Термодинамические расчёты в химической технологии. Оценка возможности протекания реакции

Энтальпия - это величина, которая характеризует запас энергии в веществе.

Энтальпию еще называют теплосодержанием. Чем больше запас энергии, тем больше энтальпия вещества.

Тепловой эффект реакции (при постоянном давлении) равен изменению энтальпии (ΔН):

Для экзотермической реакции Q > 0, ΔН < 0, поскольку относительно реагентов энергия теряется в окружающую среду. И наоборот, для эндотермической реакции Q < 0, ΔН > 0 - энергия приобретается из окружающей среды.

По аналогии со стандартной теплотой образования Q o6p существует и понятие стандартной энтальпии образования, которая обозначается ΔH обр. Ее значения приводятся в справочных таблицах.

Термохимическое уравнение одной и той же реакции можно записать по-разному:

Организм человека - это уникальный «химический реактор», в котором идет множество разнообразных химических реакций. Их главное отличие от процессов, протекающих в пробирке, колбе, промышленной установке, состоит в том, что в организме все реакции протекают в «мягких» условиях (атмосферное давление, невысокая температура), при этом образуется мало вредных побочных продуктов.

Процесс окисления органических соединений кислородом - главный источник энергии в организме человека, а его основные конечные продукты - углекислый газ СO 2 и вода Н 2 O.

Например:

Эта выделившаяся энергия представляет собой большую величину, и если бы пища окислялась в организме быстро и полностью, то уже несколько съеденных кусочков сахара вызвали бы перегревание организма. Но биохимические процессы, суммарный тепловой эффект которых по закону Гесса не зависит от механизма и является постоянной величиной, идут ступенчато, как бы растянуты во времени. Поэтому организм не «сгорает», а экономно расходует эту энергию на процессы жизнедеятельности. Но всегда ли происходит так?

Каждый человек должен хотя бы приблизительно представлять, сколько энергии поступает в его организм с пищей и сколько расходуется в течение суток.

Одна из основ рационального питания такова: количество поступающей с пищей энергии не должно превышать расход энергии (или быть меньше) более чем на 5%, иначе нарушается обмен веществ, человек полнеет или худеет.

Энергетический эквивалент пищи - ее калорийность, выражаемая в килокалориях на 100 г продукта (часто указывают на упаковке, можно также найти в специальных справочниках и книгах по кулинарии). А расход энергии в организме зависит от возраста, пола, интенсивности труда.

Наиболее полезно питание с невысокой калорийностью, но с наличием всех компонентов в пище (белков, жиров, углеводов, минеральных веществ, витаминов, микроэлементов).

Энергетическая ценность продуктов питания и теплотворная способность топлива связаны с экзотермическими реакциями их окисления. Движущей силой таких реакций является «стремление» системы к состоянию с наименьшей внутренней энергией.

Экзотермические реакции начинаются самопроизвольно, или требуется только небольшой «толчок» - первоначальная подача энергии.

А что же тогда является движущей силой эндотермических реакций, в ходе которых тепловая энергия поступает из окружающей среды и запасается в продуктах реакции, превращаясь в их внутреннюю энергию? Это связано со стремлением любой системы к наиболее вероятному состоянию, которое характеризуется максимальным беспорядком, ее называют энтропией. Например, молекулы, входящие в состав воздуха, не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение, так как стремление к наиболее вероятному состоянию заставляет молекулы беспорядочно распределяться в пространстве.

Представьте, что вы насыпали в стакан разные орехи. Практически невозможно добиться при встряхивании их расслоения, упорядоченности, так как и в этом случае система будет стремиться к наиболее вероятному состоянию, при котором беспорядок в системе возрастает, поэтому орехи всегда будут перемешаны. Причем чем больше частиц мы имеем, тем вероятность беспорядка больше.

Самый большой порядок в химических системах - в идеальном кристалле при температуре абсолютного нуля. Говорят, что энтропия в данном случае равна нулю. С повышением температуры в кристалле начинают усиливаться беспорядочные колебания атомов (молекул, ионов). Энтропия увеличивается. Особенно резко это происходит в момент плавления при переходе от твердого тела к жидкости и еще в большей степени - в момент испарения при переходе от жидкости к газу.

Энтропия газов значительно превышает энтропию жидких и тем более твердых тел. Если вы прольете немного бензина в закрытом помещении, например в гараже, то скоро почувствуете его запах во всем объеме помещения. Происходит испарение (эндотермический процесс) и диффузия, беспорядочное распределение паров бензина по всему объему. Пары бензина имеют большую энтропию по сравнению с жидкостью.

Процесс кипения воды с энергетической точки зрения тоже эндотермический процесс, но выгоден с точки зрения увеличения энтропии при переходе жидкости в пар. При температуре 100 °С энтропийный фактор «перетягивает» энергетический - вода начинает кипеть - пары воды имеют большую энтропию по сравнению с жидкой водой.

Анализируя данные, приведенные в таблице 12, обратите внимание, насколько мало значение энтропии для алмаза, имеющего очень правильную структуру. Вещества, образованные более сложными частицами, обладают большими значениями энтропии. Например, энтропия этана больше энтропии метана.

Таблица 12
Некоторые значения стандартной молярной энтропии



Самопроизвольные эндотермические реакции - это как раз те реакции, в которых наблюдается достаточно сильный рост энтропии, например за счет образования газообразных продуктов из жидких или твердых веществ или же за счет увеличения числа частиц.

Например:

CaCO 3 → СаО + СO 2 - Q,

2NH 3 → N 2 + ЗН 2 - Q.

Сформулируем выводы.

  1. Направление химической реакции определяется двумя факторами: стремлением к уменьшению внутренней энергии с выделением энергии и стремлением к максимальному беспорядку, т. е. к увеличению энтропии.
  2. Эндотермическую реакцию можно заставить идти, если она сопровождается увеличением энтропии.
  3. Энтропия увеличивается при повышении температуры и особенно сильно при фазовых переходах: твердое - жидкое, твердое - газообразное.
  4. Чем выше температура, при которой проводят реакцию, тем большее значение будет иметь энтропийный фактор по сравнению с энергетическим.

Существуют экспериментальные и теоретические методы определения энтропий различных химических соединений. Используя эти методы, можно количественно рассчитать изменения энтропии при протекании конкретной реакции аналогично тому, как это делается для теплового эффекта реакции. В результате появляется возможность предсказать направление химической реакции (табл. 13).

Таблица 13
Возможность протекания химических реакций в зависимости от изменения энергии и энтропии

Чтобы ответить на вопрос о возможности осуществления реакции, ввели специальную величину - энергию Гиббса (G), которая позволяет учесть как изменение энтальпии, так и изменение энтропии:

ΔG = ΔН - TΔS,

где Т - абсолютная температура.

Самопроизвольно протекают только те процессы, в которых энергия Гиббса уменьшается, т. е. величина ΔG < 0. Процессы, при которых ΔG > 0, в принципе невозможны. Если ΔG = 0, т. е. ΔН = TΔS, то в системе установилось химическое равновесие (см. § 14).

Вернемся к случаю № 2 (см. табл. 13).

