Как определить вероятность выпадения числа. Теория вероятности формулы и примеры решения задач

вероятность (probability) - число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 - это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.

Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.

эмпирическая вероятность - вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.

Вероятность очень редких событий нельзя посчитать эмпирически.

субъективная вероятность - вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.

априорная вероятность -

Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).

Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).

Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P

Несогласованная вероятноть - например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.

Безусловная вероятность - это ответ на вопрос «Какова вероятность того, что событие произойдет?»

Условная вероятность - это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).

Совместная вероятность - вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).

P(A|B) = P(AB)/P(B) (1)

P(AB) = P(A|B)*P(B)

Правило суммирования вероятностей:

Вероятность того, что случится либо событие A либо событие B -

P (A or B) = P(A) + P(B) - P(AB) (2)

Если события A и B взаимоисключающие, то

P (A or B) = P(A) + P(B)

Независимые события - события A и B независимы если

P(A|B) = P(A), P(B|A) = P(B)

То есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты - пример такого события, - результат каждого следующего броска не зависит от результата предыдущего.

Зависимые события - это такие события, когда вероятность появления одного зависит от вероятности появления другого.

Правило умножения вероятностей независимых событий:
Если события A и B независимы, то

P(AB) = P(A) * P(B) (3)

Правило полной вероятности:

P(A) = P(AS) + P(AS") = P(A|S")P(S) + P (A|S")P(S") (4)

S и S" - взаимоисключающие события

математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).

Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:

Дисперсия случайной величины - матожидание квадратных отклонений случайной величины от ее матожидания:

s 2 = E{ 2 } (6)

Условное матожидание (conditional expected value) - матожидание случайной величины X при условии того, что событие S уже произошло.

Поговорим о задачах, в которых встречается фраза "хотя бы один". Наверняка вы встречали такие задачи в домашних и контрольных работах, а теперь узнаете, как их решать. Сначала я расскажу об общем правиле, а потом рассмотрим частный случай и , выпишем формулы и примеры для каждого.

Общая методика и примеры

Общая методика для решения задач, в которых встречается фраза "хотя бы один" такая:

  • Выписать исходное событие $A$ = (Вероятность того, что... хотя бы...).
  • Сформулировать противоположное событие $\bar{A}$.
  • Найти вероятность события $P(\bar{A})$.
  • Найти искомую вероятность по формуле $P(A)=1-P(\bar{A})$.

    А теперь разберем ее на примерах. Вперед!

    Пример 1. В ящике находится 25 стандартных и 6 бракованных однотипных деталей. Какова вероятность того, что среди трёх наудачу выбранных деталей окажется хотя бы одна бракованная?

    Действуем прямо по пунктам.
    1. Записываем событие, вероятность которого надо найти прямо из условия задачи:
    $A$ =(Из 3 выбранных деталей хотя бы одна бракованная).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 3 выбранных деталей ни одной бракованной) = (Все 3 выбранные детали будут стандартные).

    3. Теперь нужно понять, как найти вероятность события $\bar{A}$, для чего еще раз посмотрим на задачу: говорится об объектах двух видов (детали бракованные и нет), из которых вынимается некоторое число объектов и изучаются (бракованные или нет). Это задача решается с помощью классического определения вероятности (точнее, по формуле гипергеометрической вероятности, подробнее о ней читайте в статье).

    Для первого примера запишем решение подробно, далее будем уже сокращать (а полные инструкции и калькуляторы вы найдете по ссылке выше).

    Сначала найдем общее число исходов - это число способов выбрать любые 3 детали из партии в 25+6=31 деталей в ящике. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 31 объектов по 3: $n=C_{31}^3$.

    Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы все 3 выбранные детали были стандартные, их можно выбрать $m = C_{25}^3$ способами (так как стандартных деталей в ящике ровно 25).

