Числовой функцией f x называется. Презентация к уроку по алгебре (10 класс) на тему: Числовые функции

09.07.2015 11340 0

Цель: обсудить определение функции, способы ее задания.

I. Сообщение темы и цели уроков

II. Повторение материала 9 класса

Различные аспекты этой темы уже рассматривались в 7-9 классах. Теперь необходимо расширить и обобщить сведения о функциях. Напомним, что тема является одной из важнейших для всего курса математики. Различные функции будут изучаться вплоть до окончания школы и далее в высших учебных заведениях. Данная тема вплотную связана с решением уравнений, неравенств, текстовыми задачами, прогрессиями и т. д.

Определение 1. Пусть даны два множества действительных чисел D и Е и указан закон f по которому каждому числу х ∈ D ставится в соответствие единственное числом y ∈ Е (см. рисунок). Тогда говорят, что задана функция у = f (x ) или у(х) с областью определения (О.О.) D и областью изменения (О.И.) Е. При этом величину х называют независимой переменной (или аргументом функции), величину у - зависимой переменной (или значением функции).

Область определения функции f обозначают D (f ). Множество, состоящее из всех чисел f (x ) (область значений функции f ), обозначают E (f ).

Пример 1

Рассмотрим функцию Для нахождения у для каждого значения х необходимо выполнить следующие операции: из величины х вычесть число 2 (х - 2), извлечь квадратный корень из этого выражения и, наконец, прибавить число 3 Совокупность этих операций (или закон, по которому для каждого значения х ищется величина у) и называется функцией у(х). Например, для х = 6 находим Таким образом, для вычисления функции у в данной точке х необходимо подставить эту величину х в данную функцию у(х).

Очевидно, что для данной функции для любого допустимого числа х можно найти только одно значение у (т. е. каждому значению х соответствует одно значение у).

Рассмотрим теперь область определения и область изменения этой функции. Извлечь квадратный корень из выражения (х - 2) можно, только если эта величина неотрицательная, т. е. х - 2 ≥ 0 или х ≥ 2. Находим Так как по определению арифметического корня то прибавим ко всем частям этого неравенства число 3, получим: или 3 ≤ у < +∞. Находим

В математике часто используются рациональные функции. При этом функции вида f (x ) = р(х) (где р(х) - многочлен) называют целыми рациональными функциями. Функции вида (где р(х) и q (x ) - многочлены) называют дробно-рациональными функциями. Очевидно, дробь определена, если знаменатель q (x ) не обращается в нуль. Поэтому область определения дробно-рациональной функции - множество всех действительных чисел, из которого исключены корни многочлена q (x ).

Пример 2

Рациональная функция определена при х - 2 ≠ 0, т. е. x ≠ 2. Поэтому область определения данной функции - множество всех не равных 2 действительных чисел, т. е. объединение интервалов (-∞; 2) и (2; ∞).

Напомним, что объединением множеств А и В называется множество, состоящее из всех элементов, входящих хотя бы в одно из множеств А или В. Объединение множеств А к В обозначается символом А U В. Так, объединением отрезков и (3; 9) является промежуток (непересекающиеся промежутки) обозначают .

Возвращаясь к примеру, можно записать: Так как при всех допустимых значениях х дробь не обращается в нуль, то функция f (x ) принимает все значения, кроме 3. Поэтому

Пример 3

Найдем область определения дробно-рациональной функции

Знаменатели дробей обращаются в нуль при х = 2, х = 1 и х = -3. Поэтому область определения данной функции

Пример 4

Зависимость уже не является функцией. Действительно, если мы хотим вычислить значение у, например, для х = 1, то, пользуясь верхней формулой, найдем: у = 2 · 1 - 3 = -1, а пользуясь нижней формулой, получим: у = 12 + 1 = 2. Таким образом, одному значению x (x = 1) соответствуют два значения у (у = -1 и у = 2). Поэтому эта зависимость (по определению) не является функцией.

Пример 5

Приведены графики двух зависимостей y (x ). Определим, какая из них является функцией.


На рис. а приведен график функции, так как любой точке x 0 соответствует только одно значение у0. На рис. б приведен график какой- то зависимости (но не функции), так как существуют такие точки (например, x 0 ), которым отвечает более одного значения у (например, у1 и у2).

Рассмотрим теперь основные способы задания функций.

1) Аналитический (с помощью формулы или формул).

