Как читаются математические символы. Из истории математических символов

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Математические обозначения («язык математики ») - сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем , применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.

Отметим, что математические обозначения, как правило, применяются совместно с письменной формой какого-то из естественных языков .

Помимо фундаментальной и прикладной математики, математические обозначения имеют широкое применение в физике , а также (в неполном своём объёме) в инженерии , информатике , экономике , да и вообще во всех областях человеческой деятельности, где применяются математические модели . Различия между собственно математическим и прикладным стилем обозначений будут оговорены по ходу текста.

Энциклопедичный YouTube

    1 / 5

    ✪ Знак / в математике

    ✪ Математика 3 класс. Таблица разрядов многозначных чисел

    ✪ Множества в математике

    ✪ Математика 19. Математические забавы - Шишкина школа

    Субтитры

    Привет! Это видео не о математике, скорее об этимологии и семиотике. Но уверен, вам понравится. Поехали! Вы вот в курсе, что поиск решения кубических уравнений в общем виде занял у математиков несколько столетий? Это отчасти почему? Потому что не было ясных символов для ясных мыслей, то ли дело наше время. Символов столько, что и запутаться можно. Но нас с вами не проведешь, давайте разбираться. Вот это - заглавная перевернутая буква А. Это на самом деле английская буква, числится первой в словах "all" и "any". По-русски этот символ, в зависимости от контекста, может читаться так: для любого, всякий, каждому, все и так далее. Такой иероглиф будем называть квантором всеобщности. А вот и еще один квантор, но уже существование. Английскую букву е отразили в Paint-е слева направо, намекая тем самым на заморский глагол "exist", по-нашему будем читать: существует, найдется, имеется и другим подобным образом. Восклицательный знак такому квантору существования добавит единственности. Если с этим понятно, двигаемся дальше. Неопределенные интегралы вам наверняка попадались в классе так одиннадцатом, я бы хотел напомнить, что это не просто какая-то первообразная, а совокупность всех первообразных подынтегральной функции. Так что не забывайте про С - константу интегрирования. Между делом, сам значок интеграла - это просто вытянутая буква s, отголосок латинского слова сумма. В этом как раз и есть геометрический смысл определенного интеграла: поиск площади фигуры под графиком суммированием бесконечно малых величин. Как по мне, это самое романтичное занятие в матанализе. А вот школьная геометрия полезнее всего тем, что приучает к логической строгости. К первому курсу у вас должно быть чёткое понимание, что такое следствие, что такое равносильность. Ну нельзя путаться в необходимости и достаточности, понимаете? Давайте даже попробуем копнуть чуть-чуть глубже. Если вы решили заняться высшей математикой, то я представляю, насколько у вас все плохо с личной жизнью, но именно поэтому вы наверняка согласитесь одолеть небольшое упражнение. Здесь три пункта, в каждом имеется левая и правая части, которую вам нужно связать одним из трех нарисованных символов. Пожалуйста, кликните паузу, попробуйте сами, а затем послушайте, что я вам скажу. Если x=-2, то |x|=2, а вот слева направо так фразу уже построить. Во втором пункте в левой и правой частях написано абсолютно одно и то же. А третий пункт можно прокомментировать так: каждый прямоугольник является параллелограммом, но не каждый параллелограмм является прямоугольником. Да, знаю, что вы уже не маленькие, но все же мои аплодисменты тем, кто справился с этим упражнением. Ну да ладно, хватит, давайте вспомним числовые множества. Натуральные числа используются при счете: 1, 2, 3, 4 и так далее. В природе -1 яблока не существует, но, кстати, целые числа позволяют говорить о таких вещах. Буква ℤ кричит нам о важной роли нуля, множество рациональных чисел обозначается буквой ℚ, и это неслучайно. В английском слово "quotient" означает "отношение". Кстати, если где-нибудь в Бруклине к вам подойдет афроамериканец и скажет: "Keep it real!", - можете быть уверены, перед вами математик, почитатель действительных чисел. Ну а вам стоит почитать что-нибудь о комплексных числах, будет полезней. Мы же сейчас сделаем откат, вернемся в первый класс самой что ни на есть обычной греческой школы. Короче говоря, помянем древний алфавит. Первая буква - альфа, затем бетта, этот крючок - гамма, потом дельта, после неё следует эпсилон и так далее, вплоть до последней буквы омега. Можете не сомневаться, что у греков есть и прописные буквы, но мы сейчас не будем о грустном. Мы лучше о веселом - о пределах. Но тут как раз никаких загадок и нет, сразу понятно, от какого слова появился математический символ. Ну а стало быть, мы можем перейти к финальной части видео. Пожалуйста, попробуйте озвучить определение предела числовой последовательности, которое сейчас написано перед вами. Кликайте скорее паузу и соображаете, и да будет вам счастье годовалого ребенка, узнавшего слово "мама". Если для любого эпсилон больше нуля найдется натуральное N, да такое, что для всех номеров числовой последовательности, больших N, выполнено неравенство |xₙ-a|<Ɛ (эпсилон), то тогда предел числовой последовательности xₙ , при n, стремящемся к бесконечности, равен числу a. Такие вот дела, ребята. Не беда, если вам не удалось прочесть это определение, главное в свое время его понять. Напоследок отмечу: множество тех, кто посмотрел этот ролик, но до сих пор не подписан на канал, не является пустым. Это меня очень печалит, так что во время финальной музыки покажу, как это исправить. Ну а остальным желаю мыслить критически, заниматься математикой! Счастливо! [Музыка / аплодиминнты]