Все живое на нашей планете - от вирусов и бактерий до человека - состоит из высокоорганизованной материи, которая более упорядочена по сравнению с окружающим миром. Например, белок. Вспомните его структуры: первичная, вторичная, третичная. Вы уже хорошо знакомы и с «веществом наследственности» (ДНК), молекулы которого состоят из расположенных в строго определенной последовательности структурных единиц. Значит, синтез белка или ДНК сопровождается огромным уменьшением энтропии.

Кроме того, исходный строительный материал для роста растений и животных образуется в самих растениях из воды Н 2 O и углекислого газа СO 2 в процессе фотосинтеза:

6Н 2 O + 6СO 2(Г) → С6Н 12 O 6 + 6O 2(г) .

В этой реакции энтропия уменьшается, идет реакция с поглощением световой энергии. Значит, процесс эндотермический! Таким образом, реакции, которым мы обязаны жизнью, оказываются термодинамически запрещенными. Но они идут! А используется при этом энергия световых квантов в видимой области спектра, которая намного больше тепловой энергии (инфракрасных квантов). В природе эндотермические реакции с уменьшением энтропии, как вы видите, протекают в определенных условиях. Химики пока не могут создать такие условия искусственно.

Вопросы и задания к § 12


201. В каком направлении при стандартных условиях будет протекать реакция N 2(г) + О 2(г) = 2NO (г) ? Ответ подтвердите расчетами.

202. Вычислите изменение энергии Гиббса некоторой реакции при 1000 К, если ∆ r Н ° 298 = 131,3 кДж, а ∆ r S ° 298 = 133,6 Дж/К (влиянием температуры Т на ∆Н и ∆S пренебречь).

203. Вычислите ∆ r G ° 298 системы PbO 2 + Pb = 2PbO на основании ∆ r Н ° 298 и ∆ r S ° 298 реагирующих веществ. Определите, воз­можна ли эта реакция.

204. Определите, в каком направлении реакция Fe 2 O 3(к) + 3Н 2 = = Fe (к) + 3Н 2 О (г) будет протекать самопроизвольно при стандартных условиях.

205. Вычислите изменение энергии Гиббса и определите возможность восстановления оксида хрома (III) углеродом при 1500 К по реакции Cr 2 O 3(т) + 3C (т) = 2Cr (т) + 3СО (г) .

206. Вольфрам получают восстановлением оксида вольфрама (IV) водородом. Определите возможность протекания этой реакции при 500 и 1000 °С по реакции WO 3(т) + 3H 2(г) = W (т) + 3H 2 O (г) .

207. Вычислите изменение энергии Гиббса и определите возможность протекания этой реакции при стандартных условиях СО (г) + Н 2 О (ж) = СО 2(г) + Н 2(г) .

208. Вычислите изменение энергии Гиббса и определите возможность протекания реакции разложения оксида меди (II) при 400 и 1500 К по реакции 4CuO (т) = 2Сu 2 О (т) + О 2(г) .

209. Определите температуру равновероятного протекания реак­ции в прямом и обратном направлениях, если ∆ r Н ° 298 = = 38 кДж, а ∆ r S ° 298 = 207 Дж/К.

210. Вычислите ∆ r G ° 298 и ∆ r G ° 1000 для реакции Н 2 О (г) + + С (гр) = СО (г) + Н 2(г) . Как влияет температура на термодинамическую вероятность протекания процесса в прямом направлении?

211. Какая из приведенных реакций термодинамически более вероятна: 1) N 2 + O 2 = 2NO или 2) N 2 +2O 2 = 2NO 2 ? Ответ подтвердите расчетами.

212. Определите знак ∆ r G ° 298 , не прибегая к расчетам, для реакции СаО (т) + СО 2(г) = СаСО 3(т) , ∆ r Н ° 298 = -178,1 кДж/моль. Ответ поясните.

213. Определите знак ∆ r G ° 298 для процесса усваивания в ор­га­низме человека сахарозы, который сводится к ее окислению С 12 Н 22 О 11(к) + 12О 2(г) = 12СО 2(г) + 11Н 2 О (ж) .

214. Проверьте, нет ли угрозы того, что оксид азота (I), применяемый в медицине в качестве наркотического средства, будет окисляться кислородом воздуха до весьма токсичного оксида азота (II) по реакции 2N 2 O (г) + О 2(г) = 4NO (г) .

215. Глицерин – один из продуктов метаболизма, который превращается окончательно в организме в СО 2(г) и Н 2 О (ж) . Вычислите ∆ r G ° 298 реакции окисления глицерина, если ∆ f G ° 298 (С 3 Н 8 О 3) = = 480 кДж/моль.

216. Рассчитайте изменение энергии Гиббса для реакции фотосинтеза 6СО 2(г) + 6Н 2 О (ж) = С 6 Н 12 О 6(р-р) + 6О 2(г) .

217. Определите температуру, при которой ∆ r G ° Т = 0, для реакции Н 2 О (г) + СО (г) = СО 2(г) + Н 2(г) .

218. Рассчитайте термодинамические характеристики ∆ r Н ° 298 , ∆ r S ° 298 , ∆ r G ° 298 реакции 2NO (г) = N 2 O 4(г) . Сформулируйте вывод о возможности протекания реакции при температурах 0; 25 и 100 °С, подтвердите его расчетом.

219. Возможна ли реакция 3Fe 2 O 3(к) + Н 2(г) = 2Fe 3 O 4(к) = Н 2 О (г) ? Ответ подтвердите расчетами.

220. Вычислите изменение энергии Гиббса реакции при 980 К, если ∆ r Н ° 298 = 243,2 кДж, а ∆ r S ° 298 = 195,6 Дж/К (влиянием температуры на ∆Н и ∆S пренебречь).

221. Вычислите ∆ r G ° 298 и ∆ r G ° 1000 для реакции

Fe 2 O 3(к) + 3СО (г) = 2 Fe (к) + 3СО 2(г)

Как влияет температура на термодинамическую вероятность протекания процесса в прямом направлении?

222. Взаимодействие карбида кальция с водой описывается двумя уравнениями:

а) СаС 2 + 2Н 2 О = СаСО 3 + С 2 Н 2 ; б) СаС 2 + 5Н 2 О = СаСО 3 + 5Н 2 + СО 2 .

Какая из реакций термодинамически более предпочтительна? Объясните результаты расчета.

223. Определите направление самопроизвольного протекания реакции SO 2 + 2H 2 = S кр + 2Н 2 О при стандартных условиях.

224. Вычислите изменение энергии Гиббса реакции ZnS +3/2О 2 = ZnO + SO 2 при 298 и 500 К.

225. Определите направление самопроизвольного протекания реакции

NH 4 Cl (к) + NaOH (к) = NaCl (к) + H 2 O (г) + NH 3(г) .

при стандартных условиях

Скорость химических реакций

226. Определите, во сколько раз изменится скорость гомогенной газовой реакции 4HCl + O 2 → 2H 2 O +2Cl 2 , если общее давление в системе увеличить в 3 раза.

227. Скорость реакции: 2NO + O 2 → 2NO 2 при концентрациях NO и O 2 , равных 0,6 моль/дм 3 , составляет 0,18 моль/(дм 3 ·мин). Вычислите константу скорости реакции.