    Вероятность равна:

    $$ P(\bar{A})=\frac{m}{n}=\frac{C_{25}^3 }{C_{31}^3} = \frac{23 \cdot 24\cdot 25}{29\cdot 30\cdot 31} =\frac{2300}{4495}= 0.512. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.512 = 0.488. $$

    Ответ: 0.488.


    Пример 2. Из колоды в 36 карт берут наудачу 6 карт. Найти вероятность того, что среди взятых карт будут: хотя бы две пики.

    1. Записываем событие $A$ =(Из 6 выбранных карт будут хотя бы две пики).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 6 выбранных карт будет менее 2 пик) = (Из 6 выбранных карт будет ровно 0 или 1 пиковые карты, остальные другой масти).

    Замечание. Тут я остановлюсь и сделаю небольшое замечание. Хотя в 90% случаях методика "перейти к противоположному событию" работает на отлично, существуют случаи, когда проще найти вероятность исходного события. В данном случае, если искать напрямую вероятность события $A$ потребуется сложить 5 вероятностей, а для события $\bar{A}$ - всего 2 вероятности. А вот если бы задача была такая "из 6 карт хотя бы 5 - пиковые", ситуация стала бы обратной и тут проще решать исходную задачу. Если опять попытаться дать инструкцию, скажу так. В задачах, где видите "хотя бы один", смело переходите к противоположному событию. Если же речь о "хотя бы 2, хотя бы 4 и т.п.", тут надо прикинуть, что легче считать.

    3. Возвращаемся к нашей задаче и находим вероятность события $\bar{A}$ с помощью классического определения вероятности.

    Общее число исходов (способов выбрать любые 6 карт из 36) равно $n=C_{36}^6$ (калькулятор ).

    Найдем число благоприятствующих событию исходов. $m_0 = C_{27}^6$ - число способов выбрать все 6 карт непиковой масти (их в колоде 36-9=27), $m_1 = C_{9}^1\cdot C_{27}^5$ - число способов выбрать 1 карту пиковой масти (из 9) и еще 5 других мастей (из 27).

    $$ P(\bar{A})=\frac{m_0+m_1}{n}=\frac{C_{27}^6+C_{9}^1\cdot C_{27}^5 }{C_{36}^6} =\frac{85215}{162316}= 0.525. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.525 = 0.475. $$

    Ответ: 0.475.


    Пример 3. В урне 2 белых, 3 черных и 5 красных шаров. Три шара вынимают наугад. Найти вероятность того, что среди вынутых шаров хотя бы два будут разного цвета.

    1. Записываем событие $A$ =(Среди вынутых 3 шаров хотя бы два разного цвета). То есть, например, "2 красных шара и 1 белый", или "1 белый, 1 черный, 1 красный", или "2 черных, 1 красный" и так далее, вариантов многовато. Попробуем правило перехода к противоположному событию.

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Все три шара одного цвета) = (Выбраны 3 черных шара или 3 красных шара) - всего 2 варианта получилось, значит, этот способ решения упрощает вычисления. Кстати, все шары белого цвета не могут быть выбраны, так как их всего 2, а вынимается 3 шара.

    3. Общее число исходов (способов выбрать любые 3 шара из 2+3+5=10 шаров) равно $n=C_{10}^3=120$.

    Найдем число благоприятствующих событию исходов. $m = C_{3}^3+C_{5}^3=1+10=11$ - число способов выбрать или 3 черных шара (из 3), или 3 красных шара (из 5).

    $$ P(\bar{A})=\frac{m}{n}=\frac{11}{120}. $$

    4. Искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- \frac{11}{120}=\frac{109}{120} = 0.908. $$

    Ответ: 0.908.

    Частный случай. Независимые события

    Идем дальше, и приходим к классу задач, где рассматривается несколько независимых событий (стрелки попадают, лампочки перегорают, машины заводятся, рабочие болеют с разной вероятностью каждый и т.п.) и нужно "найти вероятность наступления хотя бы одного события" . В вариациях это может звучать так "найти вероятность, что хотя бы один стрелок из трех попадет в цель", "найти вероятность того, что хотя бы один автобус из двух вовремя приедет на вокзал", "найти вероятность, что хотя бы один элемент в устройстве из четырех элементов откажет за год" и т.д.

