достаточно трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение ax 2 + bx + c = 0. Умножим его левую и правую части на коэффициент a. Уравнение примет вид (ax) 2 + b(ax) + ac = 0. Теперь введем новую переменную, например t = ax.

В этом случае полученное уравнение превратиться в приведенное квадратное уравнение вида t 2 + bt + ac = 0, корни которого t 1 и t 2 (при их наличии) могут быть определены по теореме Виета.

В этом случае корни исходного квадратного уравнения будут

x 1 = (t 1 / a) и x 2 = (t 2 / a).

Пример 3 .

Решить уравнение 15x 2 – 11x + 2 = 0.

Решение .

Составляем вспомогательное уравнение. Умножим каждое слагаемое уравнения на 15:

15 2 x 2 – 11 · 15x + 15 · 2 = 0.

Делаем замену t = 15x. Имеем:

t 2 – 11t + 30 = 0.

По теореме Виета корнями данного уравнения будут t 1 = 5 и t 2 = 6.

Возвращаемся к замене t = 15x:

5 = 15x или 6 = 15x. Таким образом, x 1 = 5/15 и x 2 = 6/15. Сокращаем и получаем окончательный ответ: x 1 = 1/3 и x 2 = 2/5.

Ответ. x 1 = 1/3 и x 2 = 2/5.

Чтобы освоить решение квадратных уравнений с помощью теоремы Виета, учащимся необходимо как можно больше тренироваться. Именно в этом и заключается секрет успеха.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Теорема Виета (точнее, теорема, обратная теореме Виета) позволяет сократить время на решение квадратных уравнений. Только надо уметь ею пользоваться. Как научиться решать квадратные уравнения по теореме Виета? Это несложно, если немного порассуждать.

Сейчас мы будем говорить только о решении по теореме Виета приведенного квадратного уравнения.Приведенное квадратное уравнение — это уравнение, в котором a, то есть коэффициент перед x², равен единице. Не приведенные квадратные уравнения решить по теореме Виета тоже можно, но там уже, как минимум, один из корней — не целое число. Их угадывать сложнее.

Теорема, обратная теореме Виета, гласит: если числа x1 и x2 таковы, что

то x1 и x2 — корни квадратного уравнения

При решении квадратного уравнения по теореме Виета возможны всего 4 варианта. Если запомнить ход рассуждений, находить целые корни можно научиться очень быстро.

I. Если q — положительное число,

это означает, что корни x1 и x2 — числа одинакового знака (поскольку только при умножении чисел с одинаковыми знаками получается положительное число).

I.a. Если -p — положительное число, (соответственно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Если -p — отрицательное число, (соответственно, p>0), то оба корня — отрицательные числа (складывали числа одного знака, получили отрицательное число).

II. Если q — отрицательное число,

это значит, что корни x1 и x2 имеют разные знаки (при умножении чисел отрицательное число получается только в случае, когда знаки у множителей разные). В этом случае x1+x2 является уже не суммой, а разностью (ведь при сложении чисел с разными знаками мы вычитаем из большего по модулю меньшее). Поэтому x1+x2 показывает, на сколько одно отличаются корни x1 и x2, то есть, на сколько один корень больше другого (по модулю).

II.a. Если -p — положительное число, (то есть p<0), то больший (по модулю) корень — положительное число.

II.b. Если -p — отрицательное число, (p>0), то больший (по модулю) корень — отрицательное число.

Рассмотрим решение квадратных уравнений по теореме Виета на примерах.

Решить приведенное квадратное уравнение по теореме Виета:

Здесь q=12>0, поэтому корни x1 и x2 — числа одного знака. Их сумма равна -p=7>0, поэтому оба корня — положительные числа. Подбираем целые числа, произведение которых равно 12. Это 1 и 12, 2 и 6, 3 и 4. Сумма равна 7 у пары 3 и 4. Значит, 3 и 4 — корни уравнения.

В данном примере q=16>0, значит, корни x1 и x2 — числа одного знака. Их сумма -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Здесь q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то бОльшее число положительно. Значит, корни 5 и -3.

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.