Пример 6

Рассмотрим функции:

Несмотря на непривычную форму, это соотношение также задает функцию. Для любого значения х легко найти величину у. Например, для х = -0,37 (так как х < 0, то пользуясь верхним выражением), получаем: у(-0,37) = -0,37. Для х = 2/3 (так как х > 0, то пользуемся нижним выражением) имеем: Из способа нахождения у понятно, что любой величине х отвечает только одно значение у.

в) 3х + у = 2у - х2. Выразим из этого соотношения величину у: 3х + х2 = 2у - у или х2 + 3х = у. Таким образом, это соотношение также задает функцию у = х2 + 3х.

2) Табличный

Пример 7

Выпишем таблицу квадратов у для чисел х.

2,25

6,25

Данные таблицы также задают функцию - для каждого (приведенного в таблице) значения х можно найти единственное значение у. Например, у(1,5) = 2,25, y (5) = 25 и т. д.

3) Графический

В прямоугольной системе координат для изображения функциональной зависимости у(х) удобно пользоваться специальным рисунком - графиком функции.

Определение 2. Графиком функции y (x ) называют множество всех точек системы координат, абсциссы которых равны значениям независимой переменной х, а ординаты - соответствующим значениям зависимой переменной у.

В силу такого определения все пары точек (х0, у0), которые удовлетворяют функциональной зависимости у(х), расположены на графике функции. Любые другие пары точек, не удовлетворяющие зависимости y (x ), на графике функции не лежат.

Пример 8

Дана функция Принадлежит ли графику этой функции точка с координатами: а) (-2; -6); б) (-3; -10)?

1. Найдем значение функции у при Так как у(-2) = -6, то точка А (-2; -6) принадлежит графику данной функции.

2. Определим значение функции у при Так как y (-3) = -11, то точка В (-3; -10) не принадлежит графику этой функции.

По данному графику функции у = f (x ) легко найти область определения D (f ) и область значений E (f ) функции. Для этого точки графика проецируют на оси координат. Тогда абсциссы этих точек образуют область определения D (f ), ординаты - область значений E (f ).

Сравним различные способы задания функции. Наиболее полным следует считать аналитический способ. Он позволяет составить таблицу значений функции для некоторых значений аргументов, построить график функции, провести необходимое исследование функции. Вместе с тем табличный способ позволяет быстро и легко найти значение функции для некоторых значений аргумента. График функции наглядно показывает ее поведение. Поэтому противопоставлять различные способы задания функции не следует каждый из них имеет свои преимущества и свои недостатки. На практике используются все три способа задания функции.

Пример 9

Дана функция у = 2х2 - 3х +1.

Найдем: а) y (2); б) y (-3х); в) у(х + 1).

Для того чтобы найти значение функции при каком-то значении аргумента, необходимо подставить это значение аргумента в аналитический вид функции. Поэтому получим:

Пример 10

Известно, что у(3 - х) = 2х2 - 4. Найдем: а) y (x ); б) у(-2).

а) Обозначим буквой z = 3-х, тогда х = 3 - z . Подставим это значение х в аналитический вид данной функции у(3 - х) = 2х2 - 4 и получим: y (3 - (3 - z )) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (9 - 6 z + z 2 ) - 4, или y (z ) = 2х2 - 12 z + 14. Так как безразлично, какой буквой обозначен аргумент функции - z , х, t или любой другой, то сразу получим: у(х) = 2х2 - 12х + 14;

б) Теперь легко найти у(-2) = 2 · (-2)2 - 12 · (-2) + 14 = 8 + 24 + 14 = 46.

Пример 11

Известно, что Найдем х(у).

Обозначим буквой z = x - 2, тогда х = z + 2, и запишем условие задачи: или To же условие запишем для аргумента (- z ): Для удобства введем новые переменные a = y (z ) и b = y (- z ). Для таких переменных получим систему линейных уравнений

Нас интересует неизвестная a .

Для ее нахождения используем способ алгебраического сложения. Поэтому умножим первое уравнение на число (-2), второе уравнение - на число 3. Получим:

Сложим эти уравнения: откуда Так как аргумент функции можно обозначать любой буквой, то имеем:

В заключение заметим, что к концу 9 класса были изучены свойства и графики:

а) линейной функции у = кх + m (график - прямая линия);

б) квадратичной функции у = ах2 + b х + с (график - парабола);

в) дробно-линейной функции (график - гипербола), в частности функции

г) степенной функции у = ха (в частности, функции

д) функции у = |х|.

