Новая научная информация о кометах. Кометы и их исследования с помощью космических аппаратов

Проект «Вега» («Венера - комета Галлея») был одним из самых сложных в истории космических исследований. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамики атмосферы Венеры при помощи аэростатных зондов, пролёт через кому и плазменную оболочку кометы Галлея.

Автоматическая станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984 года, через 6 дней за ней последовала «Вега-2». В июне 1985 года они друг за другом прошли вблизи Венеры, успешно проведя исследования, связанные с этой частью проекта.

Но самой интересной была третья часть проекта - исследования кометы Галлея. Космическим аппаратам впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошла 6 марта, а «Веги-2» - 9 марта 1986 года. Они прошли на расстоянии 8900 и 8000 километров от её ядра.

Самой важной задачей в проекте было исследование физических характеристик ядра кометы. Впервые ядро рассматривалось как пространственно разрешённый объект, были определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.

В то время ещё не представлялось технической возможности совершить посадку на ядро кометы, так как слишком велика была скорость встречи - в случае с кометой Галлея это 78 км/с. Опасно было даже пролетать на слишком близком расстоянии, так как кометная пыль могла разрушить космический аппарат. Расстояние пролёта было выбрано с учётом количественных характеристик кометы. Использовалось два подхода: дистанционные измерения с помощью оптических приборов и прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию движения аппарата.

Оптические приборы были размещены на специальной платформе, разработанной и изготовленной совместно с чехословацкими специалистами, которая поворачивалась во время полёта и отслеживала траекторию движения кометы. С ёе помощью проводились три научных эксперимента: телевизионная съёмка ядра, измерение потока инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектра инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения его состава. Исследования ИК излучения проводились при помощи инфракрасного спектрометра ИКС.

Итоги оптических исследований можно сформулировать следующим образом: ядро - вытянутое монолитное тело неправильной формы, размеры большой оси - 14 километров, в поперечнике - около 7 километров. Каждые сутки его покидают несколько миллионов тонн водяного пара. Расчёты показывают, что такое испарение может идти от ледяного тела. Но вместе с тем приборы установили, что поверхность ядра чёрная (отражательная способность менее 5%) и горячая (примерно 100 тысяч градусов Цельсия).

Измерения химического состава пыли, газа и плазмы вдоль траектории полёта показали наличие водяного пара, атомных (водород, кислород, углерод) и молекулярных (угарный газ, диоксид углерода, гидроксил, циан и др.) компонентов, а также металлов с примесью силикатов.

Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран. В результате экспедиции «Вега» учёные впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристиках. Грубая схема была заменена картиной реального природного объекта, ранее никогда не наблюдавшегося.

NASA готовило три больших экспедиции. Первая из них называется «Stardust» («Звёздная пыль»). Она предполагала запуск в 1999 году космического аппарата, который прошел в 150 километрах от ядра кометы Wild 2 в январе 2004 года. Основная его задача была: собрать для дальнейших исследований кометную пыль с помощью уникальной субстанции, называемой «аэрогель».

Второй проект носит название «Contour» («COmet Nucleus TOUR»). Аппарат был запущен в июле 2002 года. В ноябре 2003 года он встретился с кометой Энке, в январе 2006 года - с кометой Швассмана-Вахмана-3, и, наконец, в августе 2008 года - с кометой d"Arrest. Он был оснащён совершенным техническим оборудованием, которое позволило получить высококачественные фотографии ядра в различных спектрах, а также собрать кометные газ и пыль. Проект также интересен тем, что космический аппарат при помощи гравитационного поля Земли был переориентирован в 2004-2008 году на новую комету.

Третий проект - самый интересный и сложный. Он называется «Deep Space 4» и входит в программу исследований под названием «NASA New Millennium Program». В его ходе предполагалась посадка на ядро кометы Tempel 1 в декабре 2005 года и возвращение на Землю в 2010 году. Космический аппарат исследовал ядро кометы, собрал и доставил на Землю образцы грунта.

