Воейков в л активные формы кислорода. Благотворная роль активных форм кислорода

Интерес к активным формам кислорода (АФК) и реакциям с их участием, к антиоксидантам, блокирующим эти реакции, в последнее время быстро растет, поскольку с АФК связывают развитие у человека широкого спектра хронических заболеваний. Но в рамках традиционных представлений биохимии не находит убедительного объяснения необходимость регулярного потребления АФК с воздухом (супероксидный радикал), водой (перекись водорода), пищей (продукты реакции Мейяра) для повышения адаптивных возможностей организма, устойчивости к стрессу, сохранения высокой жизненной активности. Остаются неясными причины высокой терапевтической эффективности таких сильных оксидантов, как озон и перекись водорода при почти полном отсутствии побочных эффектов. При этом почти не обращается внимания на уникальную особенность реакций с участием АФК – их чрезвычайно высокий энергетический выход. Можно предположить, что абсолютная необходимость АФК для жизнедеятельности и их благотворное терапевтическое действие могут объясняться образованием при их реакциях электронно-возбужденных состояний – триггеров всех последующих биоэнергетических процессов. Колебательный режим таких реакций может обусловливать ритмичное протекание биохимических процессов более высокого уровня. Патогенетические эффекты АФК могут тогда объясняться нарушением регуляции как процессов их генерации, так и устранения.

Парадоксы кислородного дыхания.

Динамика роста научной литературы, посвященной активным формам кислорода (АФК), свободным радикалам, окислительным процессам их участием, говорит о стремительно растущем к ним интересе биологов и медиков. В большинстве публикаций по проблемам, связанным с активными формами кислорода, подчеркивается их деструктивное действие на мембраны, нуклеиновые кислоты и белки.

Поскольку в исследованиях роли, которую могут играть АФК в биохимии и физиологии, преобладает токсикологический и патофизиологический уклон, число публикаций, посвященных антиоксидантам растет даже быстрее, чем общее число статей по АФК. Если за 25 лет до 1990 года число отреферированных в Medline статей по антиоксидантам было менее 4500, то лишь за 1999 и 2000 оно превысило 6000.

В то же время вне поля зрения большинства исследователей остается громадный массив данных, свидетельствующих об абсолютной необходимости АФК для процессов жизнедеятельности. Так, при пониженном содержании в атмосфере супероксидных радикалов животные и человек заболевают, а при длительном их отсутствии гибнут. На производство АФК в норме идет 10-15%, а в особых обстоятельствах – до 30% потребляемого организмом кислорода. Становится ясным, что определенный «фон» АФК необходим для реализации действия на клетки биорегуляторных молекул, а сами АФК могут имитировать действие многих из них. Все более широкое применение находит «окситерапия» – лечение широкого спектра заболеваний путем искусственной аэроионизации воздуха, обработкой крови такими чрезвычайно активными формами кислорода, как озон и перекись водорода.

Таким образом, многочисленные эмпирические данные входят в противоречие со сложившейся в классической биохимии схемой, в рамках которой АФК видятся лишь как сверхактивные химические частицы, которые могут нарушать стройный ход нормальных биохимических процессов. В то же время не принимается во внимание главная особенность реакций с участием АФК – их чрезвычайно высокий энергетический выход, достаточный для генерации электронно-возбужденных состояний. Но благодаря именно этой особенности они могут формировать своеобразные биоэнергетические потоки, необходимые для запуска, поддержания, и упорядочивания разнообразных биохимических и физиологических процессов. Мы предполагаем, что реакции с участием АФК играют фундаментальную (от слова «фундамент») роль в организации сложнейшей сети био-физико-химических процессов, которые в совокупности отвечают понятию «живой организм». Для обоснования этого предположения необходимо хотя бы кратко остановиться на уникальных свойствах кислорода и его активных форм.

Особые свойства молекулы кислорода и продуктов его превращения.

Кислород абсолютно необходим для всех организмов, а для жизни человека в особенности. Всего несколько минут без кислорода приводят к необратимому повреждению мозга. Мозг человека, составляющий лишь 2% от массы его тела, потребляет около 20% получаемого организмом кислорода. Cчитается, что почти весь О2 потребляется при окислительном фосфорилировании в митохондриях, но их содержание в нервной ткани не больше, если не меньше, чем в других энергозависимых тканях . Следовательно, должен существовать другой путь утилизации О2, и мозг должен потреблять его на этом пути активнее, чем другие ткани. Альтернативный окислительному фосфорилированию путь использования О2 для получения энергии – его одноэлектронное восстановление. Свойства молекулы О2 в принципе позволяют получать энергию и на этом пути.

Кислород уникален среди важных для жизнедеятельности молекул. Он содержит 2 неспаренных электрона на валентных орбиталях (M, где представляет собой электрон с определенным значением спина), т.е. О2 в своем основном состоянии триплетен. Такие частицы обладают значительно большим запасом энергии, чем молекулы в невозбужденном синглетном состоянии [M], когда все их электроны спарены. О2 может стать синглетным, только получив немалую порцию энергии. Таким образом, как триплетное, так и синглетное состояния кислорода – это возбужденные, богатые энергией состояния. Избыточная энергия О2 (180 ккал/моль) освобождается, когда он восстанавливается до 2-х молекул воды, получив с атомами водорода 4 электрона, полностью уравновешивающих электронные оболочки обоих атомов О.

Несмотря на большой избыток энергии, О2 с трудом реагирует с окисляемыми им веществами. Практически все доступные ему доноры электронов – синглетные молекулы, а прямая реакция триплет-синглет с образованием продуктов в синглетном состоянии невозможна . Если же О2 тем или иным способом приобретает дополнительный электрон, то последующие он может получить уже легко. На пути одноэлектронного восстановления О2 и образуются промежуточные соединения, названные АФК, благодаря их высокой химической активности. Получив первый электрон, О2 превращается в супероксид-анион радикал O2-. Добавление второго электрона (вместе с двумя протонами) превращает последний в перекись водорода, H2O2 . Перекись, не будучи радикалом, а малоустойчивой молекулой, может легко получить третий электрон, превратившись в чрезвычайно активный гидроксил-радикал, HO, который легко отнимает у любой органической молекулы атом водорода, превращаясь в воду.

Свободные радикалы отличаются от обычных молекул не только высокой химической активностью, но и тем, что порождают цепные реакции. «Отобрав» доступный электрон у оказавшейся рядом молекулы, радикал превращается в молекулу, а донор электрона – в радикал, который может продолжить цепь дальше (рисунок 1). Действительно, когда в растворах биоорганических соединений развиваются свободно-радикальные реакции, немногочисленные исходные свободные радикалы могут вызывать повреждение громадного числа биомолекул. Именно поэтому АФК традиционно рассматриваются в биохимической литературе как чрезвычайно опасные частицы , и их появлением в среде организма объясняют многие заболевания и даже видят в них основную причину старения.

Целенаправленная продукция АФК живыми клетками.

Все организмы оснащены разнообразными механизмами для целенаправленной генерации АФК. Давно известен фермент NADPH-оксидаза, активно продуцирующий «токсичный» супероксид, за которым порождается вся гамма АФК. Но до самого последнего времени его считали специфической принадлежностью фагоцитирующих клеток иммунной системы, объясняя необходимость продукции АФК критических обстоятельствами защиты от патогенных микроорганизмов и вирусов. Сейчас стало ясно, что это фермент вездесущ. Он и подобные ему ферменты найдены в клетках всех трех слоев аорты, в фибробластах, синоцитах, хондроцитах, клетках растений, дрожжей , в клетках почки , нейронах и астроцитах коры мозга O2- продуцируют и другие повсеместно распространенные ферменты: NO-синтаза , цитохром Р-450 , гамма-глутамил-транспептидаза , и этот список продолжает расти. Недавно обнаружилось, что все антитела способны продуцировать Н2О2, т.е. они также являются генераторами АФК . По некоторым оценкам, даже в покое 10-15% всего потребляемого животными кислорода подвергается одноэлектронному восстановлению , а в условиях стресса, когда активность супероксид-генерирующих ферментов резко возрастает, интенсивность восстановления кислорода возрастает еще на 20% . Таким образом, АФК должны играть весьма важную роль в нормальной физиологии.