228. Во сколько раз следует увеличить концентрацию СО в системе, чтобы повысить скорость реакции 2СО → СО 2 + С (тв) в 4 раза?

229. Реакция идет по уравнению N 2 + O 2 → 2NO. Исходные концентрации азота и кислорода равны 0,049 и 0,01 моль/дм 3 . Вычислите концентрации веществ, когда в системе образуется 0,005 моль NO.

230. Реакция между веществами А и В протекает по уравнению 2А + В = С. Концентрация вещества А равна 6 моль/л, а вещества В 5 моль/л. Константа скорости реакции равна 0,5 л/(моль·с). Вычислите скорость реакции в начальный момент и в тот момент, когда в реакционной смеси остается 45 % вещества В.

231. Насколько градусов необходимо повысить температуру, чтобы скорость реакции возросла в 90 раз? Температурный коэффициент Вант-Гоффа равен 2,7.

232. Температурный коэффициент скорости реакции разложения йодоводорода по реакции 2HI = H 2 + I 2 равен 2. Вычислите константу скорости этой реакции при 684 К, если при 629 К константа скорости равна 8,9 · 10 -5 л / (моль · с).

233. Определите температурный коэффициент скорости реакции, если при понижении температуры на 45° реакция замедлилась в 25 раз.

234. Вычислите, при какой температуре реакция закончится за 45 мин, если при 293 К на это требуется 3 часа. Температурный коэффициент скорости реакции принять равным 3,2.

235. Вычислите константу скорости реакции при 680 К, если при 630 К константа скорости данной реакции равна 8,9 -5 моль/(дм 3 · с), а γ = 2.

236. Константа скорости реакции при 9,4 °С равна 2,37 мин -1 , а при 14,4 °С составляет 3,204 мин -1 . Вычислите энергию активации и температурный коэффициент скорости реакции.

237. Вычислите, на сколько градусов необходимо повысить температуру, чтобы скорость реакции увеличилась в 50 и 100 раз, если температурный коэффициент скорости реакции равен 3.

238. При 393 К реакция заканчивается за 18 мин. Через какой промежуток времени эта реакция закончится при 453 К, если температурный коэффициент скорости реакции равен 3?

239. Начальные концентрации реагирующих веществ реакции СО + Н 2 О (г) → СО 2 + Н 2 были равны (моль/дм 3): = 0,8; = 0,9; = 0,7; = 0,5. Определите концентрации всех участников реакции после того, как концентрация водорода увеличится на 10 %.

240. Реакция между веществами А и В выражается уравнением А + 2В → С. Начальные концентрации вещества составляют: [A] = 0,03 моль/л; [B] = 0,05 моль/л. Константа скорости реакции равна 0,4. Определите начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

241. В системе СО + Cl 2 = COCl 2 концентрацию увеличили от 0,03 до 0,12 моль/л, а концентрацию хлора – от 0,02 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

242. Во сколько раз изменится скорость реакции 2А + В → А 2 В, если концентрацию вещества А увеличить в 2 раза, а концентрацию вещества В уменьшить в 2 раза?

243. Какая доля (%) новокаина разложится за 10 суток его хранения при 293 К, если при 313 К константа скорости гидролиза новокаина равна 1·10 -5 сут -1 , а энергия активации реакции равна 55,2 кДж/моль?

244. При 36 °С константа скорости распада пенициллина равна 6·10 -6 с -1 , а при 41 °С – 1,2·10 -5 с -1 . Вычислите температурный коэффициент реакции.

245. Во сколько раз увеличится скорость реакции, протекающей при 298 К, если энергию активации уменьшить на 4 кДж/моль?

246. Вычислите температурный коэффициент (γ) константы скорости реакции разложения пероксида водорода в температурном интервале 25 °С – 55 °С при Е а = 75,4 кДж/моль.

247. Разложение пероксида водорода с образованием кислорода в 0,045 М раствора КОН при 22 °С происходит как реакция первого порядка с периодом полураспада τ 1/2 = 584 мин. Вычислите скорость реакции в начальный момент времени после смешения равных объемов 0,090 М раствора КОН и 0,042 М раствора Н 2 О 2 и количество пероксида водорода, оставшегося в растворе по истечении одного часа.

248. При повышении температуры на 27,8 °С скорость реакции возросла в 6,9 раза. Вычислите температурный коэффициент скорости реакции и энергию активации этой реакции при 300 К.

249. Для некоторой реакции первого порядка период полупревращения вещества при 351 К составляет 411 мин. Энергия активации равна 200 кДж/моль. Вычислите, сколько времени потребуется для разложения 75 % исходного количества вещества при 402 К.

250. Константы скорости некоторой реакции при 25 и 60 °С равны соответственно 1,4 и 9,9 мин -1 . Вычислите константы скорости этой реакции при 20 и 75 °С.

Химическое равновесие

251. Константа равновесия реакции А + В = С + Д равна единице. Начальная концентрация [A] = 0,02 моль/л. Сколько процентов вещества А подвергается превращению, если начальные концентрации [B] = 0,02; 0,1; 0,2 моль/л?

252. Исходные концентрации азота и водорода в реакционной смеси для получения аммиака составили 4 и 10 моль/дм 3 соответственно. Вычислите равновесные концентрации компонентов в смеси, если к моменту наступления равновесия прореагировало 50 % азота.

253. Обратимая реакция протекает по уравнению А + В ↔ С + Д. Исходная концентрация каждого из веществ в смеси составляет 1 моль/л. После установления равновесия концентрация компонента С равна 1,5 моль/дм 3 . Вычислите константу равновесия этой реакции.

254. Определите исходные концентрации NO и O 2 и константу равновесия обратимой реакции 2NO + O 2 ↔ 2NO 2 , если равновесие установилось при следующих концентрациях реагирующих веществ, моль/дм 3: = 0,12; = 0,48; = 0,24.

255. В каком направлении сместится химическое равновесие в системе 2NO 2 ↔ NO + O 2 , если равновесные концентрации каж-дого компонента уменьшить в 3 раза?

256. Во сколько раз уменьшится равновесное парциальное давление водорода в процессе реакции N 2 + 3Н 2 ↔ 2 NН 3 , если увеличить давление азота в 2 раза?

257. В системе 2NO 2 ↔ N 2 O 4 при 60 °С и стандартном давлении установилось равновесие. Во сколько раз следует уменьшить объем, чтобы давление возросло в 2 раза?

258. В каком направлении сместится равновесие при повышении температуры систем:

1) СОCl 2 ↔ CO + Cl 2 ; ∆ r Н ° 298 = -113 кДж/моль

2) 2СО ↔ CO 2 +С; ∆ r Н ° 298 = -171 кДж/моль

3) 2SO 3 ↔ 2SO 2 + O 2 ; ∆ r Н ° 298 = -192 кДж/моль.

Ответ поясните.

259. В замкнутом сосуде протекает реакция АВ (г) ↔ А (г) + В (г) . Константа равновесия реакции равна 0,04, а равновесная концентрация вещества В составляет 0,02 моль/л. Определите начальную концентрацию вещества АВ. Сколько процентов вещества АВ разложилось?

