Метод микрохирургии в цитологии. Методы цитологических исследований

В ходе цитологического исследования изучают структуру клеток для выявления злокачественных, доброкачественных опухолей и поражений неопухолевой природы. Основное назначение исследования – подтверждение или опровержение факта злокачественности взятых для анализа клеток.

Методы цитологического исследования основаны на изучении под микроскопом строения клеток, клеточного состава жидкостей и тканей.

Различают такие методы цитологических исследований:

  • световая микроскопия;
  • электронная микроскопия;
  • метод центрифугирования. Его используют, когда необходимо отделить мембраны клеток от общей структуры;
  • метод меченых атомов. Применяют для изучения биохимических процессов в клетках: для этого в них вводят меченый радиоактивный изотоп;
  • прижизненное изучение. Этот метод исследования позволяет изучить динамические процессы, происходящие в клетке.

Заключение цитологического исследования основывается на особенностях изменения цитоплазмы, ядра клетки, ядерно-цитоплазменного соотношения, образования комплексов и структур клеток.

Применяют цитологический анализ при профилактическом осмотре, для уточнения диагноза, во время операции, для своевременного выявления рецидивов, контроля над ходом лечения.

Цитологическое исследование мазков

В качестве материалов для анализа используют:

  • жидкости: мочу, секрет предстательной железы, мокроту, смывы, полученные при эндоскопии разных органов, выделения из сосков, отпечатки и соскобы с язвенных и эрозированных поверхностей, ран и свищей, жидкости из серозных и суставных полостей;
  • пунктаты: биологические материалы, полученные при диагностической пункции, проводимой тонкой иглой;
  • мазки из полости и шейки матки.

Большинство из указанных цитологических исследований мазков проводится при необходимости, для постановки и уточнения диагноза. Но цитологическое исследование мазка из шейки матки (мазок Папаниколау) рекомендуется проходить: один раз в год – женщинам после 19 лет, ведущим половую жизнь; два раза в год – женщинам, которые принимают гормональные контрацептивы, переболели генитальным герпесом; чаще чем два раза в год – женщинам, которые страдают бесплодием, маточными кровотечениями, ожирением, которые часто меняют половых партнеров, принимают эстрогены, у которых есть бородавки на гениталиях, выявлен генитальный герпес.

Цитологическое исследование шейки матки

Для цитологического исследования шейки матки мазок берут с наружной и внутренней частей шейки и со сводов влагалища с помощью специального деревянного шпателя. Потом его переносят на стекло и фиксируют.

Цитологическое исследование шейки матки проводят для выявления раковых изменений клеток, и в заключении врач указывает одну из пяти стадий состояния клеток:

  • стадия 1. Клетки с отклонениями не найдены;
  • стадия 2. Есть незначительные изменения в структуре клеток, вызванные воспалением внутренних половых органов. Опасение такое состояние клеток не вызывает, но женщине рекомендуют пройти дополнительное обследование и лечение;
  • стадия 3. Найдено небольшое количество клеток с отклонениями в структуре. В этом случае рекомендуется сдать мазок повторно или провести гистологическое исследование измененной ткани;
  • стадия 4. Найдены отдельные клетки со злокачественными изменениями. Окончательный диагноз не ставят, назначают дополнительное обследование;
  • стадия 5. В мазке обнаружено большое количество раковых клеток.

Достоверность такого цитологического исследования высока, но информацию оно может дать только об участке, из которого брали клетки для анализа. Для того чтобы оценить состояние маточных труб, яичников, матки следует пройти комплексное обследование.

Главная особенность морфо-функционального метода к изучению клетки — стремление по-нять структурную основу биохимических процессов, определяю-щих данную функцию, т. е. связать эти процессы с конкретными клеточными структурами.

Конечная цель при таком методе идентична цели, пресле-дуемой молекулярной биологией и клеточной структурной био-химией. Однако методы, используемые этими науками для ре-шения общей задачи, принципиально различны. Если в моле-кулярной биологии и структурной биохимии непременным усло-вием является разрушение клетки и выделение изучаемой струк-туры в виде более или менее чистой фракции, то в цитологиче-ских исследованиях предпосылкой, наоборот, служит сохране-ние целостности клетки. В данном случае необходимо стре-миться к тому, чтобы свести внешнее вмешательство до мини-мума, и стараться исследовать структурно-биохимическую орга-низацию тех или иных компонентов именно в пределах целост-ной клеточной системы.

Исследования морфофункционального направления бурно развивались в течение последних десятилетий. В это время было разработано большое количество принципиально новых методов качественного и количественного анализа клеточных структур. Такой подход тесно связан с новыми разделами био-логических наук и, в частности, с молекулярной биологией, что и обусловливает весьма значительный вклад подобных иссле-дований в прогресс наших знаний об общих закономерностях организации клетки.

Электронная микроскопия

Одним из наиболее распространенных, ставшим классиче-ским методом, применяемым при структурно-биохимических исследованиях, является метод электронной микроскопии в раз-личных его модификациях. Эти модификации обусловлены как различными подходами к анализу изучаемых структур, так и особенностями подготовки клеток для ультраструктурных ис-следований. Высокие разрешения обычных трансмиссионных (просвечивающих) микроскопов позволяют анализировать не только все органоиды ядерного и цитоплазматического аппара-тов, но и некоторые структуры, находящиеся на надмолекуляр-ном уровне организации, например опорные и сократимые мик-рофибриллы, микротрубочки , некоторые мультиэнзимные ком-плексы. В настоящее время для исследования клеток на систем-ном и субсистемном уровнях их организации все чаще с успе-хом применяется метод высоковольтной электронной микроско-пии. Благодаря намного большей по сравнению с просвечиваю-щим электронным микроскопом энергии проникающего пучка электронов этот метод позволяет изучать под микроскопом «толстые» срезы или даже целые распластанные клетки, что позволяет, например, анализировать в целом сложную систему субмембранных фибрилл поверхностного аппарата клетки .

В исследовании функции поверхностного аппарата клетки, взаимосвязи отдельных субсистем поверхностного аппарата ядра и ряда других вопросов общей цитологии существенное значение приобретает метод сканирующей электронной микро-скопии, дающий возможность объемного изучения поверхности объекта.

Метод замораживания-скалывания

Особое и принципиально важное место в цитологиче-ских исследованиях морфобиохимического направления зани-мает метод замораживания-скалывания. Он является наибо-лее щадящим методом подготовки биологических объектов для ультраструктурного анализа, т. е. вызывает минимальные изме-нения клеточных структур по сравнению с их нативным состоя-нием. Суть метода заключается в следующем. Объект помещают в атмосферу жидкого азота, что моментально прекращает все метаболические процессы. Затем с замороженного объекта де-лают сколы. С поверхности сколов получают реплики путем нанесения на них металлической пленки. Эти пленки в дальней-шем исследуют под электронным микроскопом. Преимущество метода замораживания-скалывания заключается в том, что плоскость скола обычно проходит по гидрофобной фазе мем-браны, и это позволяет изучать на сколах количество, размеры и характер расположения интегральных белков мембраны, т. е. непосредственно внутреннюю морфобиохимическую организа-цию мембран. Метод дал очень ценные результаты при исследо-вании разного рода мембранных структур и специальных обра-зований, например некоторых типов клеточных контактов.

Цитохимический метод

Для основной задачи структурно-биохимического аспекта цитологических исследований — выяснения функционального значения структур через анализ их биохимической организа-ции-исключительно важную роль играют цитохимические ме-тоды. В настоящее время они непрерывно совершенствуются как в смысле точной качественной идентификации химических со-единений в изучаемых структурах, так и в смысле их количе-ственной оценки. С помощью специальных приборов, позволяю-щих проводить количественную цитоспектрофотометрию, можно определить содержание данного вещества, например РНК и ДНК, не только в клетке в целом, но и на уровне ядерных или цитоплазматических структур. Благодаря интерференционной микроскопии можно оценить общее количество белка в клетке и его изменения в процессе ее жизнедеятельности.

Существует метод цитохимической идентифи-кации ферментов, который позволяет судить не только о локализации и коли-честве того или иного соединения в клеточных структурах, но и о процессах синтеза и внутриклеточного транспорта этих соеди-нений.

Цитохимия ферментов основана на принципе субстрат-ферментного взаимодействия с использованием маркерных соеди-нений, выпадающих при этом в осадок. Определяя локализа-цию, а в некоторых случаях и активность ферментативных си-стем, мы можем судить о локализации тех или иных биохимиче-ских процессов в клеточных структурах.

Авторадиография

Метод авторадиографии, так же, как и цитохимия ферментов, открывает возможность исследования внутриклеточного синтеза и транспорта, но при этом имеет еще более широкие возможности. Метод автора-диографии основывается на использовании меченых искусственными изотопами (3 Н, 14 С, 35 S и др.) радиоактивных предшественников синтеза макромолекул. Он позволяет не только локализовать места син-теза тех или иных макромолекул, но и проследить конкретные пути внутриклеточного транспорта этих соединений, дать отно-сительную количественную оценку интенсивности синтеза и ско-рости перемещения макромолекул в клеточных структурах. Таким путем, в частности, было впервые показано перемещение РНК из ядра в цитоплазму клеток, детально прослежены лока-лизация синтеза и внутриклеточный транспорт секрета в секре-торных клетках и выявлены многие другие важные для общей цитологии факты. По своей сути этот метод — один из наиболее типичных методов, характерных для структурно-биохимического направления исследований, поскольку он позволяет непосред-ственно изучать процессы метаболизма во внутриклеточных структурах в целостной, неразрушенной (как в биохимических исследованиях) клетке. Суть этого метода основана на обнару-жении маркированных искусственным изотопом молекул с по-мощью фотоэмульсии, которой покрываются срезы клеток и тканей, фиксированных в разные сроки после введения меченого предшественника.

Иммуноцитохимический метод

В настоящее время возможен и очень точный качественный анализ индивидуальных белков клеточных структур в пределах целостной клеточной системы. Такой анализ производится с по-мощью иммуноцитохимических методов. Суть этих методов за-ключается в том, что конкретный белок служит антигеном , к которому в организме каких-либо млекопитающих вырабатываются специфические антитела. Последние соединяются с флюоресци-рующим красителем или другим маркером. Затем сывороткой с маркированными антителами обрабатывается изучаемая клет-ка. Специфические маркированные антитела связываются при этом строго избирательно со структурами, содержащими иссле-дуемые белки. С помощью этого метода, в частности, была вы-явлена локализация основных и вспомогательных сократимых белков актин-миозиновой системы в субмембранном фибрилляр-ном аппарате клеток, показана модификация их распределения при формировании митотического аппарата и в процессе цито-томии. Этот же метод был с успехом применен для доказатель-ства справедливости жидкостно-мозаичной модели организации мембран.