Биорегуляторная роль АФК.

Выясняется, что АФК принимают непосредственное участие в формировании разнообразных физиологических ответов клеток на тот или иной молекулярный биорегулятор. Какой конкретно будет реакция клетки – вступит ли она в митотический цикл, пойдет ли в сторону дифференцировки или дедифференцировки, или же в ней активируются гены, запускающие процесс апоптоза, зависит и от конкретного биорегулятора молекулярной природы, действующего на специфические клеточные рецепторы, и от «контекста», в котором действует данный биорегулятор: предыстории клетки и фонового уровня АФК. Последний зависит от соотношения скоростей и способов продукции и устранения этих активных частиц.

На продукцию АФК клетками влияют те же факторы, что регулируют физиологическую активность клеток, в частности, гормоны и цитокины. Разные клетки, составляющие ткань, реагируют на физиологический раздражитель по-разному, но индивидуальные реакции складываются в реакцию ткани, как единого целого. Так, факторы влияющие на активность NADPH-оксидазы хондроцитов , остеобластов стимулируют перестройки хрящевой и костной тканей . Активность NADPH-оксидазы фибробластов повышается при их механическим раздражении, а на скорость продукции оксидантов стенкой сосудов влияет интенсивность и характер тока по ним крови.. Одно из первых событий при оплодотворении сперматозоидом яйцеклетки – резкая активация NADPH-оксидаз обоих партнеров . При подавлении продукции ими АФК нарушается развитие многоклеточного организма .

АФК и сами могут имитировать действие многих гормонов и нейромедиаторов. Так, Н2О2 в низких концентрациях имитирует действие на жировые клетки инсулина, а инсулин стимулирует в них активность NADPH-оксидазы . Антагонисты действия инсулина — адреналин и его аналоги, ингибируют NADPH-оксидазу жировых клеток, а Н2О2 подавляет действие глюкагона и адреналина. Существенно, что генерация клетками O2-и других АФК предшествует остальным событиям во внутриклеточной информационной цепи .

Хотя в организме есть множество источников продукции АФК, для нормальной жизнедеятельности человека и животных необходимо регулярное потребление их извне. Еще А.Л.Чижевский показал, что отрицательно заряженные ионы воздуха необходимы для нормальной жизнедеятельности. Сейчас установлено, что аэроионы Чижевского –это гидратированные радикалы О2-. И хотя их концентрация в чистом воздухе ничтожна (сотни штук в см3), но в их отсутствие экспериментальные животные погибают в течение нескольких дней с симптомами удушья. В то же время обогащение воздуха супероксидом до 104 частиц/см3 нормализует давление крови и ее реологию, облегчает оксигенацию тканей, усиливает общую резистентность организма к стрессорным факторам. . Другие АФК, например, озон (О3), Н2О2 использовались еще в первой трети XX века для лечения разнообразных хронических заболеваний – от рассеянного склероза до нейрологических патологий и рака. . В настоящее время в общей медицине они применяются редко из-за их предполагаемой токсичности. Тем не менее, в последние годы, особенно в нашей стране озонотерапия становится все популярнее, начинается и применение внутривенных вливаний разбавленных растворов Н2О2 .

Таким образом, становится ясно, что АФК — универсальные регуляторные агенты , факторы, благотворно влияющие на процессы жизнедеятельности от клеточного уровня до уровня целого организма. Но если АФК, в отличие от молекулярных биорегуляторов, не обладают химической специфичностью, как они могут обеспечить тонкую регуляцию клеточных функций?

Свободно-радикальные реакции – источники импульсов света.

Единственный способ, позволяющий оборвать опасные радикальные цепные реакции, в которые вовлекаются все новые биоорганические молекулы – рекомбинация двух свободных радикалов с образованием устойчивого молекулярного продукта. Но в системе, где концентрация радикалов очень низка, а органических молекул – высока, вероятность встречи двух радикалов ничтожна. Замечательно, что кислород, который порождает свободные радикалы, является чуть ли не единственным агентом, который может их устранить. Будучи би-радикалом, он обеспечивает размножение моно-радикалов, повышая вероятность их встречи. Если радикал R взаимодействует с O2, возникает пероксильный радикал ROO. Он может оторвать атом водорода у подходящего донора с превращением его в радикал, сам при этом становясь перекисью. Связь O-O в перекисях сравнительно слаба, и при определенных обстоятельствах она может разорваться, породив 2 новых радикала, RO and HO. Это событие называется запаздывающим (относительно основной цепной реакции) разветвлением цепей. Новые радикалы могут рекомбинировать с другими и оборвать ведомые ими цепи (Рисунок 2).

И здесь следует подчеркнуть уникальную особенность реакций рекомбинации радикалов: освобождающиеся при таких актах кванты энергии сопоставимы с энергией фотонов видимого и даже УФ-света. Еще в 1938 г. А.Г. Гурвич показал, что в присутствии растворенного в воде кислорода в системе, где протекают цепные свободно-радикальные процессы с участием простых биомолекул, могут испускаться фотоны в УФ-области спектра, способные стимулировать в клеточных популяциях митозы (поэтому такое излучение было названо митогенетическим) . При исследовании инициированных АФК процессов автоокисления в водных растворах глицина или глицина и восстанавливающих сахаров (глюкозы, фруктозы, рибозы) мы наблюдали сверх-слабое излучение из них в сине-зеленой области спектра и подтвердили представления Гурвича о разветвленно-цепном характере этих реакций .

А.Г. Гурвич первым обнаружил, что растения, дрожжи, микроорганизмы, а также некоторые органы и ткани животных служат источниками митогенетических излучений в «спокойном» состоянии, причем это излучение является строго кислород-зависимым. Из всех тканей животных таким излучением обладали только кровь и нервная ткань. С использованием современной техники детекции фотонов мы полностью подтвердили утверждение Гурвича о способности свежей неразбавленной крови человека быть источником излучения фотонов даже в спокойном состоянии что говорит о непрерывной генерации в крови АФК и рекомбинациях радикалов. При искусственном возбуждении в крови иммунных реакций, интенсивность излучения цельной крови резко возрастает . Недавно было показано, что интенсивность излучения мозга крысы настолько высока, что может детектироваться высокочувствительной аппаратурой даже на целом животном .

Как отмечалось выше, заметная часть О2 в организме человека и животных восстанавливается по одноэлектронному механизму. Но при этом текущие концентрации АФК в клетках и внеклеточном матриксе очень низки из-за высокой активности ферментативных и неферментативных механизмов их устранения, известных в совокупности как «антиоксидантная защита». Некоторые элементы этой защиты действуют с очень высокой скоростью. Так, скорость супероксиддисмутазы (СОД) и каталазы превышает 106 оборотов/сек . СОД катализирует реакцию дисмутации (рекомбинации) двух супероксидных радикалов с образованием Н2О2 и кислорода, а каталаза разлагает Н2О2 до кислорода и воды. Обычно обращают внимание лишь на детоксифицирующее действие этих ферментов и низкомолекулярных антиоксидантов – аскорбата, токоферола, глутатиона и др. Но в чем смысл интенсивной генерации АФК, например NADPH-оксидазой, если ее продукты немедленно устраняются СОД и каталазой?

В биохимии обычно энергетика этих реакций не рассматривается, тогда как энергетический выход одного акта димсутации супероксидов – около 1 эВ, а разложения Н2О2 — 2 эВ, что эквивалентно кванту желто-красного света. Вообще, при полном одноэлектронном восстановлении одной молекулы О2 освобождается 8 эВ (для сравнения укажем, что энергия УФ-фотона с лямбда=250 нм равна 5 эВ). При максимальной активности ферментов энергия освобождается с мегагерцовой частотой, что затрудняет ее быстрое рассеяние в виде теплоты. Бесполезное рассеяние этой ценной энергии маловероятно еще и потому, что ее генерация происходит в организованной клеточной и внеклеточной среде. Экспериментально установлено, она может излучательно и безизлучательно переноситься на макромолекулы и надмолекулярные ансамбли, и использоваться в качестве энергии активации или для модуляции ферментативной активности .