260. При окислении аммиака кислородом возможно образование азота и различных оксидов азота. Напишите уравнение реакции и обсудите влияние давления на сдвиг равновесия реакций с образованием: а) N 2 O; б) NO 2 .

261. В каком направлении сместится равновесие для обратимой реакции С (тв) + Н 2 О (г) ↔ СО (г) + Н 2(г) при уменьшении объема системы в 2 раза?

262. При некоторой температуре равновесие в системе 2NO 2 ↔ 2NO + O 2 установилось при следующих концентрациях: = 0,006 моль/л; = 0,024 моль/л. Найти константу равновесия реакции и исходную концентрацию NO 2 .

263. Начальные концентрации монооксида углерода и паров воды одинаковы и равны 0,1 моль/л. Рассчитайте равновесные концентрации СО, Н 2 О и СО 2 в системе СО (г) + Н 2 О (г) ↔ СО (г) + Н 2(г) , если равновесная концентрация водорода оказалась равной 0,06 моль/л, определите константу равновесия.

264. Константа равновесия реакции 3Н 2 + N 2 = 2NН 3 при некоторой температуре равна 2. Сколько моль азота следует ввести на 1 л газовой смеси, чтобы 75 % водорода превратить в аммиак, если исходная концентрация водорода была равна 10 моль/л?

265. В системе 2NO (г) + O 2(г) ↔ 2NO 2(г) равновесные концентрации веществ составляют = 0,2 моль/л, = 0,3 моль/л, = 0,4 моль/л. Рассчитайте константу равновесия и оцените положение равновесия.

266. В сосуд вместимостью 0,2 л поместили 0,3 и 0,8 г водорода и йода. После установления равновесия в сосуде обнаружено 0,7 г HI. Вычислите константу равновесия реакции.

267. Начальные концентрации Н 2 и I 2 равны соответственно 0,6 и 1,6 моль/л. После установления равновесия концентрация йодоводорода оказалась равной 0,7 моль/л. Вычислите равновесные концентрации Н 2 и I 2 и константу равновесия.

268. При некоторой температуре константа равновесия реакции 2NO + O 2 ↔ 2NO 2 равна 2,5 моль -1 · л и в равновесной газовой смеси = 0,05 моль/л и = 0,04 моль/л. Вычислите начальные концентрации кислорода и NO.

269. Вещества А и В в количестве 3 и 4 моль соответственно, находящиеся в сосуде вместимостью 2л, реагируют согласно уравнению 5А + 3В = А 5 В 3 .

Прореагировало 1,6 моль вещества А. Определите количество израсходованного вещества В и полученного продукта. Рассчитайте константу равновесия.

270. При изучении равновесия реакции H 2 + I 2 = 2HI найдено, что при исходных концентрациях H 2 и I 2 по 1 моль/л равновесная концентрация HI равна 1,56 моль/л. Вычислите равновесную концентрацию йодоводорода, если начальные концентрации H 2 и I 2 составляли по 2 моль/л.

271. При изучении равновесия H 2 + I 2 = 2HI оказалось, что равновесные концентрации H 2 , I 2 и HI равны соответственно 4,2; 4,2; 1,6 моль/л. В другом опыте, проводившемся при той же температуре, было найдено, что равновесные концентрации I 2 и HI равны 4,0 и 1,5 моль/л. Рассчитайте концентрацию водорода в этом опыте.

272. При некоторой температуре в равновесной газовой системе SO 2 – O 2 – SO 3 концентрации веществ составили соответственно 0,035; 0,15 и 0,065 моль/л. Вычислите константу равновесия и начальные концентрации веществ, предполагая, что это только кислород и SO 2 .

273. В сосуде вместимостью 8,5 л установилось равновесие СО (г) + Cl 2(г) = СОCl 2(г) . Состав равновесной смеси (г): СО – 11, Cl 2 – 38 и СОCl 2 – 42. Вычислите константу равновесия реакции.

274. Как влияют на смещение равновесия и константу равновесия реакции Н 2(г) + Cl 2(г) = 2HCl (г) , ∆H < 0, следующие факторы: а) увеличение концентраций Н 2 , Cl 2 и HCl; б) увеличение давления в 3 раза; в) повышение температуры?

275. Исходные концентрации NO и Cl 2 в гомогенной системе 2NO + Cl 2 = 2NOCl равны соответственно 0,5 и 0,2 моль/дм 3 . Вычислите константу равновесия, если к моменту равновесия прореагировало 35 % NO.

Вероятность
Вероятность
протекания
протекания
химических реакций.
химических реакций.
Скорость химических
Скорость химических
реакций.
реакций.
Подготовила:
Подготовила:
преподаватель химии
преподаватель химии
1 квалификационной
1 квалификационной
категории
категории
Сагдиева М.С.
Сагдиева М.С.
Казань 2017г.
Казань 2017г.

Скорость химических
Скорость химических
реакций
реакций
Химическая кинетика изучает скорость и
изучает скорость и
Химическая кинетика
механизмы химических реакций
механизмы химических реакций

Гомогенные и
Гомогенные и
гетерогенные системы
гетерогенные системы
Фаза –
совокупность всех
гомогенных частей системы,
одинаковых по составу и по
всем
химическим
физическим
свойствам и отграниченных от
других

поверхностью раздела.
системы
и
частей
Гомогенные системы
состоят из одной фазы.
Гетерогенные системы
Гетерогенные системы

Сущность химических реакций сводится к разрыву связей в ис­ходных
веществах и возникновению новых связей в продуктах реакции. При этом
общее число атомов каждого элемента до и после реакции остается
постоянным.
энергии,
поглощением
Поскольку образование связей происходит с выделением, а разрыв связей -
с
сопровождаются
энергетическими эффектами. Очевидно, если разрушаемые связи в исходных
веществах менее прочны, чем образующиеся в продуктах реакции, то энергия
выделяется, и наоборот. Обычно энергия выделяется и поглощается в форме
теплоты.
химические
то
реакции
Со скоростью химических реакций связаны представления о превращении
веществ,
в
промышленных масштабах. Учение о скоростях и механизмах химических
реакций называется химической кинетикой.
эффективность их получения
экономическая
также
а
Под скоростью химической реакции понимают изменение
концентрации одного из реагирующих веществ в единицу времени
при неизменном объеме системы.