    Если в примерах выше речь шла о применении формулы классической вероятности , здесь мы приходим к алгебре событий, используем формулы сложения и умножения вероятностей (небольшая теория ).

    Итак, рассматриваются несколько независимых событий $A_1, A_2,...,A_n$, вероятности наступления каждого известны и равны $P(A_i)=p_i$ ($q_i=1-p_i$). Тогда вероятность того, что в результате эксперимента произойдет хотя бы одно из событий, вычисляется по формуле

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n. \quad(1) $$

    Строго говоря, эта формула тоже получается применением основной методики "перейти к противоположному событию" . Ведь действительно, пусть $A$=(Наступит хотя бы одно событие из $A_1, A_2,...,A_n$), тогда $\bar{A}$ = (Ни одно из событий не произойдет), что значит:

    $$ P(\bar{A})=P(\bar{A_1} \cdot \bar{A_2} \cdot ... \bar{A_n})=P(\bar{A_1}) \cdot P(\bar{A_2}) \cdot ... P(\bar{A_n})=\\ =(1-P(A_1)) \cdot (1-P(A_2)) \cdot ... (1-P(A_n))=\\ =(1-p_1) \cdot (1-p_2) \cdot ... (1-p_n)=q_1\cdot q_2 \cdot ...\cdot q_n,\\ $$ откуда и получаем нашу формулу $$ P(A)=1-P(\bar{A})=1-q_1\cdot q_2 \cdot ...\cdot q_n. $$

    Пример 4. Узел содержит две независимо работающие детали. Вероятности отказа деталей соответственно равны 0,05 и 0,08. Найти вероятность отказа узла, если для этого достаточно, чтобы отказала хотя бы одна деталь.

    Событие $A$ =(Узел отказал) = (Хотя бы одна из двух деталей отказала). Введем независимые события: $A_1$ = (Первая деталь отказала) и $A_2$ = (Вторая деталь отказала). По условию $p_1=P(A_1)=0,05$, $p_2=P(A_2)=0,08$, тогда $q_1=1-p_1=0,95$, $q_2=1-p_2=0,92$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2 = 1-0,95\cdot 0,92=0,126. $$

    Ответ: 0,126.

    Пример 5. Студент разыскивает нужную ему формулу в трех справочниках. Вероятность того, что формула содержится в первом справочнике, равна 0,8, во втором - 0,7, в третьем - 0,6. Найти вероятность того, что формула содержится хотя бы в одном справочнике.

    Действуем аналогично. Рассмотрим основное событие
    $A$ =(Формула содержится хотя бы в одном справочнике). Введем независимые события:
    $A_1$ = (Формула есть в первом справочнике),
    $A_2$ = (Формула есть во втором справочнике),
    $A_3$ = (Формула есть в третьем справочнике).

    По условию $p_1=P(A_1)=0,8$, $p_2=P(A_2)=0,7$, $p_3=P(A_3)=0,6$, тогда $q_1=1-p_1=0,2$, $q_2=1-p_2=0,3$, $q_3=1-p_3=0,4$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 = 1-0,2\cdot 0,3\cdot 0,4=0,976. $$

    Ответ: 0,976.

    Пример 6. Рабочий обслуживает 4 станка, работающих независимо друг от друга. Вероятность того, что в течение смены первый станок потребует внимания рабочего, равна 0,3, второй – 0,6, третий – 0,4 и четвёртый – 0,25. Найти вероятность того, что в течение смены хотя бы один станок не потребует внимания мастера.