Рекомбинация радикалов, происходящая как при цепных реакциях с запаздывающими разветвлениями (Рис. 2), так и опосредованная ферментативными и нефермантативными антиоксидантами не только поставляет энергию высокой плотности для запуска и поддержания более специализированных биохимических процессов. Она могут поддерживать их ритмичное протекание, так как в процессах с участием АФК происходит самоорганизация, проявляющаяся в ритмическом освобождении фотонов.

Осцилляторные режимы реакций с участием АФК.

Возможность самоорганизации в окислительно-восстановительных модельных реакциях, выражающаяся в появлении осцилляций окислительно-восстановительного потенциала или окраски была давно показана на примере реакций Белоусова-Жаботинского. Известно развитие колебательного режима при катализе пероксидазой окисления кислородом NADH . Однако до последнего времени роль электронно-возбужденных состояний в возникновении этих осцилляций во внимание не принималась. Известно, что в водных растворах карбонильных соединений (например, глюкозы, рибозы, метилглиоксаля) и аминокислот происходит восстановление кислорода, появляются свободные радикалы, и их реакции сопровождаются излучением фотонов. Недавно нами было показано, что в таких системах в близких к физиологическим условиях возникает колебательный режим излучения, что свидетельствует о самоорганизации процесса во времени и пространстве . Существенно, что такие процессы, известные как реакция Мейяра, непрерывно протекают в клетках и неклеточном пространстве . На рисунке 3 показано, что эти колебания не затухают длительное время и могут иметь сложную форму, т.е. представляют собой ярко выраженные нелинейные колебания.

Интересно влияние на характер этих колебаний классических антиоксидантов, например, аскорбата (рисунок 4). Обнаружилось, что в условиях, когда выраженные колебания излучения в системе не возникают, аскорбат в ничтожной концентрации (1 мкМ) способствует их появлению и вплоть до концентрации 100 мкМ резко усиливает общую интенсивность излучения и амплитуду колебаний. Т.е. он ведет себя как типичный прооксидант. Только в концентрации 1 мМ аскорбат выступает в роли антиоксиданта, существенно удлиняя лаг-фазу процесса. Но когда он частично расходуется, интенсивность излучения возрастает до максимальных величин. Такие явления характерны для цепных процессов с вырожденными разветвлениями

Колебательные процессы с участием АФК протекают и на уровне целых клеток и тканей. Так, в индивидуальных гранулоцитах, где АФК генерируются NADPH-оксидазами, вся совокупность этих ферментов «включается» строго на 20 сек, а в следующие 20 сек клетка выполняет другие функции. Интересно, что в клетках из септической крови эта ритмичность существенно нарушена . Мы обнаружили, что колебательные режимы излучения фотонов характерны не только для отдельных клеток, но и для суспензий нейтрофилов (рисунок 5А) и даже для цельной неразведенной крови, к которой добавлен люцигенин — индикатор генерации в ней супероксидного радикала (рисунок 5В). Существенно, что наблюдаемые колебания носят сложный, многоуровневый характер. Периоды колебаний лежат в диапазоне от десятков минут до их долей (врезка на рис. 5А).

Значение колебательного характера как регуляторных, так и исполнительных биохимических и физиологических процессов только начинает осознаваться. Совсем недавно было доказано, что внутриклеточная сигнализация, осуществляемая одним из самых важных биорегуляторов – кальцием, обусловлена не просто изменением его концентрации в цитоплазме. Информация заключена в частоте осцилляций его внутриклеточной концентрации . Эти открытия требуют пересмотра представлений о механизмах биологической регуляции. Если до сих пор при изучении реакции клетки на биорегулятор принимали во внимание лишь его дозу (амплитуда сигнала), то становится ясным, что основная информация заключена в колебательном характере изменения параметров, в амплитудных, частотных и фазовых модуляциях колебательных процессов.

Из множества биорегуляторных субстанций АФК являются наиболее подходящими кандидатами на роль триггеров колебательных процессов, потому что они находятся в постоянном движении, точнее – они непрерывно порождаются и погибают, но при их гибели рождаются электронно-возбужденные состояния – импульсы электромагнитной энергии. Мы предполагаем, что механизмы биологического действия АФК определяются структурой процессов, в которых они участвуют. Под «структурой процессов» мы понимаем частотно-амплитудные характеристики и степень фазовой согласованности процессов генерации и релаксации ЭВС, сопровождающих реакции взаимодействия АФК друг с другом или с синглетными молекулами. Порождаемые электромагнитные импульсы могут активировать специфические молекулярные акцепторы, и структура процессов генерации ЭВС определяет ритмы биохимических, а на более высоком уровне и физиологических процессов. Именно этим, вероятно, и объясняется специфичность действия АФК – этих крайне неспецифичных с химической точки зрения агентов. В зависимости от частоты их рождения и гибели структура процессов генерации ЭВС должна меняться, а, значит, и будет меняться и спектр акцепторов этой энергии, поскольку разные акцепторы – низкомолекулярные биорегуляторы, белки, нуклеиновые кислоты могут воспринимать лишь резонансные частоты.

Наше предположение позволяет с единых позиций объяснить множество разрозненных явлений. Так, роль антиоксидантов видится много богаче, чем в рамках традиционных представлений. Конечно, они предотвращают неспецифические химические реакции повреждения биомакромолекул при избыточной продукции АФК. Но их главная функция – организация и обеспечение разнообразия структур процессов с участием АФК. Чем больше инструментов в таком «оркестре», тем богаче его звучание. Возможно, именно поэтому таким успехом пользуется травотерапия, витаминная терапия и прочие формы натуропатии – ведь эти «пищевые добавки» содержат разнообразные антиоксиданты и коферменты – генераторы и акцепторы энергии ЭВС. Совместно они обеспечивают полноценный и гармоничный набор ритмов жизни.

Становится понятным, зачем для нормальной жизнедеятельности необходимо потребление хотя бы в ничтожных количествах АФК с воздухом, водой и пищей, несмотря на активную генерацию АФК в организме. Дело в том, что полноценные процессы с участием АФК рано или поздно затухают, поскольку в ходе них постепенно накапливаются их ингибиторы – ловушки свободных радикалов. Аналогию здесь можно увидеть с костром, который затухает даже при наличии топлива, если продукты неполного сгорания начинают отбирать все больше энергии пламени. Поступающие в организм АФК выступают в роли «искр», которые вновь разжигают «пламя» – генерацию АФК уже самим организмом, что позволяет дожечь и продукты неполного сгорания. Особенно много таких продуктов накапливается в больном организме, и поэтому столь эффективна озонотерапия и перекисно-водородная терапия.

Ритмы, возникающие при обмене в организме АФК, в той или иной степени зависят и от внешних ритмоводителей. К последним относятся, в частности, колебания внешних электромагнитных и магнитных полей, поскольку реакции с участием АФК – это, по существу, реакции переноса неспаренных электронов, протекающие в активной среде. Такого рода процессы, как следует из современных представлений физики нелинейных автоколебательных систем, весьма чувствительны к очень слабым по интенсивности, но резонансным воздействиям . В частности, процессы с участием АФК могут быть первичными акцепторами резких изменений напряженности геомагнитного поля Земли, так называемых геомагнитных бурь. В той или иной степени они могут реагировать на низкоинтенсивные, но упорядоченные поля современных электронных приборов – компьютеров, сотовых телефонов и др., и в том случае, если их ритмика процессов с участием АФК ослаблена и обеднена, подобные внешние воздействия при определенных их характеристиках повышают вероятность разобщения и хаотизации зависящих от генерации электронно-возбужденных состояний биохимических и физиологических процессов.

Вместо заключения.