Наиболее интересными событиями за последние несколько лет стали: появление кометы Хейла-Боппа и падение кометы Шумахера-Леви 9 на Юпитер. Комета Хейла-Боппа появилась на небе весной 1997 года. Её период составляет 5900 лет. С этой кометой связаны некоторые интересные факты. Осенью 1996 года американский астроном-любитель Чак Шрамек передал во всемирную сеть Интернет фотографию кометы, на которой отчётливо был виден яркий белый объект неизвестного происхождения, слегка сплюснутый по горизонтали. Шрамек назвал его «Saturn-like object» (сатурнообразный объект, сокращённо - «SLO»). Размеры объекта в несколько раз превосходили размеры Земли. Реакция официальных научных представителей была странной. Снимок Шрамека был объявлен подделкой, а сам астроном - мистификатором, но вразумительного объяснения характера SLO не было предложено. Снимок, опубликованный в Интернет, вызвал взрыв оккультизма, распространялось огромное количество рассказов о грядущем конце света, «мёртвой планете древней цивилизации», злобных пришельцах, готовящихся к захвату Земли с помощью кометы, даже выражение: «What the hell is going on?» («Что за чертовщина происходит?») перефразировали в «What the Hale is going on?»… До сих пор не ясно, что это был за объект, какова его природа.

Предварительный анализ показал, что второе «ядро» - звезда на заднем плане, но последующие снимки опровергли это предположение. С течением времени «глаза» опять соединились, и комета приняла первоначальный вид. Этот феномен также не был объяснён ни одним учёным.

Таким образом, комета Хейла-Боппа была не стандартным явлением, она дала учёным новый повод для размышлений.

Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.

Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.

Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения. По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.

Наиболее интересным исследованием обещает стать миссия Европейского космического агентства к комете Чурюмова-Герасименко, открытой в 1969 году Климом Чурюмовым и Светланой Герасименко. Автоматическая станция «Розетта» была запущена в 2004 году и ожидается, что аппарат подойдёт к комете в ноябре 2014 года в период, когда она ещё будет далека от Солнца и соответственно не будет ещё активна, с тем, чтобы проследить, как происходит развитие кометной активности. Станция будет обращаться около кометы 2 года. Впервые в истории исследования комет планируется опустить на ядро посадочный модуль, который возьмёт образцы грунта и исследует прямо на борту, а также передаст на Землю многочисленные фотографии газовых струй, вырывающихся из ядра кометы.

Все происходящее на небе издавна интересовало человека. Пролетающие по небосводу кометы обычно внушали страх и вызывали трепет. Ознакомимся с интересными фактами о кометах.

Под воздействием силы гравитации большинство комет за миллионы лет покидают пределы солнечной системы. Теряя свой лед, они распадаются на части во время движения.


Первыми стали документировать появление кометы Галлея китайцы. Началось это в 240 году до н.э.


Рассказывая интересные факты о кометах, надо объяснить и само слово комета. Древним грекам кометы напоминали пролетающие по небосводу звезды с распущенными волосами. Слово «комета» произошло от греческого слова «длинноволосый».


Изменение направления полета комет может происходить по нескольким причинам. При их прохождении достаточно близко от планеты путь движения может незначительно измениться под ее воздействием. Планетой, наиболее подходящей для изменения пути кометы, является Юпитер. Это самая крупная планета. Космические аппараты и телескопы смогли зафиксировать изображение кометы, разбившейся при столкновении с атмосферой Юпитера. Ее имя – Шумейкер-Леви 9. Иногда движущиеся в сторону Солнца кометы попадают точно в него.


Кометы, путешествующие более 4,5 миллиарда лет, состоят из пыли, льда, скального материала и газов, принесенных из дальних глубин Солнечной системы.

Кометы, подобно планетам солнечной системы, совершают вращения вокруг Солнца.