Комплексные методы исследования клетки

В последнее время особенно большие успехи в изучении структурно-биохимической организации клеток достигнуты при комплексном использовании методов ультраструктурного ана-лиза и методов цитохимии и авторадиографии. Эти успехи обус-ловлены в основном разработкой специальных методов цито-химии и авторадиографии на ультраструктурном уровне, позво-ляющих непосредственно проанализировать процессы метабо-лизма на названном уровне организации клеток, «структуриро-вать» биохимические процессы, выяснить конкретное значение тех или иных клеточных структур в отдельных звеньях сложных процессов внутриклеточного метаболизма. В таком плане на-коплен обширный материал о роли различных разновидностей мембранной фазы цитоплазмы в синтетических анаболических процессах и процессах внутриклеточного катаболизма .

Крупные успехи достигнуты, в частности, в изучении орга-низации и функционирования лизосомного аппарата клеток. Важные новые факты получены при исследовании ядерного аппа-рата клеток. С помощью цитохимических методов удается иден-тифицировать рибонуклеопротеиды (РНП) и дезоксирибонуклеопротеиды (ДНП) на ультраструктурном уровне и тем самым значительно продвинуться вперед в изучении организации тран-скрипции, созревания и внутриядерного транспорта различных типов РНП в клетках эукариот, а использование метода элек-тронной авторадиографии позволило детализировать роль отдельных клеточных структур в этих процессах. Например, удалось подробно изучить функцию ядрышка и конкретно струк-турировать в нем процессы образования рибосомальной РНК.

Такой синтез молекулярно-биологических и структурно-био-химических аспектов и методов весьма характерен и для разра-ботки многих других важных вопросов о тонкой организации отдельных компонентов клеток. При этом тесная связь молеку-лярно-биологического и морфобиохимического цитологического анализа проявляется не только в синтезе конечных результатов, но и в их взаимодействии в процессе самого исследования. Подобное взаимодействие осуществляется либо путем проведе-ния комплексных работ с использованием как биохимических, так и цитологических методов специалистами биохимиками и цитологами, либо путем применения специальных комплексных методов, находящихся на границе биохимического и цитологи-ческого анализа клеточных структур.

Примером первого рода является сочетание методов биохи-мического выделения компонентов клетки с их тонким ультраструктурным анализом. Таким путем впервые получены фото-графии работающих генов с идентификацией на них ДНК, РНКполимераз и транскрибируемых молекул РНК. Усовершен-ствование этого метода позволяет сейчас в некоторых случаях проводить учет интенсивности транскрипции путем прямого под-счета количества РНКполимеразных комплексов. С помощью электронного микроскопа можно непосредственно изучать кар-тины репликации ДНК на выделенных биохимическим методом, кольцевых или линейных молекулах ДНК. Методы ультраструктурного анализа широко используются также при иммуноцитохимическом исследовании локализации индивидуальных белков, в субчастицах рибосом, при изучении различных уровней орга-низации ДНП и во многих других случаях.

Типичным примером специально разработанных комплекс-ных методов является гибридизация ДНК и РНК на срезах. Суть его заключается в следующем. ДНК, находящаяся в со-ставе ДНП целостной клетки, подвергается денатурации, а за-тем обрабатывается фракциями РНК, меченой радиоактивными, изотопами. В результате этого на ДНК авторадиографически выявляются участки, комплементарные данным фракциям РНК, т. е. места транскрипции последних, иначе говоря, создается возможность точно установить локализацию определенных генов.

В рамках экспериментального метода функциональная организация клетки в целом или ее отдельных компонентов изучается путем изменения ее состоя-ния с помощью внешнего воздействия. Наблюдая затем измене-ния жизнедеятельности клетки или ее компонентов, можно сде-лать выводы о тех или иных свойствах исследуемых механизмов. Подобного рода метод получил сейчас в некоторых разделах цитологии весьма широкое распространение, а в отдельных ее областях цитофизиологический аспект анализа клеточных структур занимает пока доминирующее положение.

Именно таково состояние проблемы о транспортной функции поверхностного аппарата клетки. С одной стороны, в изучении этого вопроса достигнуты значительные успехи: на основании результатов цитофизиологического анализа удалось выявить разновидности трансмембранного транспорта веществ, охаракте-ризовать различные свойства транспортных систем. С другой стороны, окончательное решение вопроса о механизмах транс-мембранного транспорта возможно лишь при условии выясне-ния конкретной организации липидно-белковой системы мем-бран и точного знания свойств и роли остальных компонентов мембранных транспортных систем, т. е. на уровне структурно-биохимического анализа плазматической мембраны и всего по-верхностного аппарата клетки.

Ограниченность возможностей цитофизиологического иссле-дования трансмембранного транспорта отчетливо проявляется на примере состояния вопроса об организации ионных каналов, играющих основную роль во многих важных процессах, таких, например, как распространение нервного импульса. С помощью целого арсенала разнообразных цитофизиологических методов было показано, что в плазматической мембране существуют осо-бые каналы для ионов Na, К, Сl, различающиеся по своим свой-ствам. Однако конкретные знания их структурной организации ограничиваются пока косвенными данными об их белковой при-роде. Таким образом, решение вопроса об организации ионных каналов в частности и транспортных систем мембраны вообще переходит, по-видимому, в руки ученых, владеющих структурно-биохимическими методами, ибо в данном случае многочислен-ные и весьма ценные факты, добытые в цитофизиологических исследованиях, представляют собой лишь первый феноменоло-гический этап в анализе этих общеклеточных механизмов. Тем не менее в определенных аспектах изучения клетки цитофизиологический подход может дать очень много.

В настоящее время разнообразие приемов цитофизиологиче-ских исследований определяется как все возрастающим арсена-лом агентов, появляющихся у цитологов, так и использованием тонких методов анализа тех изменений, которые происходят в результате действия этих агентов на клетку. Если раньше для анализа изменений клеток под действием внешних агентов при-менялись такие привычные для физиологов методы, как реги-страция электрических потенциалов, оценка клеточного дыхания по поглощению кислорода, количественная оценка сорбции кра-сителей, регистрация качественных изменений окрашиваемости клеток и т. д., то сейчас в подобных целях все чаще исполь-зуются методы, характерные для структурно-функционального направления: электронно-микроскопическое изучение ультраструктурных изменений, авторадиографический анализ синте-тических процессов и т. д.

Среди агентов, применяемых в экспериментальных исследо-ваниях, можно выделить две основные группы. Первую группу составляют вещества, «точка приложения» которых внутри клетки более или менее известна, — это вещества, блокирующие отдельные звенья внутриклеточного метаболизма (например, актиномицин D, ингибирующий транскрипцию, или пуромицин, блокирующий синтез белка, 2,4-динитрофенол, разобщающий дыхание и окислительное фосфорилирование), вещества, изби-рательно разрушающие те или иные клеточные структуры (на-пример, колхицин, разрушающий микротрубочки, или цитохалазин В, действующий на микрофибриллы). Вторую группу со-ставляют агенты так называемого комплексного действия, из-меняющие клеточный метаболизм вообще, — температура, осмо-тическое давление, pH и т. д. Использование таких агентов, как, например, 2,4-динитрофенол, позволило выяснить ряд вопросов, касающихся сопряжения дыхания и фосфорилирования в ды-хательной цепи митохондрий; применение ингибиторов синтеза РНК и белка дало возможность изучить некоторые звенья син-теза белка в рибосомах и процессов транскрипции; с помощью колхицина и цитохалазина выяснена роль микротрубочек и микрофиламентов в процессах внутриклеточного транспорта.

Агенты второй группы (комплексного действия) обладают тем преимуществом, что они являются для клеток как бы более естественными, ибо клетки в природных условиях сталкиваются с подобными изменениями во внешней среде. В то же время они влияют практически на все стороны клеточного метабо-лизма, затрудняя анализ происходящих при этом изменений. Тем не менее исследование действия на клетку подобных аген-тов имеет самостоятельное значение и абсолютно необходимо для изучения механизмов адаптации клеток к меняющимся фак-торам внешней среды, решения вопроса о соотношении специ-фических и неспецифических процессов в реакции клеток на внешнее воздействие и других аналогичных задач, играющих важную роль в разработке проблемы клеточной интеграции.

В исследовании функциональной организации клеток огром-ное значение имеет анализ механизмов взаимодействия отдель-ных систем клетки. Во многих случаях такую задачу можно разрешить путем создания специальных экспериментальных моделей. Наиболее типичными примерами подобного рода яв-ляются пересадки ядер у разных объектов (простейшие, яйце-клетки амфибий); гибридизация соматических клеток; пере-садки частей клеток у простейших; исследования с применением целого ряда других микрохирургических приемов, проводимые на протозоологических объектах и культивируемых in vitro клетках млекопитающих.

С помощью подобных моделей были изучены важнейшие общецитологические вопросы. Например, результаты опытов по пересадке ядер дифференцированных клеток амфибий в лишен-ную собственного ядра яйцеклетку явились одним из наиболее убедительных аргументов в пользу теории дифференциальной активности генов. Суть последней заключается в констатации структурной идентичности геномов дифференцированных клеток многоклеточного организма. Из этого следует принципиально важное положение о том, что процесс дифференцировки про-исходит не путем необратимых изменений наследственного аппа-рата клеток, а путем регуляции активности одинакового для всех клеток данного организма набора генов.

Весьма интересные факты были обнаружены на эксперимен-тальной модели для изучения процесса дедифференцировки гибридной клетки — куриного эритроцита и раковой клетки мле-копитающих. Своеобразие этого гетерокариона заключается в том, что при слиянии куриного эритроцита с раковой клеткой происходит гемолиз гемоглобина и нормальное, почти полностью инактивированное ядро эритроцита оказывается в цитоплазме раковой клетки. Таким образом, здесь осуществляется пере-садка дифференцированного ядра в необычные условия актив-ной цитоплазмы. Тщательные наблюдения за изменением струк-турной организации этих ядер показали, что в новых условиях происходит значительное увеличение их объема. Существенную роль в набухании ядер играют поступающие из цитоплазмы белки. Эти внешние изменения в ядерном аппарате эритроцита отражают глубокие процессы перестройки его внутренней орга-низации, результатом чего является возобновление транскрип-ции «куриных» информационных РНК. Однако реализация со-держащейся в ней информации в виде синтеза «куриных» бел-ков не происходит до тех пор, пока в ядерном аппарате куриных эритроцитов не сформируется ядрышко и не начнется синтез рибосомальных РНК. Таким образом, тщательный анализ экспе-риментальных моделей показал наличие сложного цитоплазма-тического контроля над деятельностью ядерного аппарата.

С помощью экспериментальных моделей удалось решить и ряд других важных общецитологических вопросов. Например, вопрос о механизмах перемещения анафазных хромосом был с успехом исследован на нативном митотическом аппарате, вы-деленном из дробящихся бластомеров морского ежа и рабо-тающем вне клетки. Преимущественно на экспериментальных моделях удалось установить широко распространенную общую закономерность организации клеток, а именно отсутствие во взаимосвязи сложных внутриклеточных процессов жесткого причинно-следственного принципа. Оказалось, что такие много-компонентные процессы, как репродукция клеток, процессы син-теза и внутриклеточного транспорта высокополимерных соеди-нений и т. д., состоят из отдельных, относительно автономных этапов, не связанных жесткой причинно-следственной зависи-мостью. Выяснение этой закономерности, с одной стороны, соз-дает предпосылки для понимания механизмов удивительной пластичности клеточной организации. С другой стороны, эта же закономерность является основой для изучения механизмов интеграции таких процессов в целостной клеточной системе в нормальных условиях.