Представленный выше анализ эмпирических данных, относящихся к столь «горячей» теме активных форм кислорода и антиоксидантов, привел нас к выводам, в определенной степени противоречащим доминирующим в настоящее время подходам к решению медицинских проблем. Мы не можем исключить, что некоторые из высказанных выше предположений, гипотез не подтвердятся в полной мере при их экспериментальной проверке. Но, тем не менее, мы убеждены, что главный вывод: процессы с участием АФК играют фундаментальную био-энергоинформационную роль в становлении и осуществлении жизнедеятельности – верен. Безусловно, как и любой другой механизм, тонкий механизм процессов с участием АФК может нарушаться. В частности, одной из главных опасностей для его нормального функционирования может быть недостаток кислорода в среде, где он протекает. И именно тогда начинают развиваться те процессы, которые представляют действительную опасность – распространение цепных радикальных реакций, при которых повреждается множество биологически важных макромолекул. В результате возникают гигантские макромолекулярные химеры, к которым относят атеросклеротические и амилоидные бляшки, старческие пятна (липофусцин), другие склеротические структуры и многие еще слабо идентифицированные балластные, а точнее, токсичные субстанции. Организм борется с ними, интенсифицируя продукцию АФК, но именно в АФК и видят причину патологии и стремятся их немедленно устранить. Можно, однако, надеяться, что более глубокое понимание многообразных механизмов утилизации кислорода человеком и животными поможет эффективно бороться с причинами, а не следствиями заболеваний, которые нередко отражают собственные усилия организма в борьбе за жизнь.

Литература

1. David, H. Quantitative Ultrastructural Data of Animal and Human Cells. Stuttgart; New York.
2. Eyring H. // J. Chem. Phys. 3:778-785.
3. Fridovich, I. //J. Exp. Biol, 201: 1203-1209.
4. Ames, B. N., Shigenaga, M. K., and Hagen, T. M. //Proc. Nat. Acad. Sci. USA 90: 7915-7922.
5. Babior B.M. // Blood, 93: 1464-1476
6. Geiszt M., et al. //Proc. Nat. Acad. Sci. USA, 97: 8010-8014.
7. Noh K.-M, Koh J.-Y. // J. Neurosci., 20, RC111 1-5
8. Miller R.T., et al. // Biochemistry, 36:15277-15284
9. Peltola V., et al. // Endocrinology Jan 137:1 105-12
10. Del Bello B., et al. //FASEB J. 13: 69-79.
11. Wentworth A.D, et al. // Proc. Nat. Acad. Sci. USA, 97: 10930–10935.
12. Shoaf A.R., et al. // J. Biolumin. Chemilumin. 6: 87-96.
13. Vlessis, A.A. et al. // J. Appl. Physiol. 78: 112-116.
14. Lo Y.Y., Cruz T.F. // J. Biol. Chem. 270: 11727-11730
15. Steinbeck M.J., et al. // J. Cell Biol. 126: 765-772
16. Moulton P.J., et al. //Biochem. J. 329 (Pt 3): 449-451
17. Arbault S. et al. //Carcinogenesis 18: 569-574
18. De Keulenaer G. W., //Circ. Res. 82, 1094-1101.
19. de Lamirande E, Gagnon C. // Free Radic. Biol. Med. 14: 157-166
20. Klebanoff S.J., et al. // J. Exp. Med. 149: 938-953
21. May J.M., de Haen C. // J. Biol. Chem. 254: 9017-9021
22. Little S.A., de Haen C. // J. Biol. Chem. 255:10888-10895
23. Krieger-Brauer H.I., Kather H. . // Biochem. J. 307 (Pt 2): 543-548
24. Гольдштейн Н. И. Биофизические механизмы физиологической активности супероксида.//Дисс. на соискание степени д.б.н., М., 2000
25. Kondrashova, M.N., et al. //IEEE Transactions on Plasma Sci. 28: No. 1, 230-237.
26. Noble, M. A. , Working Manual of High Frequency Currents. Chapter 9 Ozone. New Medicine Publishing Company.
27. Дуглас У. Целительные свойства перекиси водорода. (пер.с англ.). Изд-во «Питер», СПб, 1998.
28. Gamaley, I.A. and Klybin, I.V. //Int. Rev. Cytol. 188: 203-255.
29. Gurwitsch, A.G. and Gurwitsch, L.D. //Enzymologia 5: 17-25.
30. Voeikov, V.L. and Naletov, V.I. , Weak Photon Emission of Non-Linear Chemical Reactions of Amino Acids and Sugars in Aqueous Solutions. In: «Biophotons». J. –J. Chang, J. Fisch, F. –A. Popp, Eds. Kluwer Academic Publishers. Dortrecht. Pр. 93-108.
31. Voeikov V L., Novikov C N., Vilenskaya N D. // J. Biomed. Opt. 4:54-60.
32. Kaneko K., et al. // Neurosci. Res. 34, 103-113.
33. Fee, J.A., and Bull, C. // J. Biol. Chem. 261:13000-13005.
34. Cilento, G. and Adam, W. //Free Radic Biol Med. 19:103-114.
35. Baskakov, I.V. and Voeikov, V.L. // Biochemistry (Moscow). 61: 837-844.
36. Kummer, U., et al. // Biochim. Biophys. Acta. 1289:397-403.
37. Воейков В.Л., Колдунов В.В., Кононов Д.С. // Ж. Физ. Химии. 75: 1579-1585
38. Телегина Т.А., Давидянц С.Б. // Усп. Биол. химии. 35: 229.
39. Kindzelskii, A.L., et al.// Biophys. J. 74: 90-97
40. De Konick, P. and Schulman, P. H. //Science. 279: 227-230.
41. Гласс Л., Мэки М. От часов к хаосу. Ритмы жизни. М. «Мир», 1991.

По данным сайта: http://www.gastroportal.ru/php/content.php?id=1284

Лекция на XVI школе-семинаре «Современные проблемы физиологии и патологии пищеварения, Пущино-на-Оке, 14-17 мая 2001 года, опубликовано в Приложении №14 к Российскому журналу гастроэнтерологии, гепатологии, колопроктологии «Материалы XVI сессии Академической школы-семинара имени А.М. Уголева «Современные проблемы физиологии и патологии пищеварения», 2001, том XI, №4, стр. 128-136