Для дальнейшего изучения материала рекомендуем повторить свойства и графики указанных функций. На следующих занятиях будут рассмотрены основные способы преобразования графиков.

1. Дайте определение числовой функции.

2. Расскажите о способах задания функции.

3. Что называется объединением множеств А и B ?

4. Какие функции называются целыми рациональными?

5. Какие функции называются дробно-рациональными? Как находится область определения таких функций?

6. Что называют графиком функции f (х)?

7. Приведите свойства и графики основных функций.

IV. Задание на уроках

§ 1, № 1 (а, г); 2 (в, г); 3 (а, б); 4 (в, г); 5 (а, б); 6 (в); 7 (а, б); 8 (в, г); 10 (a ); 13 (в, г); 16 (а, б); 18.

V. Задание на дом

§ 1, № 1 (б, в); 2 (а, б); 3 (в, г); 4 (а, б); 5 (в, г); 6 (г); 7 (в, г); 8 (а, б); 10 (б); 13 (а, б); 16 (в, г); 19.

VI. Творческие задания

1. Найдите функцию у = f (х), если:


Ответы:


2. Найдите функцию у = f (x ) если:

Ответы:


VII. Подведение итогов уроков

Числовой функцией называется такое соответствие между числовым множеством Х и множеством R действительных чисел, при котором каждому числу из множества Х сопоставляется единственное число из множества R. Множество Х называют областью определения функции . Функции обозначают буквами f, g, h и др. Если f - функция, заданная на множестве Х , то действительное число у, соответствующее числу х их множества Х , часто обозначают f(x) и пишут
у = f(x). Переменную х при этом называют аргументом. Множество чисел вида f(x) называют областью значений функции


Функцию задают при помощи формулы. Например, у = 2х - 2. Если при задании функции с помощью формулы ее область определения не указывается, то полагают, что областью определения функции является область определения выражения f(x) .


Например. Если функция задана формулой , то ее область определения - есть множество действительных чисел, исключая число 2 (если х = 2, то знаменатель данной дроби обращается в нуль).


Числовые функции можно представлять наглядно с помощью графика на координатной плоскости. Графиком является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f(x) для всех х из множества Х. Так, графиком функции у = х + 2 , заданной на множестве R , является прямая (рис. 1), а графиком функции , заданной на этом же множестве, - парабола (рис. 2).


Для построения графика можно воспользоваться таблицей соответствующих значений х и у :








































1) для функции у = х + 2







































2) для функции



Не каждое множество точек на координатной плоскости представляет собой график некоторой функции. Так как при каждом значении аргумента из области определения функция должна иметь одно лишь значение, то любая прямая, параллельная оси ординат, или совсем не пересекает график функции, или пересекает его лишь в одной точке. Если это условие не выполняется, то множество точек координатной плоскости график функции не задает.


Например, кривая на рис. 3.


Функции можно задавать и при помощи графика, и при помощи таблицы. Например, таблица, приведенная ниже, описывает зависимость температуры воздуха от времени суток. Эта зависимость - функция, так как каждому значению времени t соответствует единственное значение температуры воздуха p .































t (в часах)























p (в градусах)






















А описание большинства этих моделей на математическом языке так или иначе связано с функциями. Но в математике действует закон: если используется какой-то термин, то его надо точно определить. За два года изучения курса алгебры мы с вами накопили достаточно много примеров, подтверждающих этот закон. Так, в 7-м классе мы ввели термин «степень с натуральным показателем», точно его определив: «под a 2 , где n = 2, 3, 4, ... , понимается произведение n множителей, каждый из которых равен о; под а 1 понимается само число а». В 8-м классе мы ввели термин «квадратный корень из неотрицательного числа», дав ему точное определение: это такое неотрицательное число, квадрат которого равен a». И так далее и тому подобное - вы сами можете привести аналогичные примеры.

В то же время были случаи, когда мы вводили термин и начинали им пользоваться, но точного определения не формулировали, ограничиваясь приблизительным истолкованием термина. Так было, в частности, с термином «функция». Почему же мы в 7-м классе, как только стали использовать понятие функции, не сформулировали точное определение, почему не сделали этого и в 8-м классе?

Дело в том, что история развития математики показывает: были понятия, которые человечество активно и длительное время использовало как рабочий инструмент, не задумываясь о том, как его определить. Лишь накопив необходимый опыт в работе с тем или иным понятием, математики начинали думать о его формальном определении. Разумеется, не всегда первые попытки определить то или иное понятие, вроде бы ясное на интуитивном уровне, оказывались удачными, их приходилось впоследствии дополнять, уточнять. Так было и с понятием функции .