В настоящее время все увеличивается количество и разно-образие экспериментальных моделей, предназначенных для решения тех или иных конкретных общецитологических проблем. Это значительно способствует прогрессу наших знаний в отно-сительно слабо изученной области цитологии — механизмах взаимодействия и интеграции работы субклеточных систем.

Необходимо подчеркнуть, что спецификой исследований, про-водящихся в рамках экспериментального подхода к анализу закономерностей организации клетки, является все большее и большее углубление критериев и признаков, по которым ведется анализ интегрирующих механизмов и конкретных функций от-дельных клеточных структур При этом становится ясным, что успешное решение стоящих перед такими исследованиями за-дач возможно лишь при широком внедрении в практику мето-дов структурно-функционального подхода.

Суть сравнительно-цитологического метода исследова-ний в общей цитологии — выяснение общих закономерностей организации клеток с использованием всего многообразия их разновидностей, предоставляемого ученому живой природой. Сравнительный метод имеет два аспекта. С одной стороны, он по традиции применяется для выявления родственных взаимо-отношений между отдельными разновидностями клеток (особен-но для одноклеточных организмов). На основе созданной таким путем и проведенной с использованием тонких цитологических критериев филогенетической систематики прокариотных и низ-ших и высших эукариотных клеток возникает возможность про-следить становление и отдельных частных клеточных систем, и общих механизмов регуляции и интеграции клетки как це-лостной системы В качестве примера подобного рода примене-ния сравнительно-цитологического анализа в исследованиях клеток можно привести интересные данные по тонкой организа-ции ядерного аппарата у прокариотных, низших и высших эука-риотных клеток

Принципиальными особенностями организации ядерного аппарата эукариотных клеток являются наличие у них слож-ного поверхностного аппарата ядра, значительно большее по сравнению с прокариотными клетками количество ДНК, сосре-доточенной в хромосомах, и, наконец, своеобразная упаковка ДНК с помощью основных белков — гистонов Сравнительно-цитологический анализ ядерных аппаратов низших эукариот позволил выявить среди них клетки, которые по строению ядра занимают промежуточное положение между про- и эукариотными клетками. Панцирные жгутиконосцы обладают типичным поверхностным аппаратом ядра, но при этом их хромосомы, как и в случае прокариот, образованы кольцевидными молеку-лами ДНК, которые организованы в компактные структуры без участия гистонов, характерных для всех эукариот

В последнее время в связи с открытием принципиальных осо-бенностей в организации генома про- и эукариотных клеток сопоставление процессов транскрипции и созревания РНК у этих организмов, а также у мезокариот и клеток низших эукариот приобретает важное значение В результате таких сопоставле-ний, возможно, будут внесены существенные изменения в наши традиционные представления о родственных взаимоотношениях в основных группах организмов и, в частности, взаимоотноше-ниях про- и эукариотных клеток.

Вторым примером традиционного применения эволюционного подхода к цитологическим проблемам могут быть попытки пред-ложить гипотезу усложнения механизмов равнонаследственного распределения хромосом между дочерними клетками в процессе эволюции, разработанную на основании сравнительного анализа многочисленных вариантов расхождения хромосом у простейших и у низших растений . В этих случаях активное участие в про-цессах расхождения хромосом принимают мембраны ядерной оболочки, что позволяет проводить известную гомологию с клет-ками прокариот, у которых мембране клетки принадлежит ве-дущая роль в равномерном распределении сестринских хромо-сом между дочерними клетками.

Наконец, третьим примером традиционного эволюционного подхода к общецитологическим проблемам может служить ши-роко распространенная симбиотическая гипотеза происхождения митохондрий и хлоропластов. Суть ее заключается в предполо-жении о том, что эти важные органоиды энергетического обмена возникли из внедрившихся в эукариотные клетки прокариотных организмов на относительно раннем этапе эволюции эукариот.

Несмотря на важное значение подобного рода общебиологи-ческих построений для развития общей цитологии, традиционный исторический подход к разработке общецитологических проблем имеет сейчас все же довольно ограниченное применение. Одной из основных причин такого положения является наличие специ-фических и все еще недостаточно изученных особенностей эво-люционного процесса на клеточном и субклеточном уровнях организации, что крайне затрудняет определение родственных отношений между отдельными группами одноклеточных орга-низмов, а следовательно, и построение обоснованных эволюцион-ных гипотез в области общей цитологии.

В настоящее время более широко распространен другой аспект использования сравнительно-цитологического метода, не преследующий цели прямого выяснения исторической обуслов-ленности той или иной клеточной структуры или процесса. В современной общей цитологии такой аспект применения срав-нительного метода претерпел несколько видоизменений.

На первом этапе, в период внедрения в практику цитологи-ческого анализа принципиально новых морфобиохимических методов, выбор объекта исследования определялся следующими соображениями. Во-первых, имело значение удобство того или иного объекта для применения используемого метода. Во-вто-рых, большую роль играла степень выраженности данного при-знака у исследуемой клетки. Так, для изучения общих законо-мерностей организации клеток эукариот излюбленным объектом были клетки печени млекопитающих с их гармонично развитой системой мембранных органоидов Классические работы по ана-лизу процессов внутриклеточного транспорта и созревания сек-рета были выполнены на клетках поджелудочной железы и сли-зистых бокаловидных клетках млекопитающих.

Для комплексных цитологических и молекулярно-биологиче-ских исследований организации клеток прокариот широко использовалась кишечная палочка; моделями для изучения организации низших эукариот являлись дрожжи и плесневой гриб . При этом оказалось, что установленные на данных объектах закономерности имеют универсальное значение, по-скольку они во многих случаях принципиально сходны у всех эукариотных или у всех прокариотных клеток. Более того, ряд закономерностей субклеточной организации, особенно на моле-кулярном и надмолекулярном уровнях, оказался универсаль-ным для клеток и про-, и эукариотного типа (организация мем-бран, принцип строения рибосом и т. д.), несмотря на то, что названные типы клеток по некоторым признакам принципиально различаются между собой. Это обстоятельство породило пред-ставления о том, что можно разрабатывать основные общецито-логические проблемы на ограниченном круге объектов, удобных в методическом отношении, а затем распространять установ-ленные закономерности на другие клетки в силу их принци-пиально сходной организации.

Однако в последние годы такое упрощенное использование сравнительного подхода начало подвергаться критике по мере внедрения современных цитологических методов в специальные биологические науки о клетке — частную цитологию, протозоо-логию, ботанику низших растений. Морфобиохимический анализ, примененный в этих областях науки, позволил установить факты, свидетельствующие об огромном разнообразии конкрет-ной реализации того или иного общего признака организации клетки, разнообразии значительно большем, чем следовало из результатов, полученных ранее на «модельных» объектах. Осо-бенно велико это многообразие на высших субсистемных и си-стемных уровнях организации клетки. Характерно оно и для столь сложных и многокомпонентных процессов, как процессы внутриклеточного метаболизма и транспорта или равнонаслед-ственного распределения генетического материала при делении клеток.

Обобщение большого сравнительно-цитологического мате-риала, полученного на уровне современных методических воз-можностей, заставило отказаться от упомянутого выше упро-щенного представления о роли сравнительного метода. В связи с этим в общей цитологии (особенно в отношении эукариотных клеток) доминирующее положение приобретают представления о необходимости использовать сравнительный метод для ана-лиза отдельных аналогичных по функциональной деятельности клеточных систем или процессов во всем многообразии их проявлений у конкретных клеток При таком подходе особый инте-рес вызывают не «типичные», «средние» клетки, а, напротив, клетки, резко уклоняющиеся от среднего типа организации, клетки, в которых гипертрофированы те или иные признаки.

Наибольшее число таких «уклоняющихся» вариантов встре-чается среди клеток высших многоклеточных организмов, где развита далеко заходящая специализация клеток в составе от-дельных тканевых систем. Случаи «уклонения» от среднего типа широко распространены также среди высших простейших, ко-торые подвергались эволюции, сохраняя при этом одноклеточ-ный уровень организации. Именно при исследовании такого рода нетипичных клеток удалось выявить большое количество новых интересных фактов, значительно углубляющих наши пред-ставления и об общих закономерностях клеточной организации, и об ее эволюционной пластичности, которая и обусловливает наблюдаемое многообразие клеточных систем. При этом, как уже отмечалось выше, в случае частных наук наибольший инте-рес вызывает именно специфика проявления у различных объ-ектов общих признаков, характерных для всех клеток.

В отличие от специальных наук при общецитологическом подходе вопрос этот ставится несколько в другой плоскости, ибо исследователь стремится выяснить, насколько широко распро-странена у разных клеток специфика проявлений данного при-знака, какой комбинацией общих механизмов и каких именно она обусловлена. Так, например, протозоологам удалось обна-ружить весьма интересную динамику формирования макронук-леуса после конъюгации у брюхоресничных инфузорий. В фор-мирующемся макронуклеусе происходит значительное увеличе-ние количества ДНК, а затем наблюдается резкая редукция наследственного материала (вплоть до 93%). Такой процесс редукции генетического материала имеет место и в соматиче-ских клетках ряда групп многоклеточных животных (некоторые насекомые, нематоды). Оставшаяся ДНК, небольшая по общему количеству, но содержащая всю необходимую для функциони-рования макронуклеуса информацию, многократно реплици-руется. В результате создается дефинитивный макронуклеус, который отличается от микронуклеуса не только по количеству ДНК, но и по ее качественному составу. Здесь отсутствует по-давляющая часть нефункционирующих генов, в то время как функционирующие локусы представлены значительным количе-ством копий.

Эти факты представляют большой общецитологический ин-терес именно потому, что, как правило, наблюдаемые здесь явления выступают не просто в качестве парадоксальных, свой-ственных лишь высшим одноклеточным организмам признаков. Так, процессы политенизации, избирательной репликации отдельных участков ДНК хромосом и, наконец, избирательная редукция значительных участков генома — все эти явления имеют место и у специализированных клеток многоклеточных организмов. Они и осуществляются, вероятно, на базе общих элементарных механизмов. А специфика сложного процесса изменений ядерного аппарата при формировании макронуклеуса у брюхоресничных инфузорий обусловлена в основном свое-образной комбинацией общих, универсальных для эукариотных клеток элементарных механизмов. Такого рода представления получают сейчас в общей цитологии широкое распространение. Они чрезвычайно стимулируют направленные сравнительно- цитологические исследования, посвященные выяснению важных общецитологических проблем. Материал с сайта

Примером целенаправленного сравнительно-цитологического исследования может служить изучение вопроса о механизмах равнонаследственного распределения хромосом во время митоза у эукариот путем анализа митоза разных видов диатомовых водорослей: на этих объектах в отличие от типичных митозов метазойных клеток удается четко морфологически проследить сложные изменения микротрубочкоорганизующих центров, фор-мирование и взаимное расхождение микротрубочковых полуверетен, расхождение хромосом к полюсам клетки с помощью формирования в метафазе своеобразной структуры — ворот-ничка.