Владимир Леонидович Воейков (р. в 1946 г.), биофизик с химическим мышлением, неожиданно для себя пришел к выводу, что подход Опарина содержит гораздо больше ценного, чем думали в последние полвека. Разумеется, речь не о «принципе слонопотама» (п. 7-2*), а о том, что, как оказывается, в «первичном бульоне» действительно могли идти многие реакции биопоэза. Прежде всего это могли быть реакции поликонденсации (полимеризации с затратой энергии и выделением воды), источником энергии для которых служит механическое движение воды. При движении ее через сверхтонкие поры идет ее диссоциация, и гидроксилы образуют перекись водорода в неожиданно больших (свыше 1%) концентрациях; она и служит окислителем. Часть перекиси разлагается на O2 и H2.
Для необратимости этих реакций требуется сток продуктов. При поликонденсации он достигается сменой условий среды; а при разложении перекиси O2 и H2 уходят в атмосферу, где O2 остается внизу и служит основным окислителем (Voeikov V.L. Reactive oxygen species, water, photon, and life // Rivista di Biologia / Biology Forum 94, 2001).
Поликонденсация является одной из форм первичной самоорганизации, возможные механизмы которой Воейков рассмотрел в своей докторской диссертации (Биофак МГУ, 2003).
Однако проблемы биопоэза как целого этим, разумеется, не решаются: надо еще понять, как и почему полимеры могут собираться в то, что нужно для жизни. Ленинградские физиологи Д.Н. Насонов (ученик Ухтомского) и А.С. Трошин (ученик Насонова), а вскоре и Гилберт Линг (прибыл в США из Китая), разработали в середине XX века концепцию клетки, во многом про
тиворечившую общепринятым взглядам. Главное для нас в ней то, что клетка - не раствор, удерживаемый ее оболочкой, а желеобразная структура (гель), активность которой и определяет работу клетки.
В настоящее время эта теория6^ весьма продвинута и дает понимание многих вопросов цитологии. Основой работы всех клеточных механизмов (транспорт ионов через границу клетки, деление клетки, расхождение хромосом и т.д.) признаётся локальный фазовый переход.
Если признать, что полость клетки - не раствор, а гель, то меняется вся проблематика биопоэза: вместо праздных размышлений о том, как из молекул “бульона” мог сам собой сложиться первый набор с нужными для данной модели биопоэза качествами, ставится довольно реальная задача - понять, как был устроен нужный для рождения жизни гелевый комплекс.
Его не следует представлять себе как клетку и лучше называть эоби- онтом (этот термин в 1953 г. предложил Н. Пири).
Первая трудность биопоэза, которая отпадает в концепции геля: нужные концентрации веществ и их ионов задаются не оболочкой эобионта, а самой его структурой. Никакие «насосы» для начала жизни не нужны.
Вторая трудность - как первые белки и нуклеиновые кислоты сложились в нужные спиральные конструкции - отпадает при уяснении того факта, что спирали задаются квазикристаллической структурой воды.
Главное - вода проявляет ту самую активность, на которой зиждится всё живое. Проявляет сразу в двух совсем различных формах: во-первых, структура воды определяет пространственную структуру макромолекул и организует их взаимодействие, а во-вторых, вода служит источником и носителем активных форм кислорода (АФК) - таково общее обозначение для частиц, содержащих кислород с неспаренным электроном (гидроксил, перекись водорода, озон, C2 и др.).
Гашение АФК, достигаемое путем спаривания двух неспаренных электронов при соединении двух свободных радикалов, является, по Воейкову, основным и исторически первым источником энергии жизни (АТФ появилась позже - см. п. 7-7**). АФК всё время возникают и тут же исчезают - либо используются в реакции метаболизма, либо, если таковой потребности в данный момент в данном месте нет, просто гасятся; причем для гашения в клетках всех организмов есть особые механизмы.
Такой процесс рождения и гибели АФК напоминает мне флуктуации квантового вакуума (Воейков с этой аналогией согласился).
61 Так именует свое построение американский физхимик Джералд Поллак (Pollack G.H. Cells, gels and engines of life; a new, unified approach to cell function. Seattle (Washington), 2001; готовится русское издание под ред. В.Л. Воейкова). На самом деле речь идет об одном аспекте будущей теории: рассмотрена абстрактная клетка; разнообразие клеток (например. способов деления) игнорировано, и неясно, как его в эту концепцию включить. Слишком упрощены роль мембраны и ранняя эволюция клетки.

Главным окисляемым субстратом биохимии является сильно структурированная вода, продуктом окисления - слабо структурированная вода, а источником энергии - гашение АФК. Акт структуризации воды есть акт накопления энергии, акт ее деструктуризации высвобождает энергию для биохимической реакции. Можно сказать, что именно включение данного процесса в реакции геохимического круговорота, повлекшие усложнение веществ, знаменовало переход химической активности в биохимическую. Подробнее см.: [Воейков, 2005]. Если вспомнить, что дыханием именуется окисление субстратов с целью метаболизма, то тезис Воейкова

«Жизнь есть дыхание воды» вполне можно принять. Разумеется, это не определение жизни, а указание на первый и главный биоэнергетический процесс, а также на главное направление поисков решения загадки рождения жизни.
Начнем с того, что коацерват является крохотной порцией водного геля, но гель может заполнять и крупную структуру (например, лужу). Если добавить, что над водой, в воде и в геле изобилуют АФК, то, как увидим, проблема начальных стадий биопоэза значительно упрощается.

Профессор МГУ им. Ломоносова, д.б.н., биофизик, специалист по воде (Россия)

В 1968 году В. Л. Воейков окончил Биологический факультет МГУ им. М.В.Ломоносова с дипломом с отличием по специальности «Биофизика». В 1971 году там же защитил диссертацию на соискание степени кандидата биологических наук. С 1971 по 1975 год работал младшим научным сотрудником . C 1975 года — доцент кафедры биоорганической химии Биологического факультета МГУ им. М.В. Ломоносова, а с 2003 года по настоящее время – профессор . С 1978 по 1979 год он выполнял научно-исследовательскую работу на факультете биохимии и медицины Университета Дюка (Duke University), Северная Королина, США под руководством профессора Роберта Лефковица (Нобелевский лауреат 2014 года).

В 2003 г. защитил в МГУ докторскую диссертацию «Регуляторная функция активных форм кислорода в крови и в водных модельных системах» по специальностям Физиология и Биофизика.

В 2007 г. награжден 1-й премией им. Жака Бенвенисте на 7-й Международной Крымской конференции «Космос и Биосфера»; В 2013 году был награжден золотой медалью ПРИГОЖИНА, учрежденной University of Siena и the Wessex Institute of Technology (Great Britain);

В.Л.Воейков поддерживает и продолжает идеи таких ученых как Эрвин Бауэр , Александр Гурвич , Альберт Сент-Дьёрди , Симон Шноль , Эмилио дель Джудиче, постоянно сотрудничает с Дж.Поллаком (University of Washington, Seattle, USA), М.Чаплином (Professor of Applied Science, London South Bank University, UK).

Основные области научных интересов Владимира Леонидовича: физико-химические основы биологической активности, свободно-радикальные и колебательные процессы в воде и их роль в биоэнергетике. В.Л. Воейков является почетным работником Высшего образования Российской Федерации, членом Научного Совета Международного Института биофизики в Нейссе (Германия), членом SPIE (Международное общество оптической техники, США) и Всероссийского биохимического общества.

Основные направления работы исследовательской группы, возглавляемой В.Л.Воейковым:

— модельные фотобиохимические реакции, среди которых реакция Гурвича и реакция Майяра ;

— работа с живой кровью, направленная на выявление системных характеристик крови, выявляемых по характеру биофотонной эмиссии и по параметрам динамики оседания эритроцитов;

— влияние на живые системы и неравновесные водные системы сверхнизких концентраций биологически активных веществ и сверхслабых электромагнитных излучений;

— окислительно-восстановительные и колебательные процессы в водных системах. Работа направлена на подтверждение ключевой роли воды в процессах жизнедеятельности, в частности в биоэнергетике.

Мы встретились с доктором биологических наук, профессором МГУ Владимиром Леонидовичем Воейковым, чтобы поговорить о воде, которая и в XXI веке остается для ученых загадкой из загадок. Правда, о воде говорили меньше всего.

- Владимир Леонидович, что это за феномен такой - вода?

Прежде всего, надо сказать, что под словом «вода» обычно подразумевают совершенно разные явления. Например, есть пресная вода, соленая вода, морская вода, физики сейчас увлеклись компьютерным моделированием воды. Обычно люди характеризуют воду, предполагая, что это Н 2 О плюс что-то еще. Меня же интересует вода, которая имеет отношение к жизни, поскольку все, что мы называем жизнью, в первую очередь есть вода.

Вода - это сложная система, точнее, громадная совокупность систем, которые переходят из одного состояния в другое. Лучше даже сказать: не система, а организация. Потому что система - это нечто статичное, а организация динамична, она развивается. Владимир Иванович Вернадский под организацией подразумевал что-то, что, с одной стороны, консервативно, а с другой - изменчиво. Причем изменения эти происходят не случайным образом, а целенаправленно.

Проявления воды многообразны. Например, известны случаи, когда вода сжигала радар: луч радара, отразившись от облака и вернувшись, сжигал приемное устройство. Следовательно, из облака возвращалась несопоставимо большая энергия! Современная наука этого не может объяснить. Облако - это частицы воды. В жидкой воде всегда есть какая-то часть, которая образует когерентные домены, то есть области, в которых молекулы воды колеблются когерентно и ведут себя как тело лазера. Луч радара, попав в облако, делает воду в нем неравновесной, и эта избыточная энергия либо отдается облаком обратно в радар и сжигает его, либо рассеивается.

- А зачем природа создала такую неравновесную воду?

Вопрос «зачем?» выходит за рамки науки.