Общие сведения

Система складывалась, наподобие естественных языков, исторически (см. история математических обозначений), и организована наподобие письменности естественных языков, заимствуя оттуда также многие символы (прежде всего, из латинского и греческого алфавитов). Символы, также как и в обычной письменности, изображаются контрастными линиями на равномерном фоне (чёрные на белой бумаге, светлые на тёмной доске, контрастные на мониторе и т. д.), и значение их определяется в первую очередь формой и взаимным расположением. Цвет во внимание не принимается и обычно не используется, но, при использовании букв , такие их характеристики как начертание и даже гарнитура , не влияющие на смысл в обычной письменности, в математических обозначениях могут играть смыслоразличающую роль.

Структура

Обыкновенные математические обозначения (в частности, так называемые математические формулы ) пишутся в общем в строку слева направо, однако не обязательно составляют последовательную строку символов. Отдельные блоки символов могут располагаться в верхней или нижней половине строки, даже в случае, когда символы не перекрываются вертикалями. Также, некоторые части располагаются целиком выше или ниже строки. С грамматической же стороны почти любую «формулу» можно считать иерархически организованной структурой типа дерева .

Стандартизация

Математические обозначения представляют систему в смысле взаимосвязи своих компонент, но, в целом, не составляют формальную систему (в понимании самой математики). Они, в сколь-нибудь сложном случае, не могут быть даже разобраны программно . Как и любой естественный язык, «язык математики» полон несогласованных обозначений, омографов , различных (в среде своих носителей) трактовок того, что́ считать правильным и т. п. Нет даже сколь-нибудь обозримого алфавита математических символов, и в частности оттого, что не всегда однозначно решается вопрос, считать ли два обозначения разными символами или же разными написаниями одного символа.

Некоторая часть математических обозначений (в основном, связанная с измерениями) стандартизована в ISO 31 -11, однако в целом стандартизация обозначений скорее отсутствует.

Элементы математических обозначений

Числа

При необходимости применить систему счисления с основанием , меньшим десяти, основание записывается в нижний индекс: 20003 8 . Системы счисления с основаниями, бо́льшими десяти, в общепринятой математической записи не применяются (хотя, разумеется, изучаются самой наукой), поскольку для них не хватает цифр. В связи с развитием информатики , стала актуальной шестнадцатеричная система счисления , в которой цифры от 10 до 15 обозначаются первыми шестью латинскими буквами от A до F. Для обозначения таких чисел в информатике используется несколько разных подходов, но в математику они не перенесены.

Надстрочные и подстрочные знаки

Скобки, подобные им символы и разделители

Круглые скобки «()» используются:

Квадратные скобки «» нередко применяются в значении группировки, когда приходится использовать много пар скобок. В таком случае они ставятся снаружи и (при аккуратной типографике) имеют бо́льшую высоту, чем скобки, стоя́щие внутри.

Квадратные «» и круглые «()» скобки используются при обозначении закрытых и открытых промежутков соответственно.

Фигурные скобки «{}» используются, как правило, для , хотя в отношении них справедлива та же оговорка, что и для квадратных скобок. Левая «{» и правая «}» скобки могут использоваться по отдельности; их назначение описано .

Символы угловых скобок « ⟨ ⟩ {\displaystyle \langle \;\rangle } » при аккуратной типографике должны иметь тупые углы и тем отличаться от схожих , имеющих прямой или острый угол. На практике же на это не следует надеяться (особенно, при ручной записи формул) и различать их приходится при помощи интуиции.