В свете последних данных о ведущей роли тубулин-динеиновой механохимической системы в анафазном перемещении хромосом у метазойных клеток весьма вероятно предположить, что эта система присутствует и у диатомовых водорослей , т. е. и здесь имеет место лишь своеобразная комбинация элементар-ных механизмов, общих для всех клеток и обусловливающих механохимические процессы при митозе.

Очевидно, что для анализа этих механизмов, выяснение ко-торых представляет одну из весьма актуальных проблем общей цитологии, перспективным было бы наличие такого объекта, где они четко дифференцированы и морфологически выражены.

Количество подобного рода примеров непрерывно растет. Это обусловлено, с одной стороны, все расширяющимся внедре-нием комплексных современных методов в практику частноци-тологических, протозоологических и ботанических исследований, с другой стороны, накоплением в самих сравнительно-цитологи-ческих исследованиях фактов, которые приобретают все боль-шее значение для общей цитологии и оказываются в центре ее внимания. А все это, в свою очередь, приводит к тому, что срав-нительно-цитологический анализ начинает занимать в цитоло-гии исключительно важное место.

Краткая характеристика основных направлений и аспектов современных общецитологических исследований показывает, что на данном этапе развития цитологии существует как достаточно четкое разграничение отдельных направлений, так и их синтез. Разграничение имеет место и в методическом отношении, и в отношении логики решения конкретных задач, поставленных в пределах каждого из направлений и подходов. В морфофунк-циональном аспекте цитологических исследований доминирует дискретный подход к анализу клеточных структур. Одной из наиболее важных особенностей экспериментального подхода к изучению закономерностей клеточной организации является его ориентация на анализ общих интегрирующих механизмов организации клеточных систем и целостной клетки. При этом, как уже подчеркивалось выше, решение стоящих перед такими исследованиями задач невозможно без широкого использования методов, присущих морфофункциональному подходу. Экспери-ментальный анализ дает феноменологическую характеристику свойств тех или иных клеточных механизмов и внутриклеточ-ных процессов, создавая тем самым необходимую базу для при-менения богатого арсенала структурно-биохимических методов.

Таким образом, на современном этапе развития общей цито-логии имеются предпосылки для весьма тесного объединения этих двух аспектов цитологических исследований. Это и есте-ственно, так как в конечном итоге оба подхода преследуют одну цель — выяснение функциональной организации клеточ-ных структур и механизмов регуляции процессов в целостной клеточной системе.

Сравнительно-цитологический подход к анализу общецитоло-гических проблем занимает в современной общей цитологии особое положение. Сравнительно-цитологический анализ про-водится на основе данных, получаемых на базе морфофункцио-нального и экспериментального подходов, т. е. в методическом отношении все главные аспекты цитологических исследований оказываются тесно связанными друг с другом.

Спецификой сравнительно-цитологического подхода, специ-фикой, обусловливающей его особое положение, является целе-направленное использование разнообразных объектов живой природы для исследования общих закономерностей организации отдельных клеточных структур, внутриклеточных процессов и интегрирующих механизмов во всем многообразии их проявле-ний у различных типов клеток.

Итак, как видно из вышеизложенного, основные направления цитологических исследований в значительной мере определяют специфику современного этапа развития общей цитологии и обусловливают ее тесную взаимосвязь со смежными биологи-ческими науками. Одной из наиболее характерных особенностей этого этапа является тесная взаимосвязь всех важнейших на-правлений цитологических исследований в методическом отно-шении. Больше того, такое методическое комплексирование часто выходит уже за рамки общей цитологии.

В цитологических работах широко используются чисто био-химические и молекулярно-биологические методы, и наоборот, в биохимических и молекулярно-биологических исследованиях широко применяются цитологические морфологические методы. Методическое комплексирование смежных наук и единство их конечных целей обусловили формирование новой синтетической науки о клетке — биологии клетки . Она объединяет цитологию, структурную биохимию, молекулярную биологию, молекулярную генетику и частные биологические науки о клеточном уровне организации. Такое объединение смежных наук, несомненно, прогрессивное явление. Однако, несмотря на подобный синтез, каждая из наук сохраняет и свою методическую специфику, и специфику в постановке и способах разработки проблем орга-низации клеток. В настоящее время доминирующее положение в этой синтетической науке принадлежит исследованиям моле-кулярно-биологического и молекулярно-генетического направле-ний. Такое положение обусловлено бурным прогрессом наших знаний о низших уровнях организации клеток, но оно пред-ставляет собой лишь временное явление.

По сути дела ведущее место в новой синтетической науке о клетке должна занять общая цитология — наука об общих за-кономерностях клеточного уровня организации живой материи. Из современных биологических наук, занимающихся этим уров-нем организации живой материи, общая цитология, расширяя целенаправленный сравнительно-цитологический подход, бази-рующийся на структурно-биохимических методах, наиболее под-готовлена к глубокому общебиологическому обобщению огром-ного фактического материала по дискретному анализу отдель-ных клеточных структур в многочисленных разновидностях кле-ток. Ведущее положение должна занять общая цитология и в анализе общеклеточных интегрирующих механизмов. Важной предпосылкой к этому является бурная разработка новых экспе-риментальных моделей. Их углубленный анализ современными методами и широкое внедрение экспериментальных моделей в целенаправленные сравнительно-цитологические исследования должны обеспечить прогресс в решении одной из основных про-блем организации клеток — проблемы клеточной интеграции.

По мере накопления фактического материала об элементар-ных универсальных механизмах интеграции клетки и размахе их модификаций именно перед общей цитологией стоит задача провести глубокий анализ исторической обусловленности орга-низации частных клеточных систем и клеточной организации в целом, а также специфики эволюционного процесса на клеточ-ном и субклеточном уровнях организации живой материи. Реше-нию этой задачи способствует отчетливо проступающая сейчас в общецитологических исследованиях тенденция к сочетанию дискретного анализа отдельных компонентов клетки с изуче-нием ее кг. к целостной системы.

На этой странице материал по темам:

План:

1. Что изучает цитология.

2. Представление о том, что организмы состоят из клеток.

3. Методы исследования, применяемые в цитологии.

4. Фракционирование клеток.

5. Радиоавтография.

6. Определение продолжительности некоторых стадий клеточного цикла методом радиоавтографии.

Цитология – наука о клетке. Из среды других биологических наук она выделилась почти 100 лет назад. Впервые обобщенные сведения о строении клеток были собраны в книгу Ж.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитология изучает строение клеток, их функционирование как элементарных живых систем: исследуются функции отдельных клеточных компонентов, процессы воспроизведения клеток, их репарации, приспособление к условиям среды и многие другие процессы, позволяющие судить об общих для всех клеток свойствах и функциях. Цитология рассматривает также особенности строения специализированных клеток. Другими словами, современная цитология – это физиология клетки. Цитология тесно сопряжена с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Это послужило основанием для углубленного изучения клетки уже с позиций этих наук и появления некой синтетической науки о клетке – биологии клетки, или клеточной биологии. В настоящее время термины цитология и биология клетки совпадают, так как их предметом изучения является клетка с ее собственными закономерностями организации и функционирования. Дисциплина «Биология клетки» относится к фундаментальным разделам биологии, потому что она исследует и описывает единственную единицу всего живого на Земле – клетку.

Длительное и пристальное изучение клетки как таковой привело к формулированию важного теоретического обобщения, имеющего общебиологическое значение, а именно к появлению клеточной теории. В XVII в. Роберт Гук, физик и биолог, отличавшийся большой изобретательностью, создал микроскоп. Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что она построена из малюсеньких ничем не заполненных ячеек, разделенных тонкими стенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвал эти маленькие ячейки клетками. В дальнейшем, когда другие биологи начали исследовать под микроскопом растительные ткани, оказалось, что маленькие ячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живых растительных тканях, но у них они не пустые, а содержат каждая по маленькому студенистому тельцу. После того, как микроскопическому исследованию подвергли животные ткани, было установлено, что они также состоят из мелких студенистых телец, но что эти тельца лишь в редких случаях отделены друг от друга стенками. В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо друг от друга сформулировали клеточную теорию, гласящую, что клетки представляют собой элементарные единицы, из которых в конечном счете построены все растения и все животные. В течение какого-то времени двоякий смысл слова клетка еще вызывал некоторые недоразумения, но затем он прочно закрепился за этими маленькими желеобразными тельцами.

Современное представление о клетке тесно связано с техническими достижениями и усовершенствованиями методов исследования. Помимо обычной световой микроскопии, не утратившей своей роли, в последние несколько десятилетий большое значение приобрели поляризационная, ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особое место занимает электронная микроскопия, разрешающая способность которой позволила проникнуть и изучить субмикроскопическую и молекулярную структуру клетки. Современные методы исследования позволили вскрыть детальную картину клеточной организации.

Каждая клетка состоит из ядра и цитоплазмы, отделенных друг от друга и от внешней среды оболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма, эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии, включения, клеточный центр, специализированные органеллы.

Часть организма, выполняющая какую-то особую функцию, называют органом. Любой орган – легкое, печень, почка, например – имеет каждый свою особую структуру, благодаря которой он играет определенную роль в организме. Точно так же в цитоплазме имеются особые структуры, своеобразное строение которых дает им возможность нести определенные функции, необходимые для метаболизма клетки; эти структуры называют органеллами («маленькими органами»).

Выяснение природы, функции и распределения органелл цитоплазмы стало возможным лишь после развития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, с помощью которого биохимики могут выделять относительно чистые фракции клеток, содержащие определенные органеллы, и изучать, таким образом, отдельные интересующие их метаболические реакции; 3) радиоавтография, сделавшая возможным непосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

Метод, с помощью которого органеллы выделяют из клеток, называют фракционированием. Этот метод оказался очень плодотворным, дав биохимикам возможность выделять разные органеллы клетки в относительно чистом виде. Он позволяет, кроме того, определять химический состав органелл и содержащиеся в них ферменты и на основании получаемых данных делать выводы об их функциях в клетке. В качестве первого шага клетки разрушают путем гомогенизации в какой-нибудь подходящей среде, которая обеспечивает сохранность органелл и предотвращает их агрегацию. Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многие другие клеточные органеллы остаются при этом неповрежденными, такие мембранные переплетения, как эндоплазматический ретикулум, а также плазматическая мембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембран нередко замыкаются сами на себя, в результате чего получаются округлые пузырьки различных размеров.