- Получается, мы очень мало знаем о воде?

Еще один пример. Мы знаем, что горные реки всегда холодные: даже если в долине, по которой течет река, стоит жара, вода все равно остается холодной. За счет чего? Обычно это объясняют тем, что в горах ледники, по пути у воды родники, и вообще она движется. Но может быть и другое объяснение. Что мы подразумеваем под словами «холодный», «теплый», «горячий»? Температуру. А откуда берется температура, которую мы меряем градусником? Молекулы среды движутся, сталкиваются друг с другом, и выделяется энергия, ее-то мы и меряем градусником. Теперь давайте посмотрим, с какой скоростью молекулы движутся в одном направлении и что будет показывать градусник, если мы попробуем измерить температуру потока. Молекулы начинают двигаться с близкими по величине скоростями и «высасывают» энергию из окружающей среды. Получается, что температура горного потока чрезвычайно высока, а он при этом ледяной! Парадокс! Температура - и температура… Быстрая река охлаждается, хотя она за счет трения должна нагреваться… То есть вода холодная, потому что молекулы перестают стучать друг о друга! А температура направленного потока - это другое. Этим и объясняется непонимание происходящих в воде процессов. Вода по своей природе неравновесна, следовательно, она по своей природе может производить работу. Но, чтобы все, что неравновесно, могло производить работу, нужно создавать условия. А создавать условия может организация.

- Есть идеальные формы, например платоновские тела. А как организована вода?

Идеальные тела, о которых говорил Платон, в природе недостижимы. Это абстрактные конструкции, идеи. Если же такие тела рассматривать в природе, то они начнут взаимодействовать, стучаться друг о друга и перестанут быть идеальными.

- Но они стремятся восстановить свои формы?

Стремиться-то они стремятся, но, когда что-то стремится восстановить свою форму, это уже динамическое явление. А это уже не Платон, а Аристотель. У Аристотеля есть это стремление и есть causa finalis - конечная цель, которая из современной науки была выброшена.

Все началось с того, что ученые стали описывать реальные явления и свели все к изучению причинно-следственных связей. И теперь нормальной называется наука, в которой установилась парадигма, основанная на представлении о том, что есть причинно-следственная связь и нет никакого стремления.

- Но не все же так мыслят, наверное, есть и другие подходы?

Без стремления невозможна жизнь, а отрицать существование жизни совсем уж трудно, потому что, куда ни посмотришь, саму жизнь так или иначе и наблюдаешь. Правда, цветочек немедленно хочется засушить, из суслика чучело сделать… И, конечно, самая замечательная из всех наук - палеонтология, потому что поставил скелет в музей, покрыл его лаком, и он стоит и разрушаться не будет. А биология должна заниматься жизнью и самым замечательным явлением жизни - развитием. Развитием от простого к сложному, от бессвязного к связному, от однообразного к многообразному. И все это осуществляется спонтанно.

- А цель?

А цель жизни - сохранить жизнь. Цель в том, чтобы жизнь прибавлялась. Потому что чем больше жизни, тем сложнее ее уничтожить. В 1935 году Эрвин Бауэр издал книгу «Теоретическая биология», в которой сформулировал три основных принципа живого. Первый принцип Бауэра звучит так: все живые и только живые системы никогда не пребывают в равновесии. И всю свою избыточную энергию они используют для того, чтобы не скатиться к равновесию.

- Какова тогда роль науки, ученого?

Я вам скажу, в чем предназначение науки. Академик Берг, русский географ, геолог, зоолог, ввел термин «номогенез» (то есть развитие по законам) в противовес дарвинизму. По Дарвину, не было никакого развития, так как слово «развитие» означает разворачивание по плану, развертывание. То же с эволюцией, которая, по сути, есть целенаправленное развитие.

Ученый говорит, как устроен мир и как устроен человек. Изучение мира нас интересует, по большому счету, с эгоистической точки зрения: мы хотим понять наше место в этом мире. Так как изучает мир живой человек, у него есть вопрос о цели существования. Как только вопрос о цели существования исчезает, тут-то и все…

- Что «все»?

Жизнь кончается. Равнодушие, человеку все равно. Цели разные бывают, и они стимулируют жизнь. Как только человек теряет цель в жизни, он перестает существовать. Дарвин нигде не использовал слово «эволюция». Его интересовало происхождение разнообразия. Разнообразие не эквивалент эволюции. Из одинаковых кирпичей можно построить разные здания, только это не будет эволюцией…

- Мне кажется, сегодня это не самая популярная точка зрения.

Я согласен. А почему непопулярен такой подход? Наука не ставит вопросов морали и нравственности. Какая мораль и нравственность в законах гравитации, законах тяготения? Но правильное занятие наукой и выяснение законов мироздания удивительным образом приводит к обоснованию глубинных вопросов морали и нравственности. Ради чего существуют мораль и нравственность? Какой смысл в морали и нравственности? А в поддержании жизни? Мораль и нравственность необходимы для того, чтобы наша жизнь сохранилась.

- Получается, что Природой, Богом - скажите как угодно - заложено, чтобы в душе человека жил нравственный закон?

Совершенно верно. Другое дело, что напрямую моралью и нравственностью занимается не наука, а, например, религия. Но на мироздание можно смотреть с разных точек зрения: можно с точки зрения Творца, а можно с точки зрения творения. Об этом говорил еще Михаил Васильевич Ломоносов.

- А религиозные знания могут быть полезны ученым?

Можно ли по Библии изучать астрономию или другие науки?.. Приведу пример. На третий день Творения Бог создал светила: большое и малое. Для чего? Для того, чтобы день от ночи отделять, чтобы знамения были. А флору он создал когда? На второй день. Без Солнца? Получается полная ерунда? А ведь нет… Лет 30 тому назад на дне океана были открыты так называемые черные курильщики - целые экосистемы, которые в жизни никогда никакого солнышка не видели, и там есть животные с кровеносной системой. И что, Солнце породило эти энергосистемы?.. Тогда нужно считать, что и Земля нагрелась за счет Солнца. Только тут уже будут возражать географы и геологи. Потому что Земля теплая не оттого, что ее Солнце нагрело. Это в учебниках написано, что вся энергия от Солнца - фотосинтез, глюкоза, СО 2 и Н 2 О + солнце и так далее, помните, наверное. Но давайте спустимся на дно океана: там фотосинтеза нет, а животные есть, и они не с суши спустились на пятикилометровую глубину.

- Кто же им дает энергию для жизни?

Вода! Синтез СО 2 и Н 2 О идет только тогда, когда есть энергия активации. И в воде, которая изначально устроена неравновесно, эта энергия есть, независимо от того, есть солнышко или нет солнышка. И, между прочим, что предшествовало флоре? Про первый день Творения написано: «И Дух Божий носился над водами». Перевод, как я недавно узнал, неправильный: «Дух Божий носился с водами». «Носился» не значит «метался», по своему происхождению это слово родственно слову «наседка». Дух Божий энерго-информационно организовывал воду, вот что это может значить. Получается, что вода задумана как основа мироздания.

- Вы хотите сказать, что все современные научные открытия когда-то кому-то уже были известны?

Ученый открывает законы, но не придумывает, не изобретает закономерности. Язык очень трудно обмануть. Есть слово «изобретение», это когда ты из чего-то обрел. А есть слово «открытие» - я открываю книгу и делаю для себя открытие.

Однажды со мной так и произошло. Мне попалась книга академика Российской академии наук, основателя современной эмбриологии Карла Бэрна «Размышления при наблюдении за развитием цыпленка», написанная в 1834 году. Книга была 1924 года издания, с неразрезанными страницами. Я принес ее на кафедру эмбриологии и показал коллегам - я сделал открытие, открыл неизвестную им вещь.

- О чем книга?