Проанализируем наш опыт работы с термином «функция». В 7-м классе мы ввели термин «линейная функция», понимая под этим уравнение с двумя переменными специального вида у = кх + m и рассматривая переменные хи у как неравноправные: х - независимая переменная, у - зависимая переменная. Затем задались вопросом: а не встречаются ли при описании реальных процессов математические модели подобного вида, но такие, у которых у выражается через х не по формуле у = кх + m, а по какой-либо иной формуле? Ответ на этот вопрос был получен сразу: встречаются. В 7-м классе, кроме упомянутой линейной функции, мы изучили математическую модель у = х 2 , в 8-м классе добавили к ним модели
Постепенно мы начали осознавать, что, изучая какой-либо реальный процесс, обычно обращают внимание на две переменные величины, участвующие в нем (в более сложных процессах участвуют более двух величин, но мы такие процессы пока не рассматривали). Одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную чаще всего обозначают буквой x), а другая переменная принимает значения, каждое из которых каким-то образом зависит от выбранного значения переменной х (такую зависимую переменную чаще всего обозначают буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х: у = fх). Такие математические модели мы называли функциями.

Математическая модель у = f(х) обычно дополняется указанием на то, из какого числового множества берутся значения независимой переменной х. Например, мы говорили о функции , подразумевая, что (график функции изображен на рис. 42), но мы рассматривали и функцию (график функции изображен на рис. 43). Это разные математические модели, значит, и разные функции.


Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной. Вот одна из таких функций: у = g {х), где
изображен на рис. 44. Помните, как строить такие графики? Сначала надо построить параболу у = х 2 и взять ее часть при (левая ветвь параболы), затем построить прямую у = 2х и взять ее часть при х > 0. И, наконец, надо обе выделенные части объединить на одном рисунке, т.е. построить в одной координатной плоскости. Этот пример (или аналогичные) мы рассматривали и в 7-м, и в 8-м классах.


Так что же такое функция? Проведенный выше анализ и наш опыт изучения конкретных функций в 7-м и 8-м классах позволяют выделить два существенных момента.

1. Запись у = f(х) представляет собой правило (обычно говорят «правило f»), с помощью которого, зная конкретное значение независимой переменной х, можно найти соответствующее значение переменной у.

2. Указывается числовое множество X (чаще всего какой-то числовой промежуток), откуда берутся значения независимой переменной х.

Теперь мы можем сформулировать одно из главных определений школьного курса алгебры (да, пожалуй, и всей математики).

Определение 1.

Если даны числовое множество X и правило f, позволяющее поставить в соответствие каждому элементу х из множества X определенное число у, то говорят, что задана функция у = f(х) с областью определения X; пишут у = f(x), х є X. При этом переменную х называют независимой переменной или аргументом, а переменную у - зависимой переменной.

Замечание.

В реальной жизни мы часто говорим: «каковы мои функции» или «каковы мои функциональные обязанности», - спрашивая тем самым соответственно: «каков круг моих действий, моих обязанностей» или «что я должен делать, как действовать». Фактически в реальной жизни слово «функция» означает «действие» или «правила действий». Обратите внимание, что фактически тот же смысл имеет и математический термин «функция», который мы разъяснили выше в определении 1.

Итак, D(f) = (-оо, 4].

б) Значение х = - 2 удовлетворяет условию следовательно, f (-2) надо вычислять по первой строке задания функции. Имеем f(х) = -х 2 , значит, f (-2) = -(-2) 2 = - 4.


в) Область значений функции, как мы уже отметили выше, удобнее всего находить с помощью графика функции. Построение графика осуществим «по кусочкам». Сначала построим параболу у = -х 2 и выделим ее часть на луче (-оо, 0] (рис. 46). Затем построим прямую у = х + 1 и выделим ее часть на полуинтервале (0, 2] (рис. 47). Далее построим прямую у - 3 и выделим ее часть на полуинтервале (2, 4] (рис. 48). Наконец, все три «кусочка» изобразим в одной системе координат - это и будет график функции у = f (х) (рис. 49).


Теперь хорошо видно, что область значений функции состоит из двух промежутков: луча (-оо, 0] - он сплошь заполняется ординатами точек ветви параболы у = -х 2 , х < 0 - и полуинтервала (1, 3] - он сплошь заполняется ординатами точек участка прямой у = х+ 1,0<х<2. Итак, Е(f) = (-оо, 0]U(1, 3].