Часто используются пары симметричных (относительно вертикальной оси) символов, в том числе и отличных от перечисленных, для выделения куска формулы. Назначение парных скобок описано .

Индексы

В зависимости от расположения различают верхние и нижние индексы. Верхний индекс может означать (но необязательно означает) возведение в степень , об остальных случаях использования .

Переменные

В науках встречаются наборы величин, и любая из них может принимать или набор значений и называться переменной величиной (вариантой), или только одно значение и называться константой. В математике от физического смысла величины часто отвлекаются, и тогда переменная величина превращается в отвлечённую (или числовую) переменную, обозначаемую каким-нибудь символом, не занятым специальными обозначениями, о которых было сказано выше.

Переменная X считается заданной, если указано множество принимаемых ею значений {x} . Постоянную же величину удобно рассматривать как переменную, у которой соответствующее множество {x} состоит из одного элемента.

Функции и операторы

В математике не усматривается существенного различия между оператором (унарным), отображением и функцией .

Однако, подразумеваются, что если для записи значения отображения от заданных аргументов необходимо указывать , то символ оного отображения обозначает функцию, в иных случаях скорее говорят об операторе. Символы некоторых функций одного аргумента употребляются и со скобками и без. Многие элементарные функции , например sin ⁡ x {\displaystyle \sin x} или sin ⁡ (x) {\displaystyle \sin(x)} , но элементарные функции всегда называются функциями .

Операторы и отношения (унарные и бинарные)

Функции

Функция может упоминаться в двух смыслах: как выражение её значения при заданных аргументах (пишется f (x) , f (x , y) {\displaystyle f(x),\ f(x,y)} и т. п.) или собственно как функция. В последнем случае ставится только символ функции, без скобок (хотя зачастую пишут как попало).

Имеется много обозначений общепринятых функций, используемых в математических работах без дополнительных пояснений. В противном случае функцию надо как-то описывать и в фундаментальной математике она принципиально не отличается от и точно также обозначается произвольной буквой. Для обозначения функций-переменных наиболее популярна буква f , также часто применяются g и большинство греческих.

Предопределённые (зарезервированные) обозначения

Однако, однобуквенным обозначениям может быть, при желании, придан другой смысл. Например, буква i часто используется как обозначение индекса в контексте, где комплексные числа не применяются, а буква может быть использована как переменная в какой-нибудь комбинаторике . Также, символы теории множеств (такие как « ⊂ {\displaystyle \subset } » и « ⊃ {\displaystyle \supset } ») и исчисления высказываний (такие как « ∧ {\displaystyle \wedge } » и « ∨ {\displaystyle \vee } ») могут быть использованы в другом смысле, обычно как отношение порядка и бинарные операции соответственно.

Индексирование

Индексирование графически изображается (обычно нижними, иногда и верхними) и является, в некоторым смысле, способом расширить информационное наполнение переменной. Однако, употребляется оно в трёх несколько различных (хотя и перекрывающихся) смыслах.

Собственно номера

Можно иметь несколько разных переменных, обозначая их одной буквой, аналогично использованию . Например: x 1 , x 2 , x 3 … {\displaystyle x_{1},\ x_{2},\ x_{3}\ldots } . Обычно они связаны какой-то общностью, но вообще это не обязательно.

Более того, в качестве «индексов» можно использовать не только числа, но и любые символы. Однако, когда в виде индекса пишется другая переменная и выражение, данная запись интерпретируется как «переменная с номером, определяемым значением индексного выражения».

В тензорном анализе

В линейной алгебре , тензорном анализе , дифференциальной геометрии с индексами (в виде переменных) записываются

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b
из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми Знаки математические были знаки для изображения чисел - цифры , возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации - вавилонская и египетская - появились ещё за 3 1 / 2 тысячелетия до н. э.

Первые Знаки математические для произвольных величин появились много позднее (начиная с 5-4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин - в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами - начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х ) и её степени следующими знаками:

[ - от греческого термина dunamiV (dynamis - сила), обозначавшего квадрат неизвестной, - от греческого cuboV (k_ybos) - куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой i [от греческого isoV (isos) - равный]. Например, уравнение

(x 3 + 8x ) - (5x 2 + 1) = х

У Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные Знаки математические для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х 2 + 10x - 8 = x 2 + 1

В записи Брахмагупты (7 в.) имело бы вид:

Йа ва 3 йа 10 ру 8

Йа ва 1 йа 0 ру 1

(йа - от йават - тават - неизвестное, ва - от варга - квадратное число, ру - от рупа - монета рупия - свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14-17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются Знаки математические для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и -. Ещё в 17 в. можно насчитать около десятка Знаки математические для действия умножения.