На следующем этапе клеточный гомогенат подвергают ряду центрифугирований, скорость и продолжительность которых всякий раз возрастает; этот процесс называется дифференциальным центрифугированием. Разные органеллы клетки осаждаются на дне центрифужных пробирок при различных скоростях центрифугирования, что зависит от размеров, плотности и формы органелл. Образующийся осадок можно отобрать и исследовать. Быстрее всех осаждаются такие крупные и плотные структуры, как ядра, а для осаждения более мелких и менее плотных структур, таких, как пузырьки эндоплазматического ретикулума, требуются более высокие скорости и более длительное время. Поэтому при низких скоростях центрифугирования ядра осаждаются, а другие клеточные органеллы остаются в суспензии. При более высоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугировании и очень высоких скоростях в осадок выпадают даже такие мелкие частицы, как рибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобы определить чистоту полученных фракций. Все фракции до некоторой степени загрязнены другими органеллами. Если тем не менее удается добиться достаточной чистоты фракций, то их подвергают затем биохимическому анализу, чтобы определить химический состав и ферментативную активность выделенных органелл.

Для прогресса гистологии, цитологии и эмбриологии большое значе­ние имеет внедрение достижений физики и химии, новых методов смеж­ных наук - биохимии, молекулярной биологии, генной инженерии.

Современные методы исследования позволяют изучать ткани не только как единое целое, но и выделять из них отдельные типы клеток для изуче­ния их жизнедеятельности в течение длительного времени, выделять отдель­ные клеточные органеллы и составляющие их макромолекулы (например, ДНК), исследовать их функциональные особенности.

Такие возможности открылись в связи с созданием новых приборов и технологий - различных типов микроскопов, компьютерной техники, рен-тгеноструктурного анализа, применения метода ядерно-магнитного резо­нанса (ЯМР), радиоактивных изотопов и авторадиографии, электрофореза и хроматографии, фракционирования клеточного содержимого с помощью ультрацентрифугирования, разделения и культивирования клеток, получе­ния гибридов; использования биотехнологических методов - получения гибридом и моноклональных антител, рекомбинантных ДНК и др.

Таким образом, биологические объекты можно изучать на тканевом, клеточном, субклеточном и молекулярном уровнях. Несмотря на внедрение в естественные науки разнообразных биохимических, биофизических, фи­зических и технологических методов, необходимых для решения многих вопросов, связанных с жизнедеятельностью клеток и тканей, гистология в основе своей остается морфологической наукой со своим набором методов. Последние позволяют охарактеризовать процессы, происходящие в клетках и тканях, их структурные особенности.

Главными этапами цитологического и гистологического анализа явля­ются выбор объекта исследования, подготовка его для изучения в микро­скопе, применение методов микроскопирования, качественный и количе­ственный анализ изображений.

Объектами исследования служат живые и фиксированные клет­ки и ткани, их изображения, полученные в световых и электронных мик­роскопах или на телевизионном экране дисплея. Существует ряд методов, позволяющих проводить анализ указанных объектов.

Методы микроскопирования гистологических препаратов

Основными методами изучения биологических микрообъектов являют­ся световая и электронная микроскопия, которые широко используют"ся в экспериментальной и клинической практике.

Микроскопирование - основной метод изучения микрообъектов, ис­пользуемый в биологии более 300 лет. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой разнообразные сложные оптические си­стемы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d o ), которое в основном зависит от длины волны света (\) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется фор­мулой d 0 = 1 / 2 \. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние и тем меньшие по размерам микроструктуры можно видеть в препарате. Для изучения гистологических препаратов при­меняют разнообразные виды световых микроскопов и электронные мик­роскопы.

Рис. 1. Микроскопы для биологичес­ких исследований.

А - световой биологический микроскоп «Биолам-С»: 1 - основание; 2 - тубусо-держатель; 3 - наклонный тубус; 4 - оку­ляр, 5 - револьвер; 6 - объективы; 7 - столик; 8 - конденсор с ирисовой диаф­рагмой; 9 - винт конденсора; 10 - зерка­ло; 11 - микрометрический винт; 12 - макрометрический винт. Б - электронный микроскоп ЭМВ-100АК с автоматизиро­ванной системой обработки изображений: 1 - колонка микроскопа (с электронно-оптической системой и камерой для образ­цов); 2 - пульт управления; 3 - камера с люминесцентным экраном; 4 - блок ана­лиза изображений; 5 - датчик видеосигна­ла.

Световая микроскопия. Для изучения гистологических микрообъектов применяют обычные световые микроскопы и их разновидности, в которых используются источники света с различными длинами волн. В обычных све­товых микроскопах источником освещения служит естественный или ис­кусственный свет (рис. 1, А). Минимальная длина волны видимой части спектра равна примерно 0,4 мкм. Следовательно, для обычного светового микроскопа наименьшее разрешаемое расстояние равно приблизительно 0,2 мкм (d o = "/,- 0,4 мкм = 0,2 мкм), а общее увеличение (произведение увеличения объектива на увеличение окуляра) может быть 1500-2500.

Таким образом, в световом микроскопе можно видеть не только отдель­ные клетки размером от 4 до 150 мкм, но и их внутриклеточные структу­ры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

Ультрафиолетовая микроскопия . Это разновидность световой микроско­пии. В ультрафиолетовом микроскопе используют более короткие ультрафи­олетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет при­близительно 0,1 мкм (d o = V 2 - 0,2 мкм = 0,1 мкм). Полученное в ультрафи­олетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специаль­ных устройств (люминесцентный экран, электронно-оптический преобра­зователь).

Флюоресцентная (люминесцентная) микроскопия. Явления флюоресцен­ции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный пе­реход из возбужденного состояния в нормальное происходит с испускани­ем света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие вы­сокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолето­вые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэто­му их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первич­ную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

Первичной флюоресценцией обладают серотонин, катехолами-ны (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (ме­тод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

Существуют различные флюорохромы, которые специфически связы­ваются с определенными макромолекулами (акридин оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов чаще всего упот­ребляется флюорохром акридиновый оранжевый. В этом случае ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом со­ставе. Вариант метода флюоресцентной микроскопии, при котором и воз­буждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцент­ной микроскопии .

Фазово-контрастная микроскопия. Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, неви­димых при обычных методах микроскопирования. Как уже указывалось, в обычном световом микроскопе необходимая контрастность структур дости­гается с помощью окрашивания. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной коль­цевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Такая конструкция оптики микроско­па дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения. Повышение контра­ста позволяет видеть все структуры, различающиеся по показателю прелом­ления. Разновидностью метода фазового контраста является метод фазово-темнополъного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

Микроскопия в темном поле. В темнопольном микроскопе только свет, который дает дифракцию структур в препарате, достигает объектива. Про­исходит это благодаря наличию в микроскопе специального конденсора, который освещает препарат строго косым светом; лучи от осветителя на­правляются сбоку. Таким образом, поле выглядит темным, а мелкие части­цы в препарате отражают свет, который далее попадает в объектив. Разре­шение этого микроскопа не может быть лучше, чем у светлопольного мик­роскопа, так как используется такая же длина волны. Но здесь достигается больший контраст. Он используется для изучения живых объектов, автора­диографических объектов, например зерен серебра, которые выглядят свет­лыми на темном поле. В клинике его применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет, в частно­сти treponema pallidum , вызывающей сифилис и др.

Интерференционная микроскопия. Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани, и диффе­ренциальный интерференционный микроскоп (с оптикой Номарского), который специально используют для изучения рельефа по­верхности клеток и других биологических объектов.

В интерференционном микроскопе пучок света от осветителя разделя­ется на два потока: один проходит через объект и изменяет по фазе колеба­ния, второй идет, минуя объект. В призмах объектива оба пучка соединяют­ся и интерферируют между собой. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется эффект интерференции, возника­ющий при комбинации двух наборов волн, который создает изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать клетки в про­цессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микрокиносъемки.

Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляри­зационных фильтра - первый (поляризатор) между пучком света, и объек­том, а второй (анализатор) между линзой объектива и глазом. Через пер­вый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось, которая располагается перпендикулярно первому филь­тру, и он не пропускает свет. Получается эффект темного поля. Оба фильт­ра могут вращаться, изменяя направление пучка света. Если анализатор повернуть на 90° по отношению к поляризатору, то свет проходить через них не будет. Структуры, содержащие продольно ориентированные молеку­лы (коллаген, микротрубочки, микрофиламенты), и кристаллическиеструктуры (в клетках Лейдига 1) при изменении оси вращения проявляются как светящиеся. Способность кристаллов или паракристаллических образо­ваний к раздвоению световой волны на обыкновенную и перпендикуляр­ную к ней называется двойным лучепреломлением. Такой способностью об­ладают фибриллы поперечнополосатых мышц.

Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии были создание и применение электронного микроскопа (см. рис. 1, Б). В электронном микроскопе используется поток электронов с бо­лее короткими, чем в световом микроскопе, длинами волн. При напряже­нии 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рас­считано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т.е. в 100 000 раз меньше; чем в световом мик­роскопе. Практически в современных электронных микроскопах разрешае­мое расстояние составляет около 0,1-0,7 нм.

В настоящее время широко используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ) и ска­нирующие (растровые) электронные микроскопы (СЭМ). С помощью ТЭМ можно получить лишь плоскостное изображение изучае­мого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точ­ки поверхности. Для исследования выбранного участка микрозонд двигает­ся по его поверхности под действием отклоняющих катушек (принцип те­левизионной развертки). Такое исследование объекта называется сканиро­ванием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Главными достоинствами растровой электронной микроскопии являют­ся большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность.

Электронная микроскопия по методу замораживания - скалывания применяется для изучения деталей строения мембран и межклеточных соединений. Для изготов­ления сколов клетки замораживают при низкой температуре (-160 °С). При иссле­довании мембраны плоскость скола проходит через середину бислоя липидов. Далее на внутренние поверхности полученных половинок мембран напыляют металлы (платина, палладий, уран), изучают их с помощью ТЭМ и микрофотографии.

Метод криоэлектронной микроскопии. Быстро замороженный тонкий слой (око­ло 100 нм) образца ткани помещают на микроскопическую решетку и исследуют в вакууме микроскопа при -160 С С.

Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующие­ся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них арте­фактов, вызываемых фиксацией.

Методы контрастирования солями тяжелых металлов позволяют ис­следовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

Электронная микроскопия ультратонких срезов, полученных методом криоультра-микротомии. При этом методе кусочки тканей без фиксации и заливки в твердые среды быстро охлаждают в жидком азоте при температуре -196 °С. Это обеспечива­ет торможение метаболических процессов клеток и переход воды из жидкой фазы в твердую. Далее блоки режут на ультрамикротоме при низкой температуре. Такой метод приготовления срезов обычно используют для определения активности фер­ментов, а также для проведения иммунохимических реакций. Для выявления анти­генов применяют антитела, связанные с частицами коллоидного золота, локализа­цию которого легко выявить на препаратах.

Методы сверхвысоковольтной микроскопии. Используют электронные микроско­пы с ускоряющим напряжением до 3 000 000 В. Преимущество этих микроскопов в том, что они позволяют исследовать объекты большой толщины (1-10 мкм), так как при высокой энергии электронов они меньше поглощаются объектом. Стерео­скопическая съемка позволяет получать информацию о трехмерной организации внутриклеточных структур с высоким разрешением (около 0,5 нм).