Находящиеся далеко от Солнца кометы не имеют хвоста. При их приближении к Солнцу под все нарастающим воздействием его тепла начинается плавление ядра кометы. Солнечный ветер из расплавленного ядра выдувает хвост кометы.

Кометы, находящиеся далеко от солнца, представляют собой холодные и полностью темные объекты. В ядре сосредоточено 90% всей массы кометы. В его центре небольшое каменное ядро. Остальными компонентами являются лед, грязь и пыль. Лед представляет собой смесь замерзшей воды с примесями аммиака, метана и углерода.


Относительно Вселенной кометы столь малы, что ученым еще не довелось их наблюдать вне нашей Солнечной системы.


Астрономы выяснили, что в Солнечной системе существует порядка двух миллионов комет. Ежегодно обнаруживается в среднем пять новых комет. Общее число зарегистрированных комет превышает три тысячи.

Предлогаем вам посмотреть интересное видео, где видно как огромная комета протаранило солнце:

> Исследование

Изучите историю исследования комет : миссии, запуск космических аппаратов, фото комет Хаббла, знаменательные даты, изучение кометы Галлея, полет и спуск Розетта.

Исследователи мечтали изучить эти объекты, поэтому детально рассматривали снимки кометы Галлея, добытые в 1986 году. В 2001 году аппарат Deep Space 1 пролетел мимо объекта Борелли и запечатлел его ядро с длиною в 8 км.

В 2004 году миссия Stardust успешно промчалась на удаленности в 236 км мимо кометы Вильда-2, добывая частички и межзвездную пыль. Фото демонстрируют пылевые струи и прочную текстурированную поверхность. Анализ образцов показывает, что кометы способны быть намного сложнее, чем думали ранее. Были найдены минералы, участвующие в формировании возле Солнца и прочих .

Проект Deep Impact состоял из нескольких космических аппаратов и ударника. В 2005 году его направили к ядру кометы Темпель-1. Это привело к выбросу мелких осколков и помогло вычислить состав и траекторию полета.

Миссия EPOXI состояла из двух проектов: изучение комет Хартли-2 в 2010 году и поиск земных планет вокруг других .

12 ноября 2014 года отметилась еще одна примечательная миссия в истории освоения космоса. После 10 лет полета аппарат Розетта ЕКА добрался к комете 67Р/Чурюмова-Герасименко и спустил Филы на поверхность. Это самое грандиозное событие исследования комет.

В этом же году телескопу Хаббл удалось запечатлеть на фото комету C/2013 A1, когда она приблизилась к Красной планете на максимально близкую дистанцию.

Небольшие тела вроде астероидов или комет выступают «капсулами времени», вмещающими сведения об истории нашей системы. Миссии наподобие Розетты способствуют продвижению изучения этого вопроса, так как предлагают рассмотреть добытые образцы. НАСА рассчитывает создавать больше роботизированных проектов по исследованию таких объектов с близкого расстояния.

Кометы и астероиды – осколки, оставшиеся после формирования планет и спутников в Солнечной системе. Эти крошечные небесные тела совершают вращение вокруг Солнца и находятся на территории пояса Койпера и облака Оорта. Большая часть астероидов пребывает между Марсом и Юпитером. Иногда гравитационные колебания приводят к тому, что они выталкиваются из привычного места и приближаются к нам. Околоземным объектом (ОЗО) называют все скалы, расположенные в черте 50 млн. км от нас.

Наличие кратерных шрамов на планетах и спутниках говорит о том, что древние объекты часто поддавались атакам. В первые миллиарды лет существования столкновения раскалили земную поверхность, что подготовило почву к появлению достаточного количества воды и молекул на базе углерода. Жизнь появилась примерно 3.8 млрд. лет назад.

Наблюдая за ОЗО, можно узнать подробности состава. Дальнейшие обзоры позволят разобраться в точных компонентах строительных жизненных блоков. Особенно интересными выступают близкие к нашей планете объекты, так как они позволяют разобраться в истоках жизни на родной планете.