    Думаю, вы уже уловили принцип решения, вопрос только в количестве событий, но и оно не оказывает влияния на сложность решения (в отличие от общих задач на сложение и умножение вероятностей). Только будьте внимательны, вероятности указаны для "потребует внимания", а вот вопрос задачи "хотя бы один станок НЕ потребует внимания". Вводить события нужно такие же, как и основное (в данном случае, с НЕ), чтобы пользоваться общей формулой (1).

    Получаем:
    $A$ = (В течение смены хотя бы один станок НЕ потребует внимания мастера),
    $A_i$ = ($i$-ый станок НЕ потребует внимания мастера), $i=1,2,3,4$,
    $p_1 = 0,7$, $p_2 = 0,4$, $p_3 = 0,6$, $p_4 = 0,75$.

    Искомая вероятность:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 \cdot q_4= 1-(1-0,7)\cdot (1-0,4)\cdot (1-0,6)\cdot (1-0,75)=0,982. $$

    Ответ: 0,982. Почти наверняка мастер будет отдыхать всю смену;)

    Частный случай. Повторные испытания

    Итак, у нас есть $n$ независимых событий (или повторений некоторого опыта), причем вероятности наступления этих событий (или наступления события в каждом из опытов) теперь одинаковы и равны $p$. Тогда формула (1) упрощается к виду:

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n = 1-q^n. $$

    Фактически мы сужаемся к классу задач, который носит название "повторные независимые испытания" или "схема Бернулли", когда проводится $n$ опытов, вероятность наступления события в каждом из которых равна $p$. Нужно найти вероятность, что событие появится хотя бы раз из $n$ повторений:

    $$ P=1-q^n. \quad(2) $$

    Подробнее о схеме Бернулли можно прочитать в онлайн-учебнике , а также посмотреть статьи-калькуляторы о решении различных подтипов задач (о выстрелах, лотерейных билетах и т.п.). Ниже же будут разобраны задачи только с "хотя бы один".

    Пример 7. Пусть вероятность того, что телевизор не потребует ремонта в течение гарантийного срока, равна 0,9. Найти вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта.

    Решения короче вы еще не видели.
    Просто выписываем из условия: $n=3$, $p=0,9$, $q=1-p=0,1$.
    Тогда вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта, по формуле (2):

    $$ P=1-0,1^3=1-0,001=0,999 $$

    Ответ: 0,999.

    Пример 8. Производится 5 независимых выстрелов по некоторой цели. Вероятность попадания при одном выстреле равна 0,8. Найти вероятность того, что будет хотя бы одно попадание.

    Опять, начинаем с формализации задачи, выписывая известные величины. $n=5$ выстрелов, $p=0,8$ - вероятность попадания при одном выстреле, $q=1-p=0,2$.
    И тогда вероятность того, что будет хотя бы одно попадание из пяти выстрелов равна: $$ P=1-0,2^5=1-0,00032=0,99968 $$

    Ответ: 0,99968.

    Думаю, с применением формулы (2) все более чем ясно (не забудьте почитать и о других задачах, решаемых в рамках схемы Бернулли, ссылки были выше). А ниже я приведу чуть более сложную задачу. Такие задачи встречаются пореже, но и их способ решения надо усвоить. Поехали!

    Пример 9. Производится n независимых опытов, в каждом из которых некоторое событие A появляется с вероятностью 0,7. Сколько нужно сделать опытов для того, чтобы с вероятностью 0,95 гарантировать хотя бы одно появление события A?

    Имеем схему Бернулли, $n$ - количество опытов, $p=0,7$ - вероятность появления события А.

    Тогда вероятность того, что произойдет хотя бы одно событие А в $n$ опытах, равна по формуле (2): $$ P=1-q^n=1-(1-0,7)^n=1-0,3^n $$ По условию эта вероятность должна быть не меньше 0,95, поэтому:

    $$ 1-0,3^n \ge 0,95,\\ 0,3^n \le 0,05,\\ n \ge \log_{0,3} 0,05 = 2,49. $$

    Округляя, получаем что нужно провести не менее 3 опытов.