О той самой финальной цели, к которой все стремится. Берн изучал развитие эмбриона цыпленка на разных стадиях. И обнаружил парадокс: яйца совершенно одинаковые, а эмбрионы разные. Где норма? Если один эмбрион - норма, то все остальные уроды? Но что интересно - потом все цыплята вылупляются одинаковые. Получается, к единой цели каждый идет своим путем, и это никак не связано с генетикой. Вполне понятно, что они изначально находятся в разных условиях: одно яйцо с краю кладки, другое внутри… Они не могут быть в одинаковых условиях, это закон разнообразия. Но все потом «стягивается» к единой цели. Мы в этом случае не можем сказать, что развитие цыпленка № 77 правильное, а цыпленка № 78 - нет. В действительности же наука частенько все унифицирует.

- Это одна из проблем образования…

Этого сложно избежать: нельзя к каждому ученику приставить своего учителя. Но нужно понимать, что иногда нам приходится упрощать, унифицировать, и делаем мы это не во благо конкретного человека, а вопреки его индивидуальности и для того, чтобы успеть охватить как можно больше.

- Давайте вернемся к загадкам воды.

Еще один интересный эксперимент. Берем сухую почву, заливаем воду и ставим перед фотоумножителем - прибор фиксирует вспышку света. Значит, если на иссушенную землю падает вода, помимо того что почва увлажняется, в ней еще выделяется свет! Глазами его не увидишь, но все семена, все микроорганизмы получают импульс к дыханию, к дальнейшему развитию. Опять мы пришли к тому же выводу: вода и земная твердь при взаимодействии дают энергию формообразования.

- Вот это да!

Еще одно интересное наблюдение. Известно, что углерод существует в двух кристаллических модификациях - графита и алмаза. Графит - более неравновесное состояние углерода, чем алмаз.

Чтобы в природе появился алмаз, нужно воздействие колоссальных давлений, а в нашем организме углерод имеет алмазную структуру. Исходно углерод появляется в соединении СО 2 , которое не имеет алмазной конфигурации, тем не менее при соединении с водой из СО 2 и Н 2 О получается глюкоза, в которой углерод уже «алмазный». И никаких высоких давлений! Значит, в живой системе (живые организмы до 90% состоят из воды) углерод из «неалмазного» превращается в «алмазный», и происходит это только благодаря организации воды!

- Следовательно, алмазное строение углерода для чего-то нужно в живой системе?

Конечно! Это высокая энергия! Но воде не нужно чудовищных энергозатрат на создание высокого давления и температуры для подобных превращений, она это делает за счет организации. Самое удивительное, что над этим фактом Вернадский задумался в начале XX века. Я иногда прихожу к мысли, что для познания воды уже очень много сделано, но не все объяснено. Нам нужно научиться объяснять.

- Но существуют конкретные факты, данные экспериментов, а интерпретаций (порой полярных) этих данных великое множество. Где заканчиваются научные данные и начинаются домыслы? Например, можно ли доверять экспериментам Масару Эмото?

Я лично знаком с Масару Эмото, знаком с его экспериментами, книгами. В значительной мере он популяризатор и немного фантазер. Я вижу громадную историческую роль Масару Эмото в том, что он обратил на воду внимание сотен миллионов людей. Но его эксперименты не отвечают научным критериям. Мне прислали на рецензию научную статью с участием Масару Эмото, и я должен признать, что эксперимент поставлен некорректно. Например, возникает вопрос: какова статистика образования кристаллов после прослушивания той или иной музыки? В статье статистика замечательная: эксперименты практически нельзя повторить. По крайней мере, повторить так, как он их ставит. Более того, зависит ли от фотографа (экспериментатора) характер получающихся кристаллов? Да, зависит: у некоторых ничего не получается, а у других все получается замечательно. Но это уже какая-то другая наука. И, чтобы объективно судить о работах Эмото, мы должны создать другую методологию, другой язык и другие средства оценки. Тогда ее и судить можно будет по-другому.

- Значит, надо ждать появления новой науки?

На самом деле такая наука у нас уже есть, это… биология. Она здорово отличается от физики. Сколько бы раз Галилей ни бросил камень с Пизанской башни, вероятностный разброс результатов будет небольшой. Но если с этой самой башни бросать не камень, а ворону, то, сколько раз ни брось, куда она полетит - всегда большой вопрос. Десять тысяч ворон нужно бросить, чтобы узнать, куда они, вообще-то говоря, стремятся. Это совсем другое. Здесь мы должны рассматривать несопоставимо большее количество привнесенных факторов, чем обычно принято рассматривать в науке.

- Получается, что эксперименты Эмото в чем-то напоминают ваш пример с воронами?

Но это вовсе не означает, что такие эксперименты не нужно ставить. Это говорит лишь о том, что нам сегодня надо строить новую науку. Но, строя ее, нужно знать и старую. Приведу пример, который показывает, что наука никогда не бывает абсолютно ложной или абсолютно истинной. Когда-то существовала модель плоской Земли. Сегодня можно посмеяться над такими представлениями древних ученых. Но извините, а какой моделью мы пользуемся, когда размечаем свой дачный участок? Коперниковской? Нет, нам нужна модель плоской Земли! Ничего другого для решения этой задачи не нужно, мы ведь просто занимаемся землеустройством. А вот когда речь идет о запуске спутника на околоземную орбиту, это другое дело. Но коперниковская система тоже несовершенна. Объясняет ли она строение Вселенной? Нет! Чтобы прояснить этот вопрос, нужно строить новую науку, но и старая наука нам нужна - чтобы было, от чего оттолкнуться.

- Значит, ученые без каверзных вопросов и неразрешимых задач никогда не останутся.

Конечно! Вот как объяснить, почему птички летают над Эверестом, на высоте 11 000 метров? И с точки зрения физиологии, и с точки зрения биоэнергетики это невозможно! Чем они там дышат? Но они летают, и что-то им там надо! И тут требуется, я бы сказал, усмирить гордыню, признать, что мы - ах! - много чего еще не знаем. Но как только речь заходит о воде, то все, что мы о ней уже знаем, может нас ввести в заблуждение, во всяком случае, сегодня. Слишком много мы сегодня выдумываем о воде. Вода - это наша прародительница, матрица жизни, с другой стороны, всемирный потоп - это тоже вода, но смывшая все с лица земли. И из-за своего незнания или искаженного представления о воде мы можем ненароком и навредить, занимаясь всевозможными заговорами, наговорами и так далее. Если считать, что вода - прародительница жизни и сама жизнь, то к этой жизни нужно относиться с очень большим уважением. Если к любой жизни относиться с неуважением, о последствиях нетрудно будет догадаться. Поэтому мы признаем, что еще очень и очень многого не знаем.

Вопросы задавала Елена Белега, кандидат физико-математических наук.

Вода может лечить, убивать и гореть

Владимир Леонидович Воейков

На кафедре биоорганической химии биофака МГУ проводятся эксперименты по воздействию на воду. Причем ученые не отказываются иметь дело с людьми, которые заявляют, что могут на расстоянии изменить ее свойства. Но не люди, а вода является главным объектом исследований. О буме воды в большой науке обозревателю "МН" рассказал профессор кафедры, доктор биологических наук Владимир ВОЕЙКОВ.

Владимир Леонидович, трудно поверить, что в МГУ, святая святых фундаментальной науки, имеют дело с экстрасенсами. Что представляют собой ваши эксперименты?

Несколько человек обратились к нам с просьбой за собственные деньги проверить их способности. Мы провели эксперимент, который состоял в следующем: разделили воду, находившуюся в сосуде, на две порции и разместили их в разных местах в лаборатории. Испытуемым, которые находились совсем в другом месте, но бывали у нас раньше, сообщили, где точно находится одна из порций. Таким образом, "воздействие" осуществлялось на расстоянии. В чем оно состояло, я не знаю, но результат был налицо - в экспериментальной половинке воды окислительные процессы пошли в 2?3 раза быстрее. Проводили мы эксперименты и с пробами крови, там после воздействия эти процессы активизировались в десять раз. Мы вели протокол, все документы существуют.

Один из участников проверялся уже во многих местах, в том числе и на Западе - в Швейцарии у него косметологическая клиника, где исправляют дефекты внешности без хирургического вмешательства.