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Числовой функцией называется такое соответствие между числовым множеством Х и множеством R действительных чисел, при котором каждому числу из множества Х сопоставляется единственное число из множества R. Множество Х называют областью определения функции . Функции обозначают буквами f, g, h и др. Если f – функция, заданная на множестве Х , то действительное число у, соответствующее числу х их множества Х , часто обозначают f(x) и пишут
у = f(x). Переменную х при этом называют аргументом. Множество чисел вида f(x) называют областью значений функции

Функцию задают при помощи формулы. Например, у = 2х – 2. Если при задании функции с помощью формулы ее область определения не указывается, то полагают, что областью определения функции является область определения выражения f(x) .

1. Функция называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает

2. Функция называется возрастающей на некотором промежутке А, если для любых чисел их множества А выполняется условие: .

График возрастающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 4).

3. Функция называется убывающей на некотором промежутке А , если для любых чисел их множества А выполняется условие: .

График убывающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 4).

4. Функция называется четной на некотором множестве Х, если выполняется условие: .

График четной функции симметричен относительно оси ординат (рис. 2).

5. Функция называется нечетной на некотором множестве Х, если выполняется условие: .

График нечетной функции симметричен относительно начала координат (рис. 2).

6. Если функция у = f(x)
f(x) f(x ) ,то говорят, что функция у = f(x) принимает наименьшее значение у = f(x ) при х = x (рис. 2, функция принимает наименьшее значение в точке с координатами (0;0)).



7. Если функция у = f(x) определена на множестве Х и существует такое , что для любого справедливо неравенствоf(x) f(x ) ,то говорят, что функция у = f(x) принимает наибольшее значение у = f(x ) при х = x (рис. 4, функция не имеет наибольшего и наименьшего значений).

Если для данной функции у = f(x) изучены все перечисленные свойства, то говорят, что проведено исследование функции.

Пределы.

Число А называетс пределом ф-ии при х стремящемся к ∞ если для любого Е>0, существует δ (E)>0 такое что при всех х удовлетворяет неравенство |x|>δ выполняется неравенство |F(x)-A|

Число А называется пределом функции при Х стремящемся к Х 0 если для любого Е>0, существует δ (E)>0 такое что при всех Х≠Х 0 удовлетворяет неравенство |X-X 0 |<δ выполняется неравенство |F(x)-A|

ОДНОСТОРОННИЕ ПРЕДЕЛЫ.

При определении предел что Х стремится к Х0 произвольным образом, то есть с любой стороны. Когда Х стремится к Х0, так что он всё время меньше Х0, то тогда предел называется пределом в т. Х0 слева. Или левосторонним пределом. Аналогично определяется и правосторонни предел.

Тема урока: « Определение числовой функции и способы её задания».

Дидактическая цель. Обобщить и систематизировать имеющиеся у учащихся знания о функциях. Дать определения области определения функции и графика функции, а так же рассмотреть способы задания функции.

Воспитательная цель. Познакомить учащихся с причинно-следственными связями на примере развития понятия функции. Идея зависимости величин восходит к древнегреческой науке. Развитие механики и техники в XVI-XVII вв. потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г.Лейбницем (1646-1716). П.Ферма и Р. Декарт показали, как представлять функции аналитически. Декарт ввел в математику понятие переменной величины. Строгое определение функции дал Ию. Бернулли (1667-1748), а затем его ученик, член Петербургской Академии наук Л.Эйлер (1707-1783) ввел обозначение f(x) и объявил понятие функции центральным понятием анализа. Позднее Ж. Фурье (1768-1783), Н.И. Лобачевский (1792-1856), П. Дирихле (1805-1859) и другие внесли большой вклад в развитие понятия функции. Установление функциональной зависимости между величинами иллюстрирует важные философские категории – причины и следствия.

В процессе построения графиков необходимо обращать внимание на правильность выполнения графика, эстетическое оформление, воспитывать при этом аккуратность, внимание, четкость, учить производительно использовать каждую минутку учебного времени, с целью подготовки к ЕГЭ.

Основные знания и умения. Знать: определения числовой функции, графика функции; способы задания функции. Уметь находить область определения и область значения функции, а также выполнять простейшие преобразования графиков функции: растяжение и сжатие вдоль осей координат, сдвигать, вдоль осей координат, зеркальное отображение относительно оси абсцисс.