    Ответ: минимально нужно сделать 3 опыта.

  • Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

    Что такое вероятность

    Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

    Примеры вероятности

    На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

    Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

    Ясно, что каждое событие обладает той или иной степенью возможности своего наступления (своей реализации). Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называется вероятностью события.

    Вероятность события – есть численная мера степени объективной возможности наступления этого события.

    Рассмотрим стохастический эксперимент и случайное событие А, наблюдаемое в этом эксперименте. Повторим этот эксперимент n раз и пусть m(A) – число экспериментов, в которых событие А произошло.

    Отношение (1.1)

    называется относительной частотой события А в проведенной серии экспериментов.

    Легко убедиться в справедливости свойств:

    если А и В несовместны (АВ= ), то ν(А+В) = ν(А) + ν(В) (1.2)

    Относительная частота определяется только после проведения серии экспериментов и, вообще говоря, может меняться от серии к серии. Однако опыт показывает, что во многих случаях при увеличении числа опытов относительная частота приближается к некоторому числу. Этот факт устойчивости относительной частоты неоднократно проверялся и может считаться экспериментально установленным.

    Пример 1.19. . Если бросить одну монету, никто не сможет предсказать, какой стороной она упадет кверху. Но если бросить две тонны монет, то каждый скажет, что примерно одна тонна упадет кверху гербом, то есть относительная частота выпадения герба примерно равна 0,5.

    Если при увеличении числа опытов относительная частота события ν(А) стремится к некоторому фиксированному числу, то говорят, что событие А статистически устойчиво , а это число называют вероятностью события А.

    Вероятностью события А называется некоторое фиксированное число Р(А), к которому стремится относительная частота ν(А) этого события при увеличении числа опытов, то есть,

    Это определение называют статистическим определением вероятности .

    Рассмотрим некий стохастический эксперимент и пусть пространство его элементарных событий состоит из конечного или бесконечного (но счетного) множества элементарных событий ω 1 , ω 2 , …, ω i , … . предположим, что каждому элементарному событию ω i прописан некоторое число - р i , характеризующее степень возможности появления данного элементарного события и удовлетворяющее следующим свойствам:

    Такое число p i называется вероятностью элементарного события ω i .

    Пусть теперь А- случайное событие, наблюдаемое в этом опыте, и ему соответствует некоторое множество

    В такой постановке вероятностью события А называют сумму вероятностей элементарных событий, благоприятствующих А (входящих в соответствующее множество А):


    (1.4)

    Введенная таким образом вероятность обладает теми же свойствами, что и относительная частота, а именно:

    И если АВ= (А и В несовместны),

    то P(А+В) = P(А) + P(В)

    Действительно, согласно (1.4)

    В последнем соотношении мы воспользовались тем, что ни одно элементарное событие не может благоприятствовать одновременно двум несовместным событиям.

    Особо отметим, что теория вероятностей не указывает способов определения р i , их надо искать из соображений практического характера или получать из соответствующего статистического эксперимента.

    В качестве примера рассмотрим классическую схему теории вероятностей. Для этого рассмотрим стохастический эксперимент, пространство элементарных событий которого состоит из конечного (n) числа элементов. Предположим дополнительно, что все эти элементарные события равновозможны, то есть вероятности элементарных событий равны p(ω i)=p i =p. Отсюда следует, что

    Пример 1.20 . При бросании симметричной монеты выпадение герба и «решки» равновозможны, их вероятности равны 0,5.

    Пример 1.21 . При бросании симметричного кубика все грани равновозможны, их вероятности равны 1/6.

    Пусть теперь событию А благоприятствует m элементарных событий, их обычно называют исходами, благоприятствующими событию А . Тогда

    Получили классическое определение вероятности : вероятность Р(А) события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов

    Пример 1.22 . В урне лежит m белых шаров и n черных. Чему равна вероятность вытащить белый шар?