Уже сейчас готовят новые миссии по исследованию планет. В 2018 году планируют отправить японский аппарат Хаябуса-2 к астероиду 1999JU3 за образцами, который сможет доставить их в 2020 году. К Бену и 1999 RQ36 в 2016 году послали OSIRIS-Rex. В 2019 году он должен взять образцы и прибыть с ними в 2023-м. Главная цель миссий – найти источник органических материалов и воды.

Хаябуса-2 и OSIRIS-Rex помогут НАСА выбрать цель для первой миссии захвата и транспортировки астероида. Задачу готовят к 2020-м гг. и разрабатывают технологии, позволяющие доставить людей на Марс. Для этого собираются запустить роботизированный корабль для стыковки с ОЗО. Сейчас в агентстве думают, что можно воздействовать на осколок с диаметром в 5-10 м надувным механизмом (2-5 м) при помощи роботизированной руки. Далее аппарат использует свою силу, чтобы изменить траекторию объекта.

Можно также оттащить астероид на лунную базу и заняться его дальнейшим изучением в лаборатории. В образцах есть шансы отыскать межзвездные частички. Остается лишь ждать. Ниже представлены используемые для исследования комет космические корабли и знаменательные даты.

Знаменательные даты:

  • 1070-1080 г . – комета Галлея отображена в Гобелене Байе (сражение при Гастингсе 1066 года);
  • 1449-1450 гг. – ученые берутся за одну из первых попыток зафиксировать траекторию комет по небу;
  • 1705 г. – Эдмунд Галлей выяснил, что объекты 1531-го, 1607-го и 1682-го годов представляют собою единую комету, которая должна вернутся в 1758 году. Его предсказание сбылось, и тело назвали в его честь;
  • 1986 г. – международный флот из 5 космических аппаратов следит за кометой Галлея (прибывает каждые 76 лет), проходящей во внутреннюю систему;
  • 1994 г. – исследователи видят, как осколки кометы Шумейкера-Леви 9 врезаются в атмосферу Юпитера;
  • 2001 г. – Deep Space 1 мчится мимо кометы Борелли и добывает изображения вблизи;
  • 2004 г. – аппарат НАСА Stardust собирает образцы пыли из кометы Вильда-2, и фотографирует ядро;
  • 2005 г. – ударник от Deep Impact сталкивается с Темпель-1, чтобы изучить внутренний состав ядра;
  • 2009 г. – исследователи сообщают, что строительный жизненный блок глицин сумели добыть на комете Вильда-2;
  • 2010 г. – аппарат Deep Impact рассматривает Хартли-2;
  • 2011 г. – аппарат Stardust приближается к Темпель-1, фотографирует противоположную сторону ядра и отмечает эволюцию поверхностного слоя;

Кометы интересуют многих людей. Эти небесные тела захватывают молодых и людей постарше, женщин и мужчин, астрономов-профессионалов и просто любителей астрономии. И наш портал сайт предлагает самые актуальные новости о последних открытиях, фото и видео комет, а также много другой полезной информации, с которой вы сможете ознакомиться в этом разделе.

Кометы – небольшие небесные тела, вращающиеся вокруг Солнца по коническому сечению с довольно растянутой орбитой, имеющие туманный вид. Комета при приближении к Солнцу формирует кому и иногда хвост из пыли и газа.

Ученые предполагают, что периодически кометы прилетают в Солнечную систему из облака Оорта, так как в нем содержится множество кометных ядер. Как правило, тела, находящиеся на окраинах Солнечной системы, состоят из летучих веществ (метановых, водяных и прочих газов), которые испаряются во время подлета к Солнцу.

На сегодняшний день выявили больше четырехсот короткопериодических комет. Причем половина из них находилась в более чем одном прохождении перигелия. Большинство из них входят в семейства. К примеру, многие короткопериодические кометы (за 3-10 лет делают оборот вокруг Солнца) образуют семейство Юпитера. Малочисленными являются семейства Урана, Сатурна и Нептуна (знаменитая комета Галлея относится к последнему).