Обеспечение занятия

ТСО Компьютер, мультимедийный проектор, экран.

Оснащение ТСО. DVD-диски « Алгебра 7-11», «Алгебра 10-11». Программное обеспечение « Графопостроитель».

Вид занятия . Обобщение и систематизация знаний, умений и навыков.

Мотивация познавательной деятельности учащихся.

При изучении и исследовании разнообразных явлений природы, при решении технических задач приходится рассматривать взаимосвязанные переменные величины. В природе не существует изолированных переменных величин, на связанных с другими физическими величинами. Например, пройденный путь является функцией времени. Многие понятия данной темы имеют большое значение для последующего изучения математики. Функции, их свойства и графика являются и объектом изучения, и той непосредственной средой, в которой строятся все основные понятия «математического анализа».

Последовательность изложения материала

    Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

    Параллельный перенос графика функции вдоль осей координат.

    Растяжение или сжатие графика функции по осям координат.

    Построение графиков функций, аналитическое выражение которых имеет знак модуля.

    Способы задания функции.

I .Повторение опорных знаний учащихся.

Найдите на рисунке и назовите графики функций:

y= ax+b, y= ax 2 +bx+c,

Слайд №1

II Обобщение и систематизация знаний.

1 Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

Слайд №2

Если даны числовое множество Х и правило f, позволяющее поставить в соответствие каждому элементу х их множества Х определенное число у, то говорят, что задана функция у=f(х) с областью определения Х.

Пишут: у=f(х), х

Для области определения функции используют обозначение D(f).

Переменную х называют независимой переменной или аргументом,

а переменную у – зависимой переменной.

Множество всех значений функции: у=f(х), х называют областью значений функции и обозначают Е(f).

Если дана функция у=f(х) , х и на координатной плоскости хОу отмечены все точки вида (х;у), где х, а у=f(х), то множество этих точек называют графиком функции у=f(х), х.

2 Параллельный перенос графика функции вдоль осей координат.

Слайд №3

Вопрос :

Как параллельно переносить график функции при а>0 и b

Рассмотрим параллельный перенос графика функции вдоль координатных осей на примере функции у=х 2 .

Слайд№4

3 Растяжение или сжатие графика функции по осям координат.

Теперь вспомним как преобразовывается график функции у=f(х), в следующих случаях

у= bf(x), если b>1или 0

y=f(ax), если a>0 или 0

Слайд№5

Как изменятся графики при b>1 и 0

Рассмотрим на примере функции у=
.

Слайд№6

Рассмотрим на примере функции: у=х 2

Слайд№7

4.Построение графиков функций, аналитическое выражение которых имеет знак модуля.

Слайд №8

f (х), при у=
- часть графика верхней полуплоскости и на оси абсцисс без изменения, а вместо части графика в нижней полуплоскости строим симметричную ей относительно оси Ох.

Рассмотрим преобразования графика функции у= f (х), при у= f ( - часть графика в правой полуплоскости и на оси ординат без изменения, а вместо части в левой полуплоскости строим симметричную правой относительно оси Оу.

Слайд №9

5.Способы задания функций.

Работа по учебнику страницы 9, 10 с комментариями учителя.

1. Аналитический способ - задание функции с помощью формулы (или формул). Сюда относится и параметрический способ. Аналитический способ саамы распространенный, основной способ задания функции в математике. Но он недостаточно нагляден и часто требует больших вычислений.

2. Графический способ - задание функции с помощью графика. используется в неуке и технике, причём иногда график бывает единственно доступным способом задания функции, например при пользовании приборами, автоматически записывающими изменение одной величины в зависимости от изменения другой (барограф, термограф, кардиограф и др.)

3.Словесный – задание функции словами.

4. Табличный – задание функции с помощью таблицы. Распространен в науке, технике т т.д. Этот способ определяет функцию не полностью и не дает наглядного изображения характера изменения функции с изменением аргумента.

III Применение знаний при решении примеров и задач.

1. Найти область определение и область значений функции на чертеже

(задания ЕГЭ 2007 года)

Слайд №10

2. Решить в учебнике №1.4(а)

Найдите область определения функции и область значений:

Ответ: D(f)=(-∞;0)
Е(f)= (-∞;3)

3. Решить в учебнике № 1.5(а)

Найдите область определения функции:

Ответ: (-∞;

4. Решить графически уравнение в учебнике №1.16(в) (самостоятельно с последующей проверкой).