    Решение . Всего элементарных событий m+n. Они все равновероятны. Благоприятствующих событию А из них m. Следовательно, .

    Из определения вероятности вытекают следующие ее свойства:

    Свойство 1 . Вероятность достоверного события равна единице.

    Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае т=п, следовательно,

    P(A)=m/n=n/n=1. (1.6)

    Свойство 2. Вероятность невозможного события равна нулю.

    Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае т = 0, следовательно, P(A)=m/n=0/n=0. (1.7)

    Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

    Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испы­тания. То есть, 0≤m≤n, значит, 0≤m/n≤1, следовательно, вероятность любого события удовлетворяет двойному неравенству 0≤P(A) 1. (1.8)

    Сопоставляя определения вероятности (1.5) и относительной частоты (1.1), заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически . Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

    Однако, вычисление вероятности требует наличия предварительной информации о количестве или вероятностях благоприятствующих данному событию элементарных исходов. В случае отсутствия такой предварительной информации для определения вероятности прибегают к эмпирическим данным, то есть, по результатам стохастического эксперимента определяют относительную частоту события.

    Пример 1.23 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей r (А) = 3/80.

    Пример 1.24 . По цели.произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели. r (А) =19/24.

    Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число можно принять за приближенное значение вероятности.

    Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

    Пример 1.25 . По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется сле­дующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0.471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473

    Относительная частота колеблется около числа 0,481, которое можно принять за приближеннее значение вероятности рождения девочек.

    Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

    Пример 1.26. Многократно проводились опыты бросания монеты, в которых подсчитывали число появление «герба». Результаты нескольких опытов приведены в таблице.

    как онтологическая категория отражает меру возможности возникновения какого-либо сущего в каких-либо условиях. В отличие от математических и логической интерпретации этого понятия онтологическая В. не связывает себя с обязательностью количетвенного выражения. Значение В. раскрывается в контексте понимания детерминизма и характера развития в целом.

    Отличное определение

    Неполное определение ↓

    ВЕРОЯТНОСТЬ

    понятие, характеризующее количеств. меру возможности появления нек-рого события при определ. условиях. В науч. познании встречаются три интерпретации В. Классическая концепция В., возникшая из математич. анализа азартных игр и наиболее полно разработанная Б. Паскалем, Я. Бернулли и П. Лапласом, рассматривает В. как отношение числа благоприятствующих случаев к общему числу всех равновозможных. Напр., ири бросании игральной кости, имеющей 6 граней, выпадение каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Подобная симметричность исходов опыта специально учитывается при организации игр, но сравнительно редко встречается при исследовании объективных событий в науке и практике. Классич. интерпретация В. уступила место статистич. концепции В., в основе к-рой лежат действит. наблюдения появления нек-рого события в ходе длит. опыта при точно фиксированных условиях. Практика подтверждает, что чем чаще происходит событие, тем больше степень объективной возможности его появления, или В. Поэтому статистич. интерпретация В. опирается на понятие относит. частоты, к-рое может быть определено опытным путем. В. как теоретич. понятие никогда не совпадает с эмпирически определяемой частотой, однако во мн. случаях она практически мало отличается от относит. частоты, найденной в результате длит. наблюдений. Многие статистики рассматривают В. как «двойник» относит. частоты, к-рая определяется при статистич. исследовании результатов наблюдений

    или экспериментов. Менее реалистичным оказалось определение В. как предела относит. частот массовых событий, или коллективов, предложенное Р. Мизесом. В качестве дальнейшего развития частотного подхода к В. выдвигается диспозиционная, или пропенситивная, интерпретация В. (К. Поппер, Я. Хэккинг, М. Бунге, Т. Сетл). Согласно этой интерпретации, В. характеризует свойство порождающих условий, напр. эксперимент. установки, для получения последовательности массовых случайных событий. Именно такая установка порождает физич. диспозиции, или предрасположенности, В. к-рых может быть проверена с помощью относит. частот.