Кометы, которые прибывают из глубины Космоса, представляют собой туманные объекты, за которыми тянется хвост. Часто в длину он достигает нескольких миллионов километров. Что касается ядра кометы, то это тело из твердых частиц, окутанное комой (туманная оболочка). Ядро диаметром в 2 км может иметь кому в 80 000 км в поперечнике. Солнечные лучи выбивают из комы частицы газа и отбрасывают их назад, вытягивая их в дымчатый хвост, движущийся за ней в космическом пространстве.

Яркость комет в большей степени зависит от того, на каком расстоянии они находятся от Солнца. Из всех комет только незначительная часть приближается к Земле и Солнцу настолько, что их можно заметить невооруженным глазом. Причем самые заметные из них принято называть «великими (большими) кометами».

Большинство из наблюдаемых нами «падающих звезд» (метеоритов) имеют кометное происхождение. Это частицы, потерянные кометой, которые при попадании в атмосферу планет сгорают.

Номенклатура комет

За все года изучения комет правила их именования много раз уточняли и меняли. До начала ХХ века многие кометы просто называли по году их обнаружения, нередко с дополнительными уточнениями относительно сезона года или яркости, если в этом году комет было несколько. К примеру, «Большая сентябрьская комета 1882 года», «Большая январская комета 1910 года», «Дневная комета 1910 года».

После того как Галлею удалось доказать, что кометы 1531, 1607 и 1682 года представляют одну и ту же комету, она получила название кометы Галлея. Также он предсказал, что в 1759 году она вернется. Вторая и третья кометы получили имена Бэлы и Энке в честь ученых, которые вычислили орбиту комет, невзирая на то, что первая комета наблюдалась еще Мессье, а вторая Мешеном. Немного спустя периодические кометы называли в честь их открывателей. Ну а те кометы, которая наблюдались только в одном прохождении перигелия, называли, как и раньше, по году появления.

В начале ХХ века, когда стали чаще открывать кометы, было принято решение об окончательном именовании комет, которое сохранилось и по сей день. Только когда комету выявят три независимых наблюдателя, она получала имя. Множество комет в последние годы открывается посредством инструментов, которые обнаруживают целые команды ученых. Кометы в таких случаях именуются по инструментам. К примеру комета С/1983 Н1 (IRAS – Араки – Олкока) была открыта спутником IRAS, Джорджем Олкоком и Генъити Араки. В прошлом еще одна команда астрономов открывала периодические кометы, к которым добавляли номер, к примеру, кометы Шумейкеров – Леви 1 – 9. Сегодня самыми разными инструментами открывается огромное количество планет, что сделало данную систему непрактичной. Поэтому было принято решение прибегнуть к специальной системе обозначения комет.

До начала 1994 г. кометам давали временные обозначения, которые состояли из года открытия плюс латинская строчная буква, указывающая порядок их открытия в этом году (к примеру, комета 1969i являлась 9 кометой, которая была открыта в 1969 году). Как только комета прошла перигелий, ее орбита устанавливалась, и она получала постоянное обозначение, а именно год прохождения перигелия плюс римское число, которое указывает порядок прохождения перигелия в этом году. Например, комете 1969i дали постоянное обозначение 1970 II (означает, что это вторая комета, которая прошла перигелий в 1970 году).

По мере увеличения количества открытых комет данная процедура стала весьма неудобной. Поэтому Международный астрономический союз в 1994 году принял новую систему обозначения комет. Сегодня название комет включает год открытия, букву, означающую половину месяца, в котором было открытие, и сам номер открытия в данной половине месяца. Эта система напоминает ту, которая применялась для именования астероидов. Так, четвертая комета, которая была открыта в 2006 году, во второй половине февраля имеет обозначение 2006 D4. Также перед обозначением ставят префикс. Он объясняет природу кометы. Принято использовать такие префиксы:

· C/ - долгопериодическая комета.