Рентгеноструктурный анализ. Для изучения структуры макромолекул на ато­марном уровне применяют методы с использованием рентгеновских лучей, имеющих длину волны около 0,1 нм (диаметр атома водорода). Молекулы, образующие крис­таллическую решетку, изучают с помощью дифракционных картин, которые регист­рируют на фотопластинке в виде множества пятен различной интенсивности. Интен­сивность пятен зависит от способности различных объектов в решетке рассеивать излучение. Положение пятен в дифракционной картине зависит от положения объек­та в системе, а их интенсивность свидетельствует о его внутренней атомной структуре.

Методы исследования фиксированных клеток и тканей

Исследование фиксированных клеток и тканей. Основным объектом ис­следования являются гистологические препараты, приготовленные из фик­сированных структур. Препарат может представлять собой мазок (напри­мер, мазок крови, костного мозга, слюны, цереброспинальной жидкости и др.), отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозго­вой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без спе­циальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют"слабый контраст, они плохо выявля­ются в обычном световом микроскопе и требуется использование специаль­ных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты.

Процесс изготовления гистологического препарата для световой и элек­тронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация, 2) уплотнение материала, 3) приготовление срезов, 4) окрашивание или контрастирование срезов. Для световой мик­роскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды (5). Фиксация обеспечивает предотвращение про­цессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмие­вая кислота, специальные фиксирующие смеси), либо подвергают терми­ческой обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фик­сированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение кусочков, необходимое для приготовления срезов, произво­дится путем пропитывания предварительно обезвоженного материала пара­фином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например в жидкой углекислоте.

Приготовление срезов производится на специальных приборах - микро­томах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

Окрашивание срезов (в световой микроскопии) или напыление их соля­ми металлов (в электронной микроскопии) применяют для увеличения кон­трастности изображения отдельных структур при рассматривании их в мик­роскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. Гистологические краси­тели подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее известный основной краситель азур II , который окрашивает ядра в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-оранжевый цвет. Избиратель­ное сродство структур к определенным красителям обусловлено их хими­ческим составом и физическими свойствами. Структуры, хорошо окраши­вающиеся кислыми красителями, называются оксифильными (ацидофильны­ми, эозинофильными), а окрашивающиеся основными - базофильными. Структуры, воспринимающие как кислые, так и основные красители, яв­ляются нейтрофилъными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обез­воженный гистологический срез заключают между предметным и по­кровным стеклами в канадский бальзам или другие вещества. Готовый гис­тологический препарат может быть использован для изучения под микро­скопом в течение многих лет. Для электронной микроскопии срезы, полу­ченные на ультрамикротоме, помещают на специальные сетки, контрас­тируют солями марганца, кобальта и др., после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объек­том изучения наряду с гистологическими препаратами.

Методы исследования живых клеток и тканей

Изучение живых клеток и тканей позволяет получить наиболее полную информацию об их жизнедеятельности - проследить движение, процессы деления, разрушения, роста, дифференцировки и взаимодействия клеток, продолжительность их жизненного цикла, реактивные изменения в ответ на действие различных факторов.

Прижизненные исследования клеток в организме (in vivo ). Одним из при­жизненных методов исследования является наблюдение структур в живом организме. С помощью специальных просвечивающих микроскопов-иллюми­наторов, например, можно изучать в динамике циркуляцию крови в мик­рососудах. После проведения анестезии у животного объект исследования (например, брыжейка кишечника) выводят наружу и рассматривают в мик­роскопе, при этом ткани должны постоянно увлажняться изотоническим раствором натрия хлорида. Однако длительность такого наблюдения огра­ничена. Лучшие результаты дает метод вживления прозрачных ка­мер в организм животного.

Наиболее удобным органом для вживления таких камер и последующего на­блюдения является ухо какого-либо животного (например, кролика). Участок уха с прозрачной камерой помещают на предметный столик микроскопа и в этих услови­ях изучают динамику изменения клеток и тканей в течение продолжительного вре­мени. Таким образом могут изучаться процессы выселения лейкоцитов из кровенос­ных сосудов, различные стадии образования соединительной ткани, капилляров, нервов и другие процессы. В качестве естественной прозрачной камеры можно ис­пользовать глаз экспериментальных животных. Клетки, ткани или образцы органов помещают в жидкость передней камеры глаза в угол, образованный роговицей и радужкой, и могут наблюдаться через прозрачную роговицу. Таким образом была произведена трансплантация оплодотворенной яйцеклетки и прослежены ранние стадии развития зародыша. Обезьянам были пересажены небольшие кусочки матки и изучены изменения слизистой оболочки матки в различные фазы менструального цикла.

Широкое применение нашел метод трансплантации клеток кро­ви и костного мозга от здоровых животных-доноров животным-реципиен­там, подвергнутым смертельному облучению. Животные-реципиенты после трансплантации оставались живыми вследствие приживления донорских клеток, образующих в селезенке колонии кроветворных клеток. Исследова­ние числа колоний и их клеточного состава позволяет выявлять количество родоначальных кроветворных клеток и различные стадии их дифференци­ровки. С помощью метода колониеобразования установлены источники раз­вития для всех клеток крови.

Витальное и суправитальное окрашивание. При витальном (прижиз­ненном) окрашивании клеток и тканей краситель вводят в организм жи­вотного, при этом он избирательно окрашивает определенные клетки, их органеллы или межклеточное вещество. Например, с помощью трипанового синего или литиевого кармина выявляют фагоциты, а с помощью ализа­рина - новообразованный матрикс кости.

Суправитальным окрашиванием называют окрашивание живых клеток, выделенных из организма. Таким способом выявляют молодые фор­мы эритроцитов - ретикулоциты крови (краситель бриллиантовый крези-ловый голубой), митохондрии в клетках (краситель зеленый янус), лизосомы (краситель нейтральный красный).

Исследования живых клеток и тканей в культуре (in vitro ). Этот метод является одним из самых распространенных. Выделенные из организма че­ловека или животных клетки, маленькие образцы тканей или органов по­мещают в стеклянные или пластмассовые сосуды, содержащие специальную питательную среду, - плазму крови, эмбриональный экстракт, а так­же искусственные среды. Различают суспензионные культуры (клет­ки взвешены в среде), тканевые, органные и монослойные культуры (эксплантированные клетки образуют на стекле сплошной слой). Обеспечи­ваются стерильность среды и температура, соответствующая температуре тела. В этих условиях клетки в течение длительного времени сохраняют ос­новные показатели жизнедеятельности - способность к росту, размноже­нию, дифференцировке, движению. Такие культуры могут существовать многие дни, месяцы и даже годы, если обновлять среду культивирования и пересаживать жизнеспособные клетки в другие сосуды. Некоторые виды клеток благодаря изменениям в их геноме могут сохраняться и размножать­ся в культуре, образуя непрерывные клеточные линии. В разработку методов культивирования клеток и тканей большой вклад внесли А. А. Максимов, А. В. Румянцев, Н. Г. Хлопин, А. Д. Тимофеевский, Ф. М. Лазаренко. В на­стоящее время получены клеточные линии фибробластов, миоцитов, эпи-телиоцитов, макрофагов и др., которые существуют многие годы.

Использование метода культивирования позволило выявить ряд зако­номерностей дифференцировки, злокачественного перерождения клеток, клеточных взаимодействий, взаимодействий клеток с вирусами и микроба­ми. Показана возможность хрящевых клеток формировать в культуре меж­клеточное вещество и способность клеток надпочечников продуцировать гормоны. Культивирование эмбриональных тканей и органов дало возмож­ность проследить развитие кости, кожи и других органов. Разработана мето­дика культивирования нервных клеток.

Особую значимость метод культуры тканей имеет для проведения эк­спериментальных наблюдений на клетках и тканях человека. Взятые из организма человека клетки при пункции или биопсии могут в культуре тканей использоваться для определения пола, наследственных заболева­ний, злокачественного перерождения, выявления действия ряда токсич­ных веществ.

В последние годы клеточные культуры широко применяются для гиб­ридизации клеток.

Разработаны методы разделения тканей на клетки, выделение отдельных типов клеток и их культивирования.

Вначале ткань превращают в суспензию клеток путем разрушения межклеточных контактов и межклеточного матрикса с помощью протеолитических ферментов (трип­син, коллагеназа) и соединений, связывающих Са 2+ (с помощью ЭДТА - этиленди-аминтетрауксусной кислоты). Далее полученную суспензию разделяют на фракции клеток различных типов с помощью центрифугирования, позволяющего отделить более тяжелые клетки от легких, большие от малых, или путем прилипания клеток к стеклу или пластмассе, способность к которому у различных типов клеток неодина­кова. Для обеспечения специфического прилипания клеток к поверхности стекла ис­пользуют антитела, специфически связывающиеся с клетками одного типа. Прилип­шие клетки затем отделяют, разрушая матрикс ферментами, при этом получают взвесь однородных клеток. Более тонким методом разделения клеток является мече-ние антителами, связанными с флюоресцирующими красителями. Меченые клетки отделяются от немеченых с помощью сортера (электронного флюоресцентно-активи­руемого клеточного анализатора). Клеточный анализатор сортирует в 1 с около 5000 клеток. Выделенные клетки можно изучать в условиях культивирования.

Метод культивирования клеток позволяет изучать их жизнедеятельность, раз­множение, дифференцировку, взаимодействие с другими клетками, влияние гор­монов, факторов роста и др.

Культуры обычно готовят из суспензии клеток, полученной вышеописанным методом диссоциации ткани. Большинство клеток неспособны расти в суспензии, им необходима твердая поверхность, в качестве которой используют поверхность пластиковой культуральной чашки, иногда с компонентами внеклеточного матрик-са, например коллагена. Первичными культурами называют культуры, приготовлен­ные непосредственно после первого этапа фракционирования клеток, вторичны­ми - культуры клеток, пересаженные из первичных культур в новую среду. Можно последовательно перевивать клетки в течение недель и месяцев, при этом клетки сохраняют характерные для них признаки дифференцировки (например, клетки эпителия образуют слои). Исходным материалом для клеточных культур обычно слу­жат эмбриональные ткани и ткани новорожденных.

В качестве питательных сред используют смеси солей, аминокислот, витами­нов, лошадиной сыворотки, экстракт куриных эмбрионов, эмбриональную сыво­ротку и др. В настоящее время разработаны специальные среды для культивирова­ния различных типов клеток. Они содержат один или несколько белковых факторов роста, необходимых клеткам для жизнедеятельности и размножения. Например, для роста нервных клеток необходим фактор роста нервов (ФРН).

У большинства клеток в культуре наблюдается определенное число делений (50-100), а затем они погибают. Иногда в культуре появляются мутантные клетки, которые размножаются бесконечно и образуют клеточную линию (фибробласты, эпителиоциты, миобласты и др.). Мутантные клетки отличаются от раковых клеток, также способных к непрерывному делению, но могущих расти без прикрепления к твердой поверхности. Раковые клетки в культуральных чашках образуют более плот­ную популяцию, чем популяции обычных клеток. Аналогичное свойство можно вызвать экспериментально у нормальных клеток путем трансформации их опухоле-родными вирусами или химическими соединениями, при этом образуются неопла-стически трансформированные клеточные линии. Клеточные линии нетрансформи-рованных и трансформированных клеток можно длительно сохранять при низких температурах (-70 °С). Генетическую однородность клеток усиливают клонировани­ем, когда из одной клетки при ее последовательном делении получают большую колонию однородных клеток. Клон - это популяция клеток, происходящих из од­ной клетки-предшественника.