Различны были и Знаки математические неизвестной и её степеней. В 16 - начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census - латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), , A (2), , Aii, aa , a 2 и др. Так, уравнение

x 3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья , 1556), фигурные (Ф. Виет , 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) Знаки математические для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

В наших символах выглядит так:

x 3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины - начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие Знаки математические было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков


знак

значение

Кто ввёл

Когда введён
Знаки индивидуальных объектов

¥

бесконечность

Дж. Валлис

1655

e

основание натуральных логарифмов

Л. Эйлер

1736

p

отношение длины окружности к диаметру

У. Джонс

Л. Эйлер


1706

i

корень квадратный из -1

Л. Эйлер

1777 (в печати 1794)

i j k

единичные векторы, орты

У. Гамильтон

1853

П (а)

угол параллельности

Н.И. Лобачевский

1835
Знаки переменных объектов

x,y, z

неизвестные или переменные величины

Р. Декарт

1637

r

вектор

О. Коши

1853
Знаки индивидуальных операций

+

сложение

немецкие математики

Конец 15 в.



вычитание

´

умножение

У. Оутред

1631

×

умножение

Г. Лейбниц

1698

:

деление

Г. Лейбниц

1684

a 2 , a 3 ,…, a n

степени

Р. Декарт

1637

И. Ньютон

1676



корни

К. Рудольф

1525

А. Жирар

1629

Log

логарифм

И. Кеплер

1624

log

Б. Кавальери

1632

sin

синус

Л. Эйлер

1748

cos

косинус

tg

тангенс

Л. Эйлер

1753

arc.sin

арксинус

Ж. Лагранж

1772

Sh


гиперболический синус
В. Риккати
1757

Ch


гиперболический косинус

dx, ddx, …

дифференциал

Г. Лейбниц

1675 (в печати 1684)

d 2 x, d 3 x,…




интеграл

Г. Лейбниц

1675 (в печати 1686)



производная

Г. Лейбниц

1675

¦¢x

производная

Ж. Лагранж

1770, 1779

y’

¦¢(x)

Dx

разность

Л. Эйлер

1755



частная производная

А. Лежандр

1786



определённый интеграл

Ж. Фурье

1819-22



сумма

Л. Эйлер

1755

П

произведение

К. Гаусс

1812

!

факториал

К. Крамп

1808

|x|

модуль

К. Вейерштрасс

1841

lim

предел


У. Гамильтон,

многие математики


1853,

начало 20 в.


lim

n = ¥

lim

n ® ¥

x

дзета-функция

Б. Риман

1857

Г

гамма-функция

А. Лежандр

1808

В

бета-функция

Ж. Бине

1839

D

дельта (оператор Лапласа)

Р. Мёрфи

1833

Ñ

набла (оператор Гамильтона)

У. Гамильтон

1853
Знаки переменных операций

jx

функция

И. Бернули

1718

f (x)

Л. Эйлер

1734
Знаки индивидуальных отношений

=

равенство

Р. Рекорд

1557

>

больше

Т. Гарриот

1631

<

меньше

º

сравнимость

К. Гаусс

1801


параллельность

У. Оутред

1677

^

перпендикулярность

П. Эригон

1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц . Ему, в частности, принадлежат употребляемые ныне Знаки математические дифференциалов

dx, d 2 x, d 3 x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру . Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) - окружность, периферия, 1736], мнимой единицы

(от французского imaginaire - мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс , 1841), вектора (О. Коши , 1853), определителя

(А. Кэли , 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации Знаки математические в современной литературе весьма часто можно встретить Знаки математические , используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди Знаки математические можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам Знаки математические примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и p; мнимой единицы i.

Б 1) Знаки арифметических действий +, -, ·, ´,:; извлечения корня , дифференцирования

знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b )(a - b ) = a 2 - b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у - произвольные числа, связанные заданным отношением; при решении уравнения

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и -1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A 2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б 2) Обозначения f, , j для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики ) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori ., A history of mathematical notations, v. 1-2, Chi., 1928-29.

Статья про слово "Знаки математические " в Большой Советской Энциклопедии была прочитана 39765 раз