· P/ - короткопериодическая комета (та, которая наблюдалась в двух и больше прохождениях перигелия, или комета, чей период менее двести лет).

· X/ - комета, для которой не удалось вычислить достоверную орбиту (чаще всего для исторических комет).

· A/ - объекты, ошибочно принятые за кометы, но оказавшиеся астероидами.

· D/ - кометы были потеряны или разрушились.

Строение комет

Газовые составляющие комет

Ядро

Ядро представляет собой твердую часть кометы, где сосредоточена практически вся ее масса. На данный момент ядра комет недоступны к изучению, так как скрыты постоянно образующейся светящейся материей.

Ядро, по самой распространенной модели Уиппла, – это смесь льдов с включением частиц метеорного вещества. Слой замороженных газов, согласно этой теории, чередуется с пылевыми слоями. Газы по мере нагревания испаряются, увлекают облака пыли за собой. Таким образом, можно объяснить образование пылевых и газовых хвостов у комет.

Но по результатам исследований, которые были проведены с помощью американкой автоматической станции в 2015 году, ядро складывается из рыхлого материала. Это ком пыли с порами, которые занимают до 80 процентов его объема.

Кома

Кома – светлая туманная оболочка, окружающая ядро, состоящая из пыли и газов. Чаще всего тянется от 100 тыс. до 1,4 млн км от ядра. Под высоким давлением света деформируется. В результате она вытягивается в антисолнечном направлении. Вместе с ядром кома формирует голову кометы. Обычно кома состоит из 4 основных частей:

  • внутренняя (химическая, молекулярная и фотохимическая) кома;
  • видимая кома (или ее еще называют кома радикалов);
  • атомная (ультрафиолетовая) кома.

Хвост

С приближением к Солнцу у ярких комет формируется хвост – слабая светящаяся полоса, которая чаще всего в результате действия солнечного света направлена от Солнца в противоположную сторону. Невзирая на то что в коме и хвосте содержится меньше одной миллионной доли массы кометы, практически 99,9% свечения, которое мы видим во время прохождения кометы по небу, состоит именно из газовых образований. Все потому, что ядро имеет низкое альбедо и само по себе очень компактно.

Хвосты комет могут отличаться как формой, так и длиной. У некоторых они тянутся через все небо. К примеру, хвост кометы, который видели в 1944 году, имел длину в 20 млн км. Еще больше впечатляет длина хвоста Большой кометы 1680 года, которая составляла 240 млн км. Еще были зафиксированы случаи, когда хвост отделяется от кометы.

Хвосты комет практически прозрачны и не имеют резких очертаний – сквозь них отлично видны звезды, поскольку образованы из сверхразреженного вещества (его плотность намного меньше, чем плотность газа из зажигалки). Что касается состава, то он разнообразен: мельчайшие пылинки или газ, или же смесь обоих. Состав большинства пылинок напоминает астероидные материалы, что выяснилось в результате исследования космическим аппаратом «Стардаст» кометы 81Р/Вильда. Можно сказать, что это «видимое ничто»: мы можем видеть хвосты комет только по той причине, что пыль и газ светятся. Причем сочетание газа непосредственно связано с его ионизацией УФ-лучами и потоками частиц, которые выбрасываются с солнечной поверхности, а пыль рассеивает солнечный свет.

В конце 19 века астроном Федор Бредихин разработал теорию форм и хвостов. Также он создал классификацию кометных хвостов, которая и по сей день используется в астрономии. Он предложил относить хвосты комет к главным трем типам: узкие и прямые, направленные от Солнца; искривленные и широкие, уклоняющие от центрального светила; короткие, сильно уклоненные от Солнца.

Столь разные формы хвостов комет астрономы объясняют следующим образом. Составляющие частицы комет имеют неодинаковые свойства и состав и по-разному реагируют на солнечное излучение. Поэтому пути этих частиц в пространстве «расходятся», в результате чего хвосты космических путешественниц получают разные формы.