Рассмотрим в общем виде скорость реакции, протекающей по
уравнению:
По мере расходования вещества А скорость реакции уменьшается (как это
показано на рис. 4.1). Отсюда следует, что скорость реакции может быть
определена лишь для некоторого промежутка времени. Так как концентрация
вещества А в момент времени Т1 измеряется величиной c1, а в момент Т2 -
величиной С2, то за промежуток времени изменение концентрации вещества
составит ∆С = с2 - с1, откуда определится средняя скорость реакции (и):

Скорость химических реакций
Скорость химических реакций
(для гомогенных систем)


tVv



cV
A + B = D + G
A + B = D + G
cv


t

t = 10 c
C0 = 0,5 моль/л
C1 = 5 моль/л
v
5,05

10

45,0
моль

сл

Скорость химических реакций
A + B = D + G
A + B = D + G
C0 = 2 моль/л
C1 = 0,5 моль/л
t = 10 c
v
25,0

10

15,0
моль

сл
cv


t



tSv


(для гомогенных систем)
v
25,0

10

15,0
моль

сл
(для гетерогенных систем)

Факторы, от которых
зависит скорость
реакции
Природа реагирующих веществ
 Природа реагирующих веществ
Концентрация веществ в
 Концентрация веществ в
системе
системе
Площадь поверхности (для
 Площадь поверхности (для
гетерогенных систем)
гетерогенных систем)
Температура
 Температура
Наличие катализаторов
 Наличие катализаторов

1. Влияние концентраций реагирующих веществ.
Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы
(частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает
реакция. Число же столкновений тем больше, чем выше концентрация реагирующих
веществ. Отсюда на основе обширного экспериментального материала сформулирован
основной закон химической кинетики, устанавливающий зависимость скорости
реакции от концентрации реагирующих веществ:
скорость химической реакции пропорциональна произведению
концентраций реагирующих веществ.
Для реакции (I) этот закон выразится уравнением
v = ксА­ св,
где СА и Св - концентрации веществ А и В, моль/л; к - коэффициент
пропорциональности, называемый константой скорости реакции. Основной закон
химической кинетики часто называют законом действующих масс.

2.Влияние
температуры
Якоб Вант­Гофф
Якоб Вант­Гофф
(1852­1911)
(1852­1911)

Правило Вант-Гоффа
При нагревании системы на 10 ˚С скорость
реакции возрастает в 2-4 раза
 - температурный коэффициент
Вант-Гоффа.
t
 vv
10
0
100tvv

сообщить молекулам
сообщить молекулам
Энергия, которую надо
которую надо
(частицам) реагирующих
(частицам) реагирующих
веществ, чтобы превратить
веществ, чтобы превратить
их в активные, называется
называется
их в активные
энергией активации
энергией активации
ЕЕа – кдж /моль
а – кдж /моль

На примере реакции в общем виде:
А2+ В2 = 2АВ.
Ось ординат характеризует потенциальную
энергию системы, ось абсцисс - ход реакции:
исходное состояние -* переходное состояние
-* конечное состояние.
Чтобы реагирующие вещества А2 и В2
образовали продукт реакции АВ, они должны
преодолеть энергетический барьер С (рис. 4.2).
На это затрачивается энергия активации Ed, на
значение которой возрастает энергия системы.
При
в ходе реакции из частиц
реагирующих
образуется
промежуточная неустойчивая
группировка,
называемая переходным состоянием или
активированным комплексом (в точке С),
последующий распад которого приводит к
образованию конечного продукта АВ.
веществ
этом

Механизм реакции можно изобразить схемой
Если при распаде активированного комплекса
выделяется больше энергии, чем это необходимо для
активации частиц, то реакция экзотермическая.

Введение. Термодинамические расчёты позволяют сделать вывод о возможности данного процесса, выбрать условия проведения химической реакции, определить равновесный состав продуктов, рассчитать теоретически достижимые степени превращения исходных веществ и выходы продуктов, а также энергетические эффекты (теплота реакции, теплота изменения агрегатного состояния), что необходимо для составления энергетических балансов и определения энергетических затрат.

Наиболее важные понятия термодинамики – “теплота процесса” и “работа”. Величины, характеризующие состояние термодинамической системы, называют термодинамическими параметрами. К ним относятся: температура, давление, удельный объём, плотность, молярный объём, удельная внутренняя энергия. Величины, пропорциональные массе (или количеству вещества) рассматриваемой термодинамической системы называются экстенсивными; это – объём, внутренняя энергия, энтальпия, энтропия. Интенсивные величины не зависят от массы термодинамической системы, и только они служат термодинамическими параметрами состояниями. Это – температура, давление, а также экстенсивные величины, отнесённые к единице массы, объема или количества вещества. Изменение интенсивных параметров с целью ускорения химико-технологических процессов называется интенсификацией.

При экзотермических реакциях запас внутренней энергии исходных веществ (U 1) больше, чем образующихся продуктов (U 2). Разность ∆U = U 1 – U 2 преобразуется в форму теплоты. Наоборот, при эндотермических реакциях вследствие поглощения некоторого количества теплоты внутренняя энергия веществ повышается (U 2 > U 1). ∆U выражают в Дж/моль или в технических расчётах их относят к 1 кг или 1 м 3 (для газов). Изучением тепловых эффектов реакций или агрегатных состояний, или смешения, растворения занимается раздел физической химии или химической термодинамики – термохимии. В термохимических уравнениях указывается тепловой эффект реакции. Например: С (графит) +О 2 = СО 2 +393,77 кДж/моль. Теплоты разложения имеют противоположный знак. Для их определения используют таблицы. По Д.П.Коновалову теплоты сгорания определяют из соотношения: Q сгор =204,2n+44,4m+∑x (кДж/моль), где n – число молей кислорода, требующихся для полного сгорания 1 моля данного вещества, m – число молей воды, образующихся при сгорании 1 моля вещества, ∑x – поправка, постоянная для данного гомологического ряда. Чем больше непредельность, тем больше ∑x.



Для углеводородов ацетиленового ряда ∑x=213 кДж/моль. Для этиленовых углеводородов ∑x=87,9 кДж/моль. Для предельных углеводородов ∑x=0. Если в молекуле соединения имеются различные функциональные группы и типы связей, то термическую характеристику находят суммированием.

Тепловой эффект реакции равен сумме теплот образования продуктов реакции минус сумма теплот образования исходных веществ с учётом количества молей всех участвующих в реакции веществ. Например, для реакции общего вида: n 1 A+n 2 B=n 3 C+n 4 D+Q x тепловой эффект: Q x =(n 3 Q C обр +n 4 Q D обр) – (n 1 Q A обр +n 2 Q B обр)

Тепловой эффект реакции равен сумме теплот сгорания исходных веществ минус сумма теплот сгорания продуктов реакции с учётом количества молей всех реагирующих веществ. Для той же общей реакции:

Q x =(n 1 Q A сгор +n 2 Q B сгор) – (n 3 Q C сгор +n 4 Q D сгор)

Вероятность протекания равновесных реакций определяют по константе термодинамического равновесия, которая определяется:

К р = e - ∆ G º/(RT) = e - ∆ H º/ RT ∙ e ∆ S º/ R Из анализа этого выражения видно, что для эндотермических реакций (Q < 0, ∆ Hº > 0 ) при убыли энтропии (∆Sº < 0) самопроизвольное протекание реакции невозможно так как – ∆G > 0 . В последующем термодинамический подход к химическим реакциям будет рассмотрен более подробно.

Лекция 4.

Основные законы термодинамики. Первое начало термодинамики. Теплоёмкость и энтальпия. Энтальпия реакции. Энтальпия образования соединения. Энтальпия сгорания. Закон Гесса и энтальпия реакции.