Клеточные гибриды. При слиянии двух клеток различных типов образу­ется гетерокарион - клетка с двумя ядрами. Для получения гетерока-риона суспензию клеток обрабатывают полиэтиленгликолем или инактиви-рованными вирусами для повреждения плазмолемм клеток, после чего клет­ки способны к слиянию. Например, неактивное ядро эритроцита курицы становится активным (синтез РНК, репликация ДНК) при слиянии кле­ток и переносе в цитоплазму другой клетки, растущей в культуре ткани. Ге­терокарион способен к митозу, в результате чего образуется гибридная клет­ка. Оболочки ядер у гетерокариона разрушаются, и их хромосомы объеди­няются в одном большом ядре.

Клонирование гибридных клеток приводит к образованию гибридных клеточных линий, которые используются для изучения генома. Например, в гибридной клеточной линии «мышь - человек» установлена роль хромо­сомы 11 человека в синтезе инсулина.

Гибридомы. Клеточные линии гибридом используют для получения мо-ноклональных антител. Антитела вырабатываются плазмоцитами, которые образуются из В-лимфоцитов при иммунизации. Определенный вид анти­тел получают при иммунизации мышей конкретными антигенами. Если клонировать такие иммунизированные лимфоциты, то можно получить большое количество однородных антител. Однако время жизни В-лимфоци­тов в культуре ограничено. Поэтому производят их слияние с «бессмертны­ми» опухолевыми клетками (В-лимфомы). В результате образуются гибридо мы (гибрид-клетка, с геномом от двух разных клеток; ома - окончание в названиях опухолей). Такие гибридомы способны размножаться длительно в культуре и синтезировать антитела определенного вида. Каждый клон гиб­ридомы является источником моноклональных антител. Все молекулы анти­тел данного вида обладают одинаковой специфичностью связывания анти­генов. Можно получать моноклональные антитела против любого белка, содержащегося в клетке, и использовать их для установления локализации белков в клетке, а также для выделения белка из смеси (очистка белков), что позволяет исследовать структуру и функцию белков. Моноклональные антитела применяют также в технологии клонирования генов.

Антитела можно использовать для изучения функции различных моле­кул, вводя их через плазмолемму непосредственно в цитоплазму клеток тонкой стеклянной пипеткой. Например, введение антител к миозину в цитоплазму оплодотворенной яйцеклетки морского ежа останавливает раз­деление цитоплазмы.

Технология рекомбинантных ДНК. Классические генетические методы позволяют изучать функцию генов, анализируя фенотипы мутантных орга­низмов и их потомства. Технология рекомбинантных ДНК дополняет эти методы, позволяет проводить детальный химический анализ генетического материала и получать в больших количествах клеточные белки.

Методы гибридизации широко используют в современной биологии для изучения структуры генов и их экспрессии.

Методы исследования химического состава и метаболизма клеток и тканей

Для изучения химического состава биологических структур - локали­зации веществ, их концентрации и динамики в процессах метаболизма при­меняют специальные методы исследования.

Цито- и гистохимические методы. Эти методы позволяют выявлять лока­лизацию различных химических веществ в структурах клеток, тканей и ор­ганов - ДНК, РНК, белков, углеводов, липидов, аминокислот, минераль­ных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, вхо­дящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для повышения специфичности реакции часто при­меняют ферментативный контроль. Например, для выявления в клетках ри­бонуклеиновой кислоты (РНК) часто используют галлоцианин - краситель с основными свойствами, а наличие РНК подтверждают контрольной обра­боткой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеа­зой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверж­дает наличие в структуре рибонуклеиновой кислоты. Описание многочислен­ных цито- и гистохимических методов дается в специальных руководствах.

В последние годы сочетание гистохимических методов с методом элек­тронной микроскопии привело к развитию нового перспективного направ­ления - электронной гистохимии. Этот метод позволяет изучать ло­кализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях.

Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее 1000).

Радиоактивные изотопы при распаде ядра испускают заряженные части­цы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать в специальных приборах. Радиоактивные изотопы исполь­зуют в методе радиоавтографии. Например, с помощью радиоизотопов 3 Н-тимидина исследуют ДНК ядра, с помощью 3 Н-уридина - РНК.

Метод радиоавтографии. Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит исполь­зование радиоактивных элементов (например, фосфора - 32 Р, углерода - 14 С, серы - 35 S , водорода - 3 Н) или меченных ими соединений. Радиоак­тивные вещества в гистологических срезах обнаруживают с помощью фото­эмульсии, которую наносят на препарат и затем проявляют. В участках пре­парата, где фотоэмульсия соприкасается с радиоактивным веществом, про­исходит фотореакция, в результате которой образуются засвеченные участ­ки (треки). Этим методом можно определять, например, скорость включе­ния меченых аминокислот в белки, образование нуклеиновых кислот, об­мен йода в клетках щитовидной железы и др.

Методы иммунофлюоресцентного анализа. Применение антител. Антите­ла - защитные белки, вырабатываемые плазмоцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Ко­личество различных форм антител достигает миллиона. Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Для выявле­ния локализации белков антитела окрашивают флюоресцирующими краси­телями, а затем клетки изучают с помощью флюоресцентной микроскопии. Антитела можно использовать также для изучения антигенов на ультра­структурном уровне с помощью электронного микроскопа. Для этого анти­тела метят электронно-плотными частицами (микросферы коллоидного зо­лота). Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, - клонами, полученной методом гибридом из одной клетки. Метод гибридом позволяет получать монокло­нальные антитела с одинаковой специфичностью и в неограниченных ко­личествах.

Методы иммунофлюоресцентного анализа широко и эффективно ис­пользуются в современной гистологии. Эти методы применяются для изуче­ния процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Они основаны на реакциях антиген - антитело. Каждая клетка организма имеет специфический антигенный со­став, который главным образом определяется белками. Продукты реакции можно окрашивать и выявлять в люминесцентном микроскопе, например выявление актина и тубулина в клетке с помощью метода иммунофлюорес­центного анализа (см. главу IV ).

Современные методы исследований позволяют проводить анализ хими­ческого состава различных структурных компонентов клеток, как фиксиро­ванных, так и живых. Изучение отдельных внутриклеточных структур стало возможным после разработки технологий фракционирования клеточного содержимого.

Фракционирование клеточного содержимого

Фракционировать структуры и макромолекулы клеток можно различны­ми методами - ультрацентрифугированием, хроматографией, электрофо­резом. Подробнее эти методы описаны в учебниках биохимии.

Ультрацентрифугирование. С помощью этого метода клетки можно разделить на органеллы и макромолекулы. Вначале разрушают клет­ки осмотическим шоком, ультразвуком или механическим воздействием. При этом мембраны (плазмолемма, эндоплазматический ретикулум) распадаются на фрагменты, из которых формируются мельчайшие пу­зырьки, а ядра и органеллы (митохондрии, аппарат Гольджи, лизосомы и пероксисомы) сохраняются интактными и находятся в образующей сус­пензии.

Для разделения вышеуказанных компонентов клетки применяют высо­коскоростную центрифугу (80 000-150 000 оборотов/мин). Вначале оседают (седиментируют) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадочных фракций последовательно оседают более мелкие частицы - сначала мито­хондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пу­зырьки и, наконец, рибосомы и крупные макромолекулы. При центрифу­гировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фрак­ционированные клеточные экстракты (бесклеточные системы) широко ис­пользуют для изучения внутриклеточных процессов, например для изуче­ния биосинтеза белка, расшифровки генетического кода и др.

Хроматография широко используется для фракционирования бел­ков.

Электрофорез позволяет разделить белковые молекулы с различным зарядом при помещении их водных растворов (или в твердом пористом матриксе) в электрическом поле.

Методы хроматографии и электрофореза применяют для анализа пеп­тидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учеб­никах биохимии.

Изучение химического состава живых клеток. Для изучения распределе­ния веществ и их метаболизма в живых клетках используют методы ядерно­го магнитного резонанса и микроэлектродную технику.

Ядерный магнитный резонанс (ЯМР) позволяет изучать малые моле­кулы низкомолекулярных веществ. Образец ткани содержит атомы в различных мо­лекулах и в различном окружении, поэтому он будет поглощать энергию на различ­ных резонансных частотах. Диаграмма поглощения на резонансных частотах для дан­ного образца составит его спектр ЯМР. В биологии сигнал ЯМР от протонов (ядер водорода) широко используется для изучения белков, нуклеиновых кислот и др. Для изучения макромолекул внутри живой клетки часто применяют изотопы 3 Н, 13 С, 35 К, 31 Р для получения сигнала ЯМР и слежения за его изменением в процессе жиз­недеятельности клетки. Так, 3| Р используется для изучения мышечного сокращения - изменений содержания в тканях АТФ и неорганического фосфата. Изотоп 13 С по­зволяет с помощью ЯМР исследовать многие процессы, в которых участвует глю­коза. Использование ЯМР ограничено его низкой чувствительностью: в 1 г живой ткани должно содержаться не менее 0,2мм исследуемого вещества. Преимуществом метода является его безвредность для живых клеток.

Микроэлектродная техника. Микроэлектроды представляют собой стеклянные трубочки, заполненные электропроводным раствором (обычно раствор КС1 в воде), диаметр конца которых измеряется долями микрона. Кончик такой тру­бочки можно вводить в цитоплазму клетки через плазмолемму и определять кон­центрацию ионов Н + , Na + , К + , С1", Са 2+ , Mg 2+ , разность потенциалов на плазмо-лемме, а также производить инъекцию молекул в клетку. Для определения концен­трации конкретного иона используют ионселективные электроды, которые запол­няют ионообменной смолой, проницаемой только для данного иона. В последние годы микроэлектродную технику применяют для изучения транспорта ионов через специальные ионные каналы (специализированные белковые каналы) в плазмолем-ме. При этом используют микроэлектрод с более толстым кончиком, который плот­но прижимают к соответствующему участку плазмолеммы. Этот метод позволяет ис­следовать функцию одиночной белковой молекулы. Изменение концентрации ионов внутри клетки можно определить с помощью люминесцирующих индикаторов. На­пример, для изучения внутриклеточной концентрации Са 2+ используют люминес­центный белок акварин (выделен из медузы), который излучает свет в присутствии ионов Са 2+ и реагирует на изменение концентрации последнего в пределах 0,5- 10 мкМ. Синтезированы также флюоресцентные индикаторы, прочно связывающи­еся с Са 2+ . Создание различных новых типов внутриклеточных индикаторов и совре­менных способов анализа изображений позволяет точно и быстро определять внут­риклеточную концентрацию многих низкомолекулярных веществ.