Изучение комет

Человечество с давних времен проявляло интерес к кометам. Их неожиданность появления и необычный вид служили на протяжении многих веков источником различных суеверий. Появление в небе данных космических тел с ярко светящимся хвостом древние связывали с наступлением тяжелых времен и предстоящими бедами.

Благодаря Тихо Браге в эпоху Возрождения кометы стали относиться к небесным телам.

Более подробное представление о кометах люди получили благодаря путешествию в 1986 году к комете Галлея на таких космических аппаратах, как «Джотто», а также «Вега-1» и «Вега-2». Приборы, установленные на данных аппаратах, передали изображения ядра кометы и разные сведения о ее оболочке на Землю. Выяснилось, что ядро кометы складывается в основном из простого льда (с незначительным включением метановых и углекислых льдов) и полевых частиц. Собственно, они формируют оболочку кометы, а по мере приближения ее к Солнцу часть из них под воздействием давления солнечного ветра и солнечных лучей переходит в хвост.

По подсчетам ученых, размеры ядра кометы Галлея равны нескольким километрам: 7,5 км в поперечном направлении, 14 км – в длину.

Ядро кометы Галлея отличается неправильной формой и постоянно вращается вокруг оси, которая по предположениям Фридриха Бесселя практически перпендикулярная плоскости орбиты кометы. Что касается периода вращения, то он составлял 53 часа, что хорошо согласовывалось с вычислениями.

Космический аппарат NASA «Дип Импакт» в 2005 году сбросил зонд на комету Темпеля 1, что позволило передать изображение ее поверхности.

Изучение комет в России

Первые сведения о кометах появились в «Повести временных лет». Было видно, что летописцы уделяли появлению комет особое значение, так как их считали предвестницами разных несчастий – мора, войн и т.д. Но в языке Древней Руси какого-то отдельного названия им не давали, так как их считали хвостастыми звездами, движущимися по небу. Когда описание кометы попало на страницы летописей (1066 год), астрономический объект назывался «звезда велика; звезда образ копииныи; звезда… испущающе луча, еюже прозываху блистаньницю».

Понятие «комета» появилось в русском языке после перевода европейских сочинений, речь в которых шла о кометах. Самое ранее упоминание было замечено в сборнике «Бисер златый», представляющем собой что-то по типу целой энциклопедии о мироустройстве. В начале 16 века «Луцидариус» перевели с немецкого языка. Так как слово для русских читателей было новым, переводчик пояснял его привычным для всех наименованием «звезда», а именно «звезда комита дает блистание от себе яко луч». Но понятие «комета» прочного вошло в русский язык только в средине 1660-х годов, когда в европейском небе действительно появились кометы. Данное событие вызвало особый интерес. Из переводных сочинений русские узнавали, что кометы мало чем похожи на звезды. Вплоть до начала 18 века отношение к появлению комет как к знамениям сохранилось как в Европе, так и в России. Но тогда появились первые сочинения, которые отрицали загадочную природу комет.

Русские ученые осваивали европейские научные знания о кометах, что позволило им внести свой немалый вклад в их изучение. Астроном Федор Брединих во второй половине 19 века построил теорию природы комет, объяснив происхождение хвостов и их причудливое разнообразие форм.

Для всех тех, кто хочет подробнее ознакомиться с кометами, узнать об актуальных новостях, наш портал сайт предлагает следить за материалами данного раздела.