    Статистич. интерпретация В. доминирует в науч. познании, ибо она отражает специфич. характер закономерностей, присущих массовым явлениям случайного характера. Во многих физич., биологич., экономич., демографич. и др. социальных процессах приходится учитывать действие множества случайных факторов, к-рые характеризуются устойчивой частотой. Выявление этой устойчивой частоты и количеств. ее оценка с помощью В. дает возможность вскрыть необходимость, к-рая прокладывает себе путь через совокупное действие множества случайностей. В этом находит свое проявление диалектика превращения случайности в необходимость (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 535-36).

    Логическая, или индуктивная, В. характеризует отношение между посылками и заключением недемонстративного и, в частности, индуктивного рассуждения. В отличие от дедукции, посылки индукции не гарантируют истинности заключения, а лишь делают его в той или иной степени правдоподобным. Это правдоподобие при точно сформулированных посылках иногда можно оценивать с помощью В. Значение этой В. чаще всего определяется посредством сравнит. понятий (больше, меньше или равно), а иногда и численным способом. Логич. интерпретацию часто используют для анализа индуктивных рассуждений и построения различных систем вероятностных логик (Р. Карнап, Р. Джефри). В семантич. концепции логич. В. часто определяется как степень подтверждения одного высказывания другими (напр., гипотезы ее эмпирич. данными) .

    В связи с развитием теорий принятия решений и игр все большее распростраиение получает т. н. персоналистская интерпретация В. Хотя В. при этом выражает степень веры субъекта и появление нек-рого события, сами В. должны выбираться с таким расчетом, чтобы удовлетворялись аксиомы исчисления В. Поэтому В. при такой интерпретации выражает не столько степень субъективной, сколько разумной веры. Следовательно, решения, принимаемые на основе такой В., будут рациональными, ибо они не учитывают психологич. особенностей и склонностей субъекта.

    С гносеологич. т. зр. различие между статистич., логич. и персоналистской интерпретациями В. состоит в том, что если первая дает характеристику объективным свойствам и отношениям массовых явлений случайного характера, то последние две анализируют особенности субъективной, познават. деятельности людей в условиях неопределенности.

    ВЕРОЯТНОСТЬ

    одно из важнейших понятий науки, характеризующее особое системное видение мира, его строения, эволюции и познания. Специфика вероятностного взгляда на мир раскрывается через включение в число базовых понятий бытия понятий случайности, независимости и иерархии (идеи уровней в структуре и детерминации систем).

    Представления о вероятности зародились еще в древности и относились к характеристике нашего знания, при этом признавалось наличие вероятностного знания, отличающегося от достоверного знания и от ложного. Воздействие идеи вероятности на научное мышление, на развитие познания прямо связано с разработкой теории вероятностей как математической дисциплины. Зарождение математического учения о вероятности относится к 17 в., когда было положено начало разработке ядра понятий, допускающих. количественную (числовую) характеристику и выражающих вероятностную идею.

    Интенсивные приложения вероятности к развитию познания приходятся на 2-ю пол. 19- 1-ю пол. 20 в. Вероятность вошла в структуры таких фундаментальных наук о природе, как классическая статистическая физика, генетика, квантовая теория, кибернетика (теория информации). Соответственно вероятность олицетворяет тот этап в развитии науки, который ныне определяется как неклассическая наука. Чтобы раскрыть новизну, особенности вероятностного образа мышления, необходимо исходить из анализа предмета теории вероятностей и оснований ее многочисленных приложений. Теорию вероятностей обычно определяют как математическую дисциплину, изучающую закономерности массовых случайных явлений при определенных условиях. Случайность означает, что в рамках массовости бытие каждого элементарного явления не зависит и не определяется бытием других явлений. В то же время сама массовость явлений обладает устойчивой структурой, содержит определенные регулярности. Массовое явление вполне строго делится на подсистемы, и относительное число элементарных явлений в каждой из подсистем (относительная частота) весьма устойчиво. Эта устойчивость сопоставляется с вероятностью. Массовое явление в целом характеризуется распределением вероятностей, т. е. заданием подсистем и соответствующих им вероятностей. Язык теории вероятностей есть язык вероятностных распределений. Соответственно теорию вероятностей и определяют как абстрактную науку об оперировании распределениями.