Первый закон термодинамики: изменение внутренней энергии (∆Е) системы равно работе внешних сил (А′) плюс количество переданной теплоты (Q): 1)∆Е=А′+Q; или (2-ой вид) 2)Q=∆Е+A – количество теплоты, переданное системе (Q) расходуется на изменение её внутренней энергии (∆Е) и работу (А), совершенную системой. Это один из видов закона сохранения энергии. Если изменение состояния системы очень мало, то: dQ=dE+δA – такая запись при малых (δ) изменениях. Для газа (идеального) δА=pdV. В изохорном процессе δА=0, то δQ V =dE, так как dE=C V dT, то δQ V =C V dT, где C V – теплоёмкость при постоянном объёме. В небольшом температурном интервале теплоёмкость постоянна, поэтому Q V =C V ∆T. Из этого уравнения можно определить теплоёмкость системы и теплоты процессов. C V – по закону Джоуля-Ленца. В изобарном процессе протекающем без совершения полезной работы, учитывая, что p постоянно и его можно вынести за скобку под знак дифференциала, т. е. δQ P =dE+pdV=d(E+pV)=dH, здесь H – энтальпия системы. Энтальпия – это сумма внутренней энергии (Е) системы и произведения давления на объём. Количество теплоты можно выразить через изобарную тёплоёмкость (С Р): δQ P =С Р dT, Q V =∆E(V = const) и Q P =∆H(p = const) – после обобщения. Отсюда следует, что количество теплоты, получаемое системой однозначно, определяется изменением некоторой функции состояния (энтальпии) и зависит только от начального и конечного состояний системы и не зависит от формы пути, по которому развивался процесс. Это положение лежит в основе рассмотрения вопроса о тепловых эффектах химических реакций.



Тепловой эффект реакции – это отнесённое к изменению химической переменной количество теплоты , полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру исходных реагентов (как правило Q V и Q P).

Реакции с отрицательным тепловым эффектом , т. е. с выделением теплоты в окружающую среду, называют экзотермическими. Реакции с положительным тепловым эффектом, т. е. идущие с поглощением теплоты из окружающей среды, называются эндотермическими.

Стехиометрическое уравнение реакции будет: (1) ∆H=∑b J H J - ∑a i H i или ∆H=∑y i H i ; j – символы продуктов, i – символы реагентов.

Это положение носит название закона Гесса : величины Е i , H i – функции состояния системы и, следовательно, ∆H и ∆Е, а тем самым и тепловые эффекты Q V и Q р (Q V =∆Е, Q р =∆H) зависят только от того, какие вещества вступают в реакцию при заданных условиях и какие получаются продукты, но не зависят от того пути, по которому проходил химический процесс (механизма реакции).

Иными словами, энтальпия химической реакции равна сумме энтальпий образования компонентов реакции, умноженных на стехиометрические коэффициенты соответствующих компонентов, взятых со знаком плюс для продуктов и со знаком минус для исходных веществ. Найдём в качестве примера ∆H для реакции PCl 5 +4H 2 O=H 3 PO 4 +5HCl (2)

Табличные значения энтальпий образования компоненты реакции равны соответственно для PCl 5 – 463кДж/моль, для воды (жидкой) – 286,2 кДж/моль, для H 3 PO 4 – 1288 кДж/моль, для HCl(газ) – 92,4 кДж/моль. Подставляя эти значения в формулу: Q V =∆Е, получим:

∆H=-1288+5(-92,4)–(-463)–4(-286,2)=-142кДж/моль

Для органических соединений, а также для CO легко осуществить процесс сгорания до CO 2 и H 2 O. Стехиометрическое уравнение сгорания органического соединения состава C m H n O p запишется в виде:

(3) C m H n O p +(р-m-n/4)O 2 =mCO 2 +n/2 H 2 O

Следовательно, энтальпия сгорания согласно (1) может быть выражена через энтальпии его образования и образования CO 2 и H 2 O:

∆H сг =m∆H CO 2 +n/2 ∆H H 2 O -∆H CmHnOp

Определив при помощи калориметра теплоту сгорания исследуемого соединения и зная ∆H CO 2 и ∆H H 2 O , можно найти энтальпию его образования.

Закон Гесса позволяет рассчитать энтальпии любых реакций, если для каждого компонента реакции известна одна его термодинамическая характеристика - энтальпия образования соединения из простых веществ. Под энтальпией образования соединения из простых веществ понимают ∆H реакции, приводящей к образованию одного моля соединения из элементов, взятых в их типичных агрегатных состояниях и аллотропных модификациях.

Лекция 5.

Второе начало термодинамики. Энтропия. Функция Гиббса. Изменение функции Гиббса при протекании химических реакций. Константа равновесия и функция Гиббса. Термодинамическая оценка вероятности протекания реакции.

Вторым началом термодинамики называется утверждение о том, что невозможно построение вечного двигателя второго рода. Закон получен опытным путём и имеет две эквивалентные друг другу формулировки:

а) невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу;

б) невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого к телу более нагретому.

Функция δQ/T является полным дифференциалом некоторой функции S: dS=(δQ/T) обр (1) – эта функция S называется энтропией тела.

Здесь Q и S пропорциональны друг другу, то есть при увеличении (Q) (S) – увеличивается, и наоборот. Уравнение (1) соответствует равновесному (обратимому) процессу. Если процесс неравновесный, то энтропия увеличивается, тогда (1) преобразуется:

dS≥(δQ/T) (2) Таким образом, при протекании неравновесных процессов энтропия системы увеличивается. Если (2) подставить в первый закон термодинамики, то получим: dE≤TdS-δA. Его принято записывать в виде: dE≤TdS-δA’-pdV, отсюда: δA’≤-dE+TdS-pdV, здесь pdV – работа равновесного расширения, δA’- полезная работа. Интегрирование обеих частей этого неравенства для изохорно-изотермического процесса приводит к неравенству: A’ V -∆E+T∆S (3). А интегрирование для изобарно-изотермического процесса (Т=const, p=const) – к неравенству:

A’ P ≤ - ∆E+T∆S – p∆V=-∆H + T∆S (4)

Правые части (3 и 4) могут быть записаны как изменения некоторых функций, соответственно:

F=E-TS (5) и G=E-TS+pV; или G=H-TS (6)

F – энергия Гельмгольца, а G – энергия Гиббса, тогда (3 и 4) можно записать в виде A’ V ≤-∆F (7) и A’ P ≤-∆G (8). Закон равенства соответствует равновесному процессу. При этом совершается максимально полезная работа, то есть (A’ V) MAX =-∆F, и (A’ P) MAX =-∆G. F и G называют соответственно изохорно-изотермический и изобарно-изотермический потенциалы.

Равновесие химических реакций характеризуется процессом (термодинамическим) при котором система проходит непрерывный ряд равновесных состояний. Каждое из таких состояний характеризуется неизменностью (во времени) термодинамических параметров и отсутствием в системе потоков вещества и теплоты. Равновесное состояние характеризуется динамическим характером равновесия, то есть равенством прямого и обратного процессов, минимальным значением энергии Гиббса и энергии Гельмгольца (то есть dG=0 и d 2 G>0; dF=0 и d 2 F>0). При динамическом равновесии скорость прямой и обратной реакций одинаковы. Должно также соблюдаться равенство:

µ J dn J =0 , где µ J =(ðG/ðn J) T , P , h =G J – химический потенциал компонента J; n J – количество компонента J (моль). Большое значение µ J указывает на большую реакционную способность частиц.