Теории происхождения комет

На сегодняшний день не существует единой и принимаемой всеми специалистами теории происхождения комет. Собственно, это и есть первая загадка этих небесных тел – как, где и под воздействием каких факторов они появляются? Согласно одной из гипотез, довольно древней, но имеющей своих сторонников и в настоящее время, кометы образуются из материалов, которые выбрасываются в результате вулканической активности из недр планет-гигантов Солнечной системы, Юпитера и Сатурна. Более современная гипотеза выдвигает в качестве родины комет отдалённую часть Солнечной системы, так называемое облако Оорта, в котором, согласно предположениям, кометы образовались одновременно с планетами. Там они якобы и пребывают, пока притяжение солнца и планет не вытаскивает постепенно по одной комете, которые и начинают своё космическое путешествие . Есть мнение и о том, что кометы вообще приходят извне солнечной системы, так что установить механизм их образования в условиях современного развития изучения космоса пока что затруднительно

Видимость и невидимость комет

Обывательское сознание прочно сопоставляет кометы с небесным телом, имеющим длинный и обширный шлейф или хвост. Кометы действительно часто характеризуются наличием подобных хвостов. Но, оказывается, если у кометы не видно шлейфа, это не означает, что его не существует. Виден или не виден хвост кометы и насколько он ярок и обширен, зависит в первую очередь от близости той или иной кометы к Солнцу. Механизм воздействия солнечного ветра на частицы, составляющие так называемое облачное тело кометы, которое движется вместе с ядром, учёным пока не ясен. Однако факт остаётся фактом – по мере приближения к Солнцу видимость комет и яркость их шлейфов существенно усиливаются. Выдвигаются версии о том, что этот механизм сродни механизму резонансной флуоресценции или Полярному сиянию, однако пока это лишь гипотезы.

Пыль в глаза учёных

Облачное тело комет состоит, в том числе, и из космической пыли – это очевидная данность для всех исследователей космоса. Однако не так давно было обнаружено, что часть космической пыли, составляющей комету, образовалось под воздействием высоких температур. И вот это-то является загадкой для учёных, потому что основную часть комет составляет чаще всего лёд как в качестве ядра кометы, так и ледяная пыль в хвосте небесного тела. Резонно возникает вопрос – как может содержаться даже в ледяном ядре кометы космическая пыль, сформировавшаяся при высоких температурах? Уже выдвинуто предположение, что кометы формируются в разных частях Солнечной системы из материалов, которые обладают различиями в физических свойствах, в том числе и с различной интенсивностью поглощают тепловую энергию в ходе своего движения по космическому пространству.

Космический «прогноз погоды»: тоже никаких гарантий…

Для учителей Земли кометы делятся, прежде всего, по периодичности обращения по своим орбитам, в которые они попадают в определённый момент и начинают своё движение относительно Солнца. Деление это позволяет различать короткопериодические (длительность оборота по орбите менее 150 лет), среднепериодические (длительность оборота от 150 до 200 лет) и долгопериодические (длительность оборота свыше 200 лет) кометы. Проблема в том, что любая комета и буквально в любой момент может существенно поменять траекторию своего движения и, следовательно, направление и длительность оборота своей орбиты. Потому как кометы весьма подвержены гравитационному воздействию планет, рядом с которыми они проходят, и изменения траектории их движения под этим воздействиям предсказать нельзя. Определённую коррекцию орбитам близко проходящих комет сообщает и такая небольшая планета, как Земля, что тогда говорить о гиганте, например, Юпитере. Поэтому учёные, конечно, составляют траектории движения комет, а заодно и прогнозы по ним, но эти расчёты всегда имеют немалую долю относительности.

Кометы с необычным поведением

Одним из самых экстравагантных предположений относительно части комет является гипотеза о том, что некоторые небесные объекты, которые астрономами были идентифицированы как кометы, на самом деле являются космическими кораблями инопланетян . Чаще всего в качестве «подозреваемых» называется комета Деннига, которая якобы подозрительным для кометы образом поочерёдно описывала круги вокруг Юпитера, Венеры, Марса и земли (как будто это были ознакомительные облёты). Также нередко упоминается комета Арена-Ролана, которая будто бы имела два хвоста, причём разнонаправленных – это отметает традиционную причину хвостов комет в виде солнечного ветра и наводит на мысль о наличии разнонаправленных ракетных двигателей на космическом корабле. В ответ представители официальных научных ведомств приводят данные о том, что длительное наблюдение за указанными кометами не выявило никаких «особых» признаков.