    Вероятность породила в науке представления о статистических закономерностях и статистических системах. Последние суть системы, образованные из независимых или квазинезависимых сущностей, их структура характеризуется распределениями вероятностей. Но как возможно образование систем из независимых сущностей? Обычно предполагается, что для образования систем, имеющих целостные характеристики, необходимо, чтобы между их элементами существовали достаточно устойчивые связи, которые цементируют системы. Устойчивость статистическим системам придает наличие внешних условий, внешнего окружения, внешних, а не внутренних сил. Само определение вероятности всегда опирается на задание условий образования исходного массового явления. Еще одной важнейшей идеей, характеризующей вероятностную парадигму, является идея иерархии (субординации). Эта идея выражает взаимоотношения между характеристиками отдельных элементов и целостными характеристиками систем: последние как бы надстраиваются над первыми.

    Значение вероятностных методов в познании заключается в том, что они позволяют исследовать и теоретически выражать закономерности строения и поведения объектов и систем, имеющих иерархическую, «двухуровневую» структуру.

    Анализ природы вероятности опирается на частотную, статистическую ее трактовку. Вместе с тем весьма длительное время в науке господствовало такое понимание вероятности, которое получило название логической, или индуктивной, вероятности. Логическую вероятность интересуют вопросы обоснованности отдельного, индивидуального суждения в определенных условиях. Можно ли оценить степень подтверждения (достоверности, истинности) индуктивного заключения (гипотетического вывода) в количественной форме? В ходе становления теории вероятностей такие вопросы неоднократно обсуждались, и стали говорить о степенях подтверждения гипотетических заключений. Эта мера вероятности определяется имеющейся в распоряжении данного человека информацией, его опытом, воззрениями на мир и психологическим складом ума. Во всех подобных случаях величина вероятности не поддается строгим измерениям и практически лежит вне компетенции теории вероятностей как последовательной математической дисциплины.

    Объективная, частотная трактовка вероятности утверждалась в науке со значительными трудностями. Первоначально на понимание природы вероятности оказали сильное воздействие те философско-методологические взгляды, которые были характерны для классической науки. Исторически становление вероятностных методов в физике происходило под определяющим воздействием идей механики: статистические системы трактовались просто как механические. Поскольку соответствующие задачи не решались строгими методами механики, то возникли утверждения, что обращение к вероятностным методам и статистическим закономерностям есть результат неполноты наших знаний. В истории развития классической статистической физики предпринимались многочисленные попытки обосновать ее на основе классической механики, однако все они потерпели неудачу. Основания вероятности состоят в том, что она выражает собою особенности структуры определенного класса систем, иного, чем системы механики: состояние элементов этих систем характеризуется неустойчивостью и особым (не сводящимся к механике) характером взаимодействий.

    Вхождение вероятности в познание ведет к отрицанию концепции жесткого детерминизма, к отрицанию базовой модели бытия и познания, выработанных в процессе становления классической науки. Базовые модели, представленные статистическими теориями, носят иной, более общий характер: они включают в себя идеи случайности и независимости. Идея вероятности связана с раскрытием внутренней динамики объектов и систем, которая не может быть всецело определена внешними условиями и обстоятельствами.

    Концепция вероятностного видения мира, опирающаяся на абсолютизацию представлений о независимости (как и прежде парадигма жесткой детерминации), в настоящее время выявила свою ограниченность, что наиболее сильно сказывается при переходе современной науки к аналитическим методам исследования сложноорганизованных систем и физико-математических основ явлений самоорганизации.

    Отличное определение

    Неполное определение ↓