∆Gº=-RTLnК р (9)

Уравнение (9) называют уравнением изотермы Вант-Гаффа. Значение ∆Gº в таблицах в справочной литературе для многих тысяч химических соединений.

К р = e - ∆ G º/(RT) = e - ∆ H º/ RT ∙ e ∆ S º/ R (11). Из (11) можно дать термодинамическую оценку вероятности протекания реакции. Так, для экзотермических реакций (∆Нº<0), протекающих с возрастанием энтропии, К р >1, а ∆G<0, то есть реакция протекает самопроизвольно. Для экзотермических реакций (∆Нº>0) при убыли энтропии (∆Sº>0) самопроизвольное протекание процесса невозможно.

Если ∆Нº и ∆Sº имеют один и тот же знак, термодинамическая вероятность протекания процесса определяется конкретными значениями ∆Нº, ∆Sº и Тº.

Рассмотрим на примере реакции синтеза аммиака совместное влияние ∆Н o и ∆S o на возможность осуществления процесса:

Для данной реакции ∆Н o 298 =-92,2 кДж/моль, ∆S o 298 =-198 Дж/(моль*К), Т∆S o 298 =-59кДж/моль, ∆G о 298 =-33,2кДж/моль.

Из приведённых данных видно, что изменение энтропии отрицательно и не благоприятствует протеканию реакции, но в то же время процесс характеризуется большим отрицательным энтальпийным эффектом ∆Нº, благодаря которому и возможно осуществление процесса. С ростом температуры реакция, как показывают калориметрические данные, становится ещё более экзотермической (при Т=725К, ∆Н=-113кДж/моль), но при отрицательном значении ∆S о повышение температуры весьма существенно уменьшает вероятность протекания процесса.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Термодинамическая вероятность различных направлений сложных реакций в процессах нефтепереработки

В соответствии с уравнением Гиббса термодинамическая вероятность протекания химической реакции определяется знаком и величиной изменения свободной энергии Гиббса (изобарно-изотермического потенциала, свободной энтальпии). Изменения энергии Гиббса связано с константой равновесия реакции следующей формулой:

химический реакция термодинамический нефтепереработка

где К р - константа равновесия,

К р = К 1 /К 2 , (К 1 и К 2 - константы скорости прямой и обратной реакций); - изменение энергии Гиббса;

R - газовая постоянная;

Т - температура, К.

Если К 1 > К 2 (т.е. реакция идет в сторону образования продуктов), то K p > 1 и ln K p > 0, т.е. < 0.

Из уравнения следует, что отрицательное значение (при низких температурах Т и давления Р) является условием самопроизвольного протекания химической реакции. Причем, чем больше абсолютное значение отрицательной величины, тем выше вероятность этой реакции.

Известно, что значение возрастает с увеличение молекулярной массы углеводородов (кроме ацетилена) и температуры. Следовательно, высокомолекулярные углеводороды, имеющие большой потенциал образования, термически менее стабильны и более склонны к реакциям разложения, особенно при высоких температурах.

Для оценки термодинамической вероятности той или иной реакции применяют величину изменения свободной энергии, в результате реакции.

Свободной энергией называется та часть внутренней энергии системы, которая может быть превращена в работу. Реакции могут быть обратимыми и необратимыми. К обратимым реакциям, которые в зависимости от условий идут в одну или обратную сторону относят:

1. Образование простейших углеводородов из элементов и разложение углеводородов;

2. Гидрирование олефинов - дегидрирование парафинов;

3. Гидрирование ароматики - дегидрогенизация шестичленных нафтенов;

4. Конденсация ароматических углеводородов;

5. Изомеризация.

Многие реакции: крекинг, коксование, полимеризация являются необратимыми.

Для обратимых реакций любому значению внешних условий (температура и давление) отвечает некоторое состояние равновесной системы, характеризующееся определенным соотношением количеств исходных веществ и продуктов реакции. Это состояние равновесия оценивается константой равновесия.

Термодинамическая вероятность любой (в том числе и необратимой) реакции определяется знаком изменения величины свободной энергии реакции G (если известно значение G для любой изотермической реакции и если это значение оказывается положительным, в указанном направлении реакция термодинамически невозможна. Если же значение отрицательно, то процесс может происходить, и в действительности происходит, хотя бы даже с неизмеримо малой скоростью.

Взяв значения из таблиц значения свободных энергий образования из элементов начальных и конечных веществ G при каких либо температурах и по разнице определив для этих температур изменение свободной энергии реакции G, получаем коэффициенты А и В в уравнении

G Т = А + ВТ,

G = 0, то это температурная граница термодинамической вероятности реакции: нижняя, если?G увеличивается с увеличением Т, и верхняя, если?G увеличивается с повышением температуры. Для обратимых реакций реакция идет и при температурах за пределами термодинамической вероятности, но с глубиной меньшей, чем у противоположной реакции. Впрочем, для обратимых реакций выходы можно изменить, меняя концентрации реагирующих веществ.

Термодинамическая вероятность протекания химической реакции определяется знаком и величиной изменения свободной энергии Гиббса (изобарно-изотермического потенциала, свободной энтальпии). Изменение энергии Гиббса связано с константой равновесия реакции следующей формулой:

ln К p = - ?G/(RT),

где К р -- константа равновесия,

К р -- K 1 / K 2 y (К 1 и К 2 -- константы скорости прямой и обратной реакций);

G -- изменение энергии Гиббса;

R-- газовая постоянная;

Т-- температура, К.

Если К 1 > K 2 (т.е. реакция идет в сторону образования продуктов), то Кр > 1 и lпКр > 0, т.е. ?G < 0.

Из уравнения следует, что отрицательное значение?G (при низких значениях температуры Т и давления Р) является условием самопроизвольного протекания химической реакции. Причем, чем больше абсолютное значение отрицательной величины?G, тем выше вероятность этой реакции.

Известно, что значение?G возрастает с увеличением молекулярной массы углеводородов (кроме ацетилена) и температуры. Следовательно, высокомолекулярные углеводороды, имеющие больший потенциал энергии образования?G, термически менее стабильны и более склонны к реакциям разложения, особенно при высоких температурах.

Промышленные термические процессы проводятся, как правило, под давлениями и сопровождаются гомогенными или гетерогенными реакциями.

В принципе, любые термические процессы нефтепереработки сопровождаются как эндотермическими реакциями дегидрирования и разложения углеводородов, так и экзотермическими реакциями синтеза, полимеризации, конденсации и т. п. Эти типы реакций различаются не только по знаку тепловых эффектов, но и по температурной зависимости значений свободной энергии Гиббса. Для эндотермических реакций разложения углеводородов значения?G уменьшаются с ростом температуры, а для экзотермических -- увеличиваются, т. е. реакции разложения -- термодинамически высокотемпературные, а синтеза -- термодинамически низкотемпературные. Аналогичный вывод вытекает и из принципа Ле-Шателье -- Брауна: повышение температуры способствует протеканию эндотермических реакций в сторону образования продуктов, а экзотермических -- в обратную сторону.