Количественные методы

В настоящее время наряду с качественными методами разработаны и применяются количественные гистохимические методы опре­деления содержания различных веществ в клетках и тканях. Особенность количественно-гистохимических (в отличие от биохимических) методов исследования заключается в возможности изучения концентрации и содер­жания химических компонентов в конкретных структурах клеток и тканей.

Цитоспектрофотометрия - метод количественного изучения внутрикле­точных веществ по их абсорбционным спектрам.

Цитоспектрофлюориметрия - метод количественного изучения внутри­клеточных веществ по спектрам их флюоресценции или по интенсивности флюоресценции на одной заранее выбранной волне (цитофлюориметрия).

Современные микроскопы - цитофлюориметры позволяют обнаружить в различных структурах малые количества вещества (до 10~ 14 -10~ 16 г) и оце­нить локализацию исследуемых веществ в микроструктурах.

Методы анализа изображения клеточных и тканевых структур


Полученные изображения микрообъектов в микроскопе, на телевизи­онном экране дисплея, на электронных микрофотографиях могут подвер­гаться специальному анализу - выявлению морфометрических, денситомет-рических параметров и их статистической обработке.

Морфометрические методы позволяют определять с помощью специаль­ных сеток (Е. Вейбеля, А. А. Глаголева, С. Б. Стефанова) число любых структур, их площади, диаметры и др. В частности, в клетках могут быть измерены площади ядер, цитоплазмы, их диаметры, ядерно-цитоплазмати-ческие отношения и др. Существуют ручная морфометрия и авто­матизированная морфометрия, при которой все параметры изме­ряются и регистрируются в приборе автоматически.

В последние годы все большее распространение получают автоматизи­ рованные системы обработки изображений (АСОИз), позволяющие наиболее эффективно реализовать перечисленные выше количественные методы для изучения клеток и тканей. При этом аналитические возможности количе­ственной микроскопии дополняются методами анализа и распознавания образцов, основанными на обработке с помощью электронных вычисли­тельных машин (ЭВМ) информации, извлекаемой из изображений клеток и тканей. По существу можно говорить об устройствах, не только усилива­ющих оптические возможности зрительного анализатора человека, но и многократно расширяющих его аналитические возможности. Высказывается мнение, что АСОИз совершает такой же переворот в морфологии, какой около 300 лет назад произошел благодаря изобретению светового, а около 50 лет назад - электронного микроскопа, поскольку они не только неиз­меримо повышают производительность труда исследователя и не только объективизируют наблюдения, но и позволяют получать новую информа­цию о невыявляемых ранее процессах, численно моделировать и прогнози­ровать их развитие в клетках и тканях.

Вместе с тем участие в эксперименте ЭВМ требует от исследователя нового подхода к его проведению, владения навыками составления алго­ритмов процесса исследования, точности рассуждений и в конечном итоге повышения научно-методического уровня исследования.

Одним из методов, существенно расширивших число решаемых морфо­логических задач, является оптико-структурный машинный анализ (ОСМА), предложенный в 1965 г. К.М.Богдановым. В 1978 г. автор метода был удосто­ен Государственной премии СССР. С появлением ОСМА сделан качествен­но новый шаг в разработке единой методологии количественного анализа микроструктур на основе статистических характеристик. В последнее время ОСМА нашел эффективное применение в исследовательской практике и народном хозяйстве.

На рис. 2 представлена созданная в нашей стране фирмой «ЛОМО» ав­томатизированная система обработки изображений «Протва-МП». Система предназначена для проведения комплексных исследований клеток и тканей с использованием методов абсорбционной, флюоресцентной микроскопии и радиоавтографии.

Входящий в состав системы специальный сканирующий оптический или электронный микроскоп осуществляет последовательный просмотр изображения препарата по двум координатам, преобразуя его в цифровую форму, и вводит в ЭВМ, которая в свою очередь производит цифровую обработку изображения и выдает информацию о геометрических и других характеристиках анализируемого объекта.

С помощью цветного дисплея исследователь может «препарировать» изображе­ние, выделяя лишь те структурные составляющие, которые его интересуют. Входя­щие в состав ЭВМ емкие накопители информации на магнитных дисках или лентахпозволяют запоминать как сами изображения, так и результаты их обработки для последующего хранения и документирования

Использование методов автоматизированного анализа микрообъектов рассмотрим на примере обработки изображения лейкоцита крови (рис 3) Сканирующий микроскоп-фотометр позволяет построчно «просматривать» значения оптической плотности с шагом, заданным исследователем В ре­зультате оптический сигнал, соответствующий оптической плотности объекта, преобразуется в цифровую форму Полученная цифровая матри­ца подлежит препаровке с помощью специального математического аппа­рата

Вначале убирается фон и вычленяется «чистый» объект - изображение клетки (1а), затем из изображения клетки выделяется любая интересующая исследователя деталь, например цитоплазма (16) и ядро (I порядка среднее и ин­тегральное значение оптической плотности, дисперсия, асимметрия, эксцесс и др По изображению объекта получают морфометрические параметры пло­щадь, периметр, диаметр, ядерно-цитоплазматическое отношение, коэффициент формы и др

Следующим этапом обработки изображения является построение двухмер­ных диаграмм взаимозависимости оптической плотности для всей клетки (см рис 3), ее цитоплазмы (Шб) и ядра (Шв) Так же, как и в первом случае, на диа­грамме всей клетки (Ша) можно выделить фазу цитоплазмы и ядра Данные диа­граммы позволяют рассчитать гистограммные параметры II порядка гомоген­ность, локальный контраст, энтропию и др.


Рис. З. Автоматизированная обработка изображения клетки (схема).

Изображение лейкоцита (а), его цитоплазмы (б) и ядра (в). I - цифровое изображение; II - гистограммы оптической плотности; III - двухмерные гистограммы зависимости значений оптической плотности.

Полученные таким образом параметры представляют многомерный «портрет» клетки и имеют конкретное числовое выражение. Они могут быть подвергнуты различным методам статистической обработки, позволяют предельно точно классифицировать микрообъекты, выявлять особенности их структуры, необнаруживаемые визуально.

Таким образом, применение новых методов исследований в гистологии, цитологии и эмбриологии позволяет выяснить общие закономерности орга­низации тканей и клеток, структурные основы биохимических процессов, определяющих функцию конкретных структурных компонентов клетки.

Строение, ультраструктура и функционирование клеточных органоидов исследуется в настоящее время с помощью следующих основных методов: световой и электронной, темнопольной, фазово-контрастной, поляризационной, люминесцентной микроскопии , используемых для изучения строения, ультраструктуры фиксированных клеток, и дифференциального центрифугирования, позволяющего выделять отдельные органоиды и анализировать их цитохимическими, биохимическими, биофизическими, и другими методами.

Световая микроскопия.

Принцип метода состоит в том, что пучок света, пройдя через объект, попадает в систему линз объектива, и строит первичное изображение, которое увеличивается с помощью линз окуляра. Главная оптическая часть микроскопа, определяющая его основные возможности, - объектив.

В современных микроскопах объективы сменные, что позволяют изучать клетки при разных увеличениях. Главной характеристикой микроскопа как оптической системы является разрешающая способность, т.е. способность давать раздельное изображение двух близких друг к другу объектов.

Изображения, даваемые объективом, можно увеличить во много раз, применяя сильный окуляр или, например проекции на экран (до 10 5 раз). Разрешающая способность светового микроскопа ограничивается длиной волны света: чем меньше длина волны, тем выше разрешающая способность. Обычно в световых микроскопах используются источники освещения в видимой области спектра (400-700 нм), поэтому максимальное разрешение микроскопа в этом случае может быть не выше 200-350 нм (0,2-0,35 мкм). Если использовать фиолетовый свет (260-280 нм), то можно повысить разрешение до 130 - 140 нм (0,13-0,14 мкм). Это будет пределом теоретического разрешения светового микроскопа, определяемого волновой природой света.

Таким образом, все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, - это повысить разрешающую способность его примерно в 1000 раз (невооруженный глаз человека имеет разрешающую способность около 0,1 мм, что равно 100 мкм). Это и есть «полезное» увеличение микроскопа, выше которого мы будем только увеличивать контуры изображения, не открывая в нем новых деталей. Следовательно, при использовании видимой области света 0,2-0,3 мкм является конечным пределом разрешения светового микроскопа.

Электронная микроскопия.

Для сканирующего электронного микроскопа материал часто замораживают, чтобы получить поверхность, покрытую льдом. При этом исключаются потери воды водорастворимых веществ, меньшими являются также химические изменения структур. При анализе данных, полученных с помощью электронного микроскопа, надо помнить, что этим методом исследуются статические состояния клетки в момент быстрой остановки движения цитоплазмы, вызванной воздействием фиксирующих химических веществ.

Темнопольная микроскопия .

Суть его в том, что подобно пылинкам в луче света (эффект Тиндаля) в клетке при боковом освещении светятся мельчайшие частицы (меньше 0,2 мкм), отраженный свет которых попадает в объектив микроскопа. Этот метод успешно применяется при изучении живых клеток.

Для выяснения локализации мест синтеза биополимеров, для определения переноса веществ в клетке, для наблюдения за миграцией или свойствами отдельных клеток широко используют метод авторадиографии - регистрации веществ, меченых изотопами. Например, с помощью этого метода при использовании меченых предшественников РНК было показано, что вся РНК синтезируется только в интерфазном ядре, а наличие цитоплазматической РНК является результатом миграции синтезированных молекул из ядра.

В цитологии применяют различные аналитические и препаративные методы биохимии. В последнем случае можно получить в виде отдельных фракций разнообразные клеточные компоненты и изучать их химию, ультраструктуру и свойства. В настоящее время в виде чистых фракций получают практически любые клеточные органеллы и структуры.

Одним из основных способов выделения клеточных структур является дифференциальное (разделительное) центрифугирование. Принцип его применения состоит в том, что время для оседания частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки. Чтобы ускорить этот процесс оседания используют ускорения, создаваемые центрифугой.

При повторном дробном центрифугировании смешанных подфракции можно получить чистые фракции. В случаях более тонкого разделения фракций используют центрифугирование в градиенте плотности сахарозы, что позволяет хорошо разделить компоненты, даже незначительно отличающиеся друг от друга по удельной массе. Полученные фракции, прежде чем их анализировать биохимическими способами, необходимо проверить на чистоту с помощью электронного микроскопа.

Контрольные вопросы:

1. Уровни организации живой материи

2. Клеточная теория организации организмов

3. Методы исследования в цитологии

4. Задачи и предмет цитологии

5. Устройство светового микроскопа

6. Устройство электронного микроскопа

7. Техника безопасности при цитологических работах

8. Требования к подготовке биологического материала для цитологического исследования

9. Фиксирующие вещества, механизм действия

10. Цитохимия, требования к материалу и возможности

11. Количественный анализ (морфометрия), требования и возможности

12. Артефакты в цитологии, пути объективизации результатов

1. Заварзин А.А., Харазова А.Д. Основы общей цитологии. - Л., 1982.

2. Ченцов Ю.С. Основы цитологии. - М., 1984.

3. Шубникова Е.А. Функциональная морфология тканей. - М., Изд-во МГУ, 1981.