И, конечно, никаких намеков на объяснения?

Объяснять этот эффект я не берусь. Как именно испытуемый воздействует, что делает и ощущает - не знаю. Моя задача - исследовать, действительно ли свойства воды изменились. Если бы человек находился в лаборатории, еще можно было бы пофантазировать: звуковые колебания, пассы руками, тепловая энергия, микроволны... Но когда его и сосуд с водой разделяют 2 тыс. км, у меня нет даже предположений. Сейчас не существует полноценных научных идей, которые могли бы объяснить и это воздействие на больших расстояниях, и многое другое. Можно только констатировать факт, проводить эксперименты, но изучить механизм пока нельзя.

С вашей точки зрения, "заряженная вода" - это не полный бред?

Смотря что под этим понимать. Вода (хотя не всякая) может "потреблять" кислород, то есть окисляться, - это достоверно известно, мы уже много лет проводим эксперименты. Во время реакции окисления высвобождается энергия. Часть ее, как оказалось, накапливается в воде, и вода становится биологически активной и чувствительной к различным слабым воздействиям, например, к излучению. И такую воду можно "программировать" - то есть направить в нужную сторону характер тех реакций, которые в ней протекают. Эта вода будет обладать особыми свойствами.

Можно воздействовать, например, колебаниями, в том числе звуком. Сотрясение воздуха с определенной ритмичностью, которое резонирует с процессами, протекающими в воде, изменит ее свойства. Это не каждый человек может сделать, и не на любую воду можно воздействовать. Например, ее можно до такой степени очистить, деструктурировать, что она становится "мертвой".

Все это звучит не слишком по-научному, если не принимать во внимание, что буквально в последнее десятилетие, когда интерес к молекуле Н2О резко возрос, учеными были получены новые фундаментальные знания о свойствах, строении воды, которые пока не попали в учебники.

До последнего времени биологическая наука занималась в основном систематикой, составлением "гербария", вплоть до молекулярного уровня. Живой организм рассматривался лишь как набор генов, белков, углеводов. Теперь началось исследование их совокупности. Идет переход к несопоставимо более сложной фазе - изучению процессов. И оказалось, что вода здесь играет гораздо более важную роль, чем та, что отводилась ей прежде. Биология на протяжении всего своего развития упускала из виду эту одну из самых важных молекул. С точки зрения книг, статей, учебников все реакции в организме как будто бы протекают на листе белой бумаги или в вакууме. На самом деле они ведь происходят в воде. Можно ли, углубляясь в тонкое строение молекул, не учитывать этот живой океан? Это очень сложная система - не бывает воды как таковой, она каждый раз разная, в ней растворены газы, соли, биомолекулы. То есть вода структурирована. Передовая область сегодня - это как раз изучение структуры, динамики, реакций, протекающих в воде.

В конце октября в Вермонте состоится первая крупная конференция, посвященная специально исследованиям воды с точки зрения биологии, биохимии, биофизики и т.д. Кстати, Россия в этих исследованиях занимает лидирующие позиции, и не случайно организаторы конференции (Университет штата Вашингтон) стремятся привлечь туда как можно больше наших ученых. А только что в Петербурге прошел конгресс "Слабые и сверхслабые поля и излучения в биологии и медицине". Он проводится четвертый раз, и с каждым годом все большее внимания уделяется воде. Это не случайно. Воздействие на человека электромагнитных излучений - доказанный факт. Но до последнего времени было неясно, а на что именно они действуют? Такого рода воздействия с точки зрения силы, интенсивности - слабые, а эффект могут производить сильный. Это "маленькие пульки", которые должны попасть в какую-то очень большую мишень.

Это и есть вода?

Да, они действуют через водные системы. Но это должна быть не просто вода, а особая, где протекают свободно-радикальные реакции. Свободный радикал по своей природе - микромагнит. И если внешние магнитные поля изменяются, то эти реакции в воде, из которой в основном и состоит живой организм, начинают течь по другому руслу. К счастью, наш организм довольно жестко регулируется, поэтому сбить его с толку можно лишь повторяющимися воздействиями, наложенными одно на другое. Если человек находится в стабильном состоянии, они оказывают тренирующий эффект, это встряска, в результате которой здоровый организм станет еще здоровее. В состоянии же дисбаланса это воздействие приводит к ухудшению. В медицине даже появился новый термин - десинхроноз, то есть нарушение взаимозависимости процессов организма в ответ на действие внешних разрушающих факторов. Отсюда появилась и резонансная медицина - слабые воздействия (магнитные, звуковые, физиотерапия, гомеопатия), - возвращающая организму привычный ритм.

Можно ли все это зафиксировать, перевести, так сказать, на материальную основу?

Методы изучения этих сложных процессов только-только появляются. Возьмем, к примеру, гомеопатию. Как может действовать вещество, когда ни одной его молекулы в растворе нет?! С точки зрения традиционной химии, физики не может. Однако сейчас разработаны новые физические методы (это было представлено на конгрессе), которые дают возможность четко отличить растворы, в которых исходно содержались определенные вещества, от тех, где этого вещества никогда не было. Они показывают, что вода сохранила память о веществе, которое когда-то было в растворе, несмотря на сильное разведение.

Один из ваших докладов был посвящен "биоэнергетике воды". Что это такое?

Вода - это не только основная воспринимающая субстанция, но и главное наше "топливо", определяющее энергетику живого организма. Энергия получается, как известно, в результате окисления. При горении она выделяется в виде света, а при тлении - в виде тепла. Классическая биоэнергетика рассматривает только процесс тления, когда энергия выделяется маленькими порциями. Но в живом организме протекают и процессы горения, однако до самого последнего времени эти реакции рассматривали исключительно как патологические. Они связаны с так называемыми свободными радикалами, активными формами кислорода, и борются с ними с помощью антиоксидантов. Это сейчас модное слово. Получается, антиоксидант - это нечто, что препятствует окислению, но ведь именно в результате окисления мы и получаем энергию. Значит, он лишает нас энергии?! За счет чего же будем жить? К счастью, это не так, и на самом деле антиоксиданты являются стимуляторами горения, просто далеко не все это понимают. Тот же витамин С - мощнейший активатор кислорода.

Я исхожу из того, что наша биоэнергетика основана именно на горении. Вода, из которой состоит организм, может гореть, то есть напрямую окисляться кислородом. И эта реакция идет в крови непрерывно благодаря антителам - молекулам, которые борются с чужеродными факторами. Однако горение может быть как полезным, так и вредным. Можно "сгореть заживо" - когда в организме начинается аутоиммунная реакция, чрезмерная активация иммунной системы. Но это случается редко, гораздо чаще организм не горит, а "тлеет" - это не что иное, как хронические болезни. И бороться с этим нужно при помощи активного кислорода - воздуха, обогащенного озоном, люстры Чижевского, ионизаторов. И питьевая вода может положительно влиять на организм, поддерживать процессы горения - например, вода из источников, горных потоков. А "пустая", энергетически бедная вода может, напротив, отнять энергию.

Все это и многое другое выдающиеся умы высказывали еще несколько десятилетий назад, но никто не принимал их всерьез. И только сейчас мы заново открываем этот громадный, почти неизвестный нам континент, но уже с позиций экспериментальной науки.

Отношение к этой тематике и сейчас не однозначное. Вряд ли вам удастся получить на подобные исследования много грантов...

Гранты на квантовую физику впервые начали выделять военные ведомства, кстати, и на эту тематику - тоже. Начинает выделять деньги бизнес. Конференция в США, о которой я упоминал, проводится под эгидой крупной высокотехнологичной компании "Вермонт-фотоникс". А мы над этой темой работаем в основном по хоздоговорам. В конце этого года под Москвой начнет работать завод по производству различных напитков, где будет цех по выпуску "биологически активной" воды (содержащей активный кислород). Мы проводим анализ этой воды, даем рекомендации, как оптимизировать технологический процесс. Так что находятся бизнесмены и на Западе, и в России, которые понимают, что нефть рано или поздно кончится, а вода - вечна.