В интервале температур 300--1200 °С, в котором осуществляется большинство промышленных процессов нефтепереработки, свободная энтальпия линейно зависит от температуры:

В этом уравнении значение коэффициента b увеличивается с ростом теплового эффекта реакции (для эндотермических реакций b > 0, а для экзотермических b < 0). В реакциях с небольшим тепловым эффектом (например, изомеризации или гидрокрекинга) ?G мало зависит от температуры. В реакциях же со значительным тепловым эффектом (выделение или поглощение) эта зависимость заметно значительнее.

Существенное влияние на величину константы скоростей реакций оказывает, в соответствии с принципом Ле-Шателье -- Брауна, давление. Его рост способствует протеканию реакций с уменьшением объема (в основном реакции синтеза). Низкие же давления ускоряют реакции разложения.

Прогнозирование вероятности образования того или иного продукта разложения при осуществлении термических процессов также может базироваться на основе термодинамических данных, в частности, на значениях энергии связи между атомами в молекулах. Так, анализ данных по свободной энтальпии образования позволяет сделать следующие выводы о направлении разложения углеводородов.

В молекулах алканов энергия разрыва связи между крайним атомом углерода и водородом наибольшая в метане (431 кДж/моль), и она снижается по мере увеличения числа углеродных атомов до 4 и затем становится постоянной (на уровне 394 кДж/моль).

В нормальных алканах энергия разрыва связи между атомами водорода и находящегося внутри цепи углерода постепенно уменьшается в направлении к середине цепи (до 360 кДж/моль).

Энергия отрыва атома водорода от вторичного, и особенно от третичного атома углерода несколько меньше, чем от первичного.

В молекуле алкенов энергия отрыва атома водорода от углеродного атома с двойной связью значительно больше, а от атома углерода, находящегося в сопряжении с двойной связью, -- значительно ниже, чем энергия С--Н-связи в алканах.

В нафтеновых кольцах прочность связи С--Н такая же, как в связях вторичного атома углерода с водородом в молекулах алканов.

В молекулах бензола и алкилароматических углеводородов энергия связи между атомом углерода в кольце и водородом сопоставима с прочностью С--Н-связи в метане, а энергия отрыва водорода от углерода, сопряженного с ароматическим кольцом, значительно ниже, чем энергия С--Н-связи в алканах.

Энергия разрыва углерод-углеродной связи в молекулах всех классов углеводородов всегда ниже энергии С--Н-связи (примерно на 50 кДж/моль).

В молекулах алканов длина, строение цепи и местоположение разрываемой связи оказывают влияние на энергию разрыва углерод-углеродной связи качественно, аналогично влиянию их на прочность С--Н-связи. Так, связь между крайними углеродными атомами ослабляется по мере увеличения числа углеродных атомов (от 360 для этана до 335 кДж/моль для пентана и выше), а связь между внутренними углеродными атомами -- по мере приближения к середине цепи (до 310 кДж/моль). Например, энергия разрыва связи С--С в молекуле н-октана в зависимости от ее местоположения изменяется следующим образом: 335; 322; 314; 310; 314; 322; 335 кДж/моль.

Связи между первичными атомами углерода всегда прочнее, чем С--С-связи в комбинациях с первичным, вторичным (С вт) и третичным (С тр) атомами углерода. Энергия разрыва углерод-углеродной связи (D c - c) уменьшается в следующей последовательности:

D C - C > D C - C вт > D C - C тр > D C вт- C вт > D C вт- C тр > D C тр- C тр.

10. В алкенах углерод-углеродные двойные связи значительно прочнее (но менее чем в 2 раза), чем С--С-связи в алканах. Так, энергия разрыва С = С-связи в этилене составляет 500 кДж/моль. Однако С--С-связи, сопряженные с двойной (т. е. находящиеся к ней в b-положении), значительно слабее С--С-связи в алканах.

11.Энергия разрыва углерод-углеродной связи в кольце циклопентана (293 кДж/моль) и циклогексана (310 кДж/моль) несколько меньше С--С-связи в середине цепи нормального гексана (318 кДж/ моль).

12. В алкилароматических углеводородах углерод-углеродная связь, сопряженная с ароматическим кольцом (С--С ар), менее прочна, чем связь С--С в алканах. Сопряжение с ароматическим кольцом снижает прочность углерод-углеродной связи приблизительно в такой же степени, как и сопряжение с двойной связью. Сопряжение с несколькими бензольными кольцами снижает прочность С-С-связи еще больше.

13.Энергия разрыва (диссоциации) атомов водорода в молекуле водорода несколько выше С--Н-связи в наиболее термостойком метане и составляет 435 кДж/моль.

14. По прочности связь С--S в меркаптанах и связь S--S в дисульфидах сопоставима со связью С--С в алканах.

Очевидно, что при термолизе углеводородного сырья будут разрываться в первую очередь наиболее слабые связи и образовываться продукты преимущественно с меньшей свободной энергией образования. Таким образом, термодинамический анализ позволяет прогнозировать компонентный состав и подсчитать равновесные концентрации компонентов в продуктах реакций в зависимости от условий проведения термических, а также каталитических процессов.

Схемы (I--IV) химических превращений углеводородов при термолизе представлены на рис. 1.

Рис. 1. Схемы превращений углеводородов при термолизе сырья

Размещено на Allbest.ru

...

Подобные документы

    Определение теплоты сгорания этилена. Вычисление энергии Гиббса реакции и принципиальной ее возможности протекания. Расчет приготовления солевого раствора нужной концентрации. Составление ионного уравнения химической реакции. Процессы коррозии железа.

    контрольная работа , добавлен 29.01.2014

    Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.

    лекция , добавлен 28.02.2009

    Этанол и его свойства. Расчет изменения энтропии химической реакции. Основные способы получения этанола. Физические и химические свойства этилена. Расчет константы равновесия. Нахождение теплового эффекта реакции и определение возможности ее протекания.

    курсовая работа , добавлен 13.11.2009

    Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.

    реферат , добавлен 13.01.2011

    Составление ионных уравнений реакции. Определение процентной доли компонентов сплава. Вычисление изменения энергии Гиббса для химической реакции. Построение диаграммы состояния систем висмут-теллур. Определение состояния однокомпонентной системы.

    контрольная работа , добавлен 09.12.2009

    Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа , добавлен 04.04.2009

    Рассчет сродства соединений железа к кислороду воздуха при определееной константе равновесия реакции. Определение колличества разложившегося вещества при нагревании. Вычисление константы равновесия реакции CO+0,5O2=CO2 по стандартной энергии Гиббса.

    тест , добавлен 01.03.2008

    Современные катализаторы, используемые в процессах нефтепереработки, критерии оценки их эффективности и особенности использования. Методологические основы процесса каталитического крекинга. Определение непредельных углеводородов в нефтяных фракциях.

    курсовая работа , добавлен 20.04.2016

    В органическом синтезе в реакциях гидрирования участвуют любые молекулы, имеющие ненасыщенные связи. Синтезы Фишера-Тропша. Обратная гидрированию реакция - процесс дегидрирования в промышленном органическом синтезе и в процессах нефтепереработки.

    реферат , добавлен 28.01.2009

    Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.