Z–преобразование. Z преобразование

Лекция 8. Цифровые САУ

Основные положения и определения

Система называется цифровой, если в контуре имеется хотя бы один импульсный элемент. На рисунке 8.1 приведена цифровая САУ на базе микроконтроллера, т.е. функции сумматора и регулятора реализуются программным путем в микроконтроллере, с выхода которого сигналы поступают на объект управления с известной ПФ.

Рисунок 8.1 – Структурная схема цифровой системы

Микроконтроллер приближенно можно описать ПФ запаздывающего звена

Рисунок 8.2 – Выходная характеристика запаздывающего звена

Амплитудно-импульсная модуляция (АИМ) это модуляция, при которой амплитуда импульса модулированного сигнала У пропорциональна величине информационного сигнала Х, подаваемого на вход модулятора.

Рисунок 8.3 – Виды АИМ

Существует 2 вида АИМ: первого и второго рода. В АИМ 1-го рода амплитуда модулированного сигнала в течение длительности импульса τ повторяет информационный сигнал Х. При АИМ 2-го рода амплитуда импульса в течение длительности импульса τ постоянна. Например, в АЦП используется АИМ 2-го рода.

Рисунок 8.4 – Временная диаграмма работы АЦП

В АЦП преобразование происходит в 2 этапа: дискретизация по времени с периодом Т и квантование по уровню аналогового сигнала.

Поэтому блок АЦП можно представить в виде 2-х элементов: импульсного элемента, осуществляющего дискретизацию по времени и формирователя импульсов, выполняющий квантование по уровню (рисунок 8.5,а). Цифровая система (ЦС), содержащее АЦП, приведена на рисунке 8.5,б.

Рисунок 8.5 – Структурная схема ЦС с АЦП

При увеличении разрядности АЦП (числа квантований) ошибка между значением цифрового сигнала и аналогового уменьшается.

Таблица 8.1 - Относительные ошибки АЦП

Решетчатая функция. Например, .

Разностное уравнение 1-го порядка;

Разностное уравнение 2-го порядка;

Разностное уравнение k-го порядка.

Z-преобразование

Для описания ЦС используется z-преобразование. Для этого необходимо перейти из области t в область р, а затем в область Z.

Преобразование Лапласа имеет вид

.

Приближенно интеграл можно представить в виде суммы

.

Примем , тогда

или

. (8.1)

Пример 1. Найти z-изображение .

.

В правой части уравнения сумма бесконечно убывающей геометрической прогрессии, знаменатель которой равен

.

Таблица 8.2 – Примеры перехода из t в Z и P области

F(t) Р-преобразование Z-преобразование
1(t) t t 2 exp(-at) 1/р 1 /p 2 1 /p 3 1/(p+a) z / z-1 Tz / (z-1) 2 T 2 z(z+1) /(z-1) 3 z/ (z-e -at)

Пример 2. Дана x(t) = 1(t). Требуется получить z-изображение другим способом.

Как и при первом способе, получим изображение единичной функции в виде ряда Тейлора

x(z) = 1 + z -1 + z -2 +…..+z - n .

Умножим на z -1 обе части уравнения

x(z) ∙ z -1 = z -1 + z -2 + z - n -1 ,

и вычтем из первого выражения x(z), полученное x(z) ∙ z -1 .

x(z) – x(z) ∙ z -1 = 1.

Пример 3. Дана функция x(t)= t ∙ 1(t). Получить z-изображение.

x(z) ∙ z -1 = Tz -2 + 2Tz -3 + …;

Теоремы Z- преобразования

1) Суммирование и вычитание. Если f 1 (t) и f 2 (t) имеют z-преобразование, то

2) Умножение на константу. Если f(t) имеет z- преобразование F(z), то

3) Сдвиг во временной области. Если f(t) имеет z- преобразование F(z), то

Пример 4. Найти z- преобразование единичной ступенчатой функции 1(t) при задержке ее на один период квантования Т.

4) Об умножении оригинала на экспоненту (смещение в области изображений). Если f(t) имеет изображение f(z), то

5) Теорема о начальном значении. Если f(t) имеет z- преобразование F(z) и если существует предел , то

Из теоремы следует, что значение дискретного сигнала f(t) при t=0 определяется значением F(z) при z = ∞.

6) Теорема о конечном значении. Если f(t) имеет z-преобразование F(z) и если функция (1-z -1)F(z) не имеет полюсов на окружности единичного радиуса или вне ее, то

Пример 5. Найти конечное значение f(nT) для заданного z-преобразования

Приведем заданную функцию к виду

Определим корни знаменателя, т.е. определим полюса ПФ. Поскольку функция не имеет полюсов на единичной окружности, то

7) Теорема дифференцирования. Если z-преобразование функции f(t,a) есть F(z,a), где а – независимая переменная или константа, то

Пример 6. Определить z-преобразование функции f(t) = te -α t с помощью теоремы дифференцирования.

Обратное z- преобразование

Преобразование Лапласа и его обратное преобразование для непрерывных функций является однозначным. Для z-преобразования обратное z-преобразование не является однозначным. Корректный результат обратного z-преобразования функции F(z) есть f(nT), который равен f(t) только в моменты t = nT.

Рисунок 8.6 иллюстрирует тот факт, что для z-преобразования единичной ступенчатой функции, которое равно z/(z-1) и соответствует последовательности единичных импульсов. Обратное z-преобразование может быть любой функцией, значения которой равны единицы в моменты t=0,T,2T. Неоднозначность обратного z-преобразования является одним из ограничений этого метода.

При анализе и синтезе дискретных и цифровых устройств широко используют так называемое z-преобразование, играю­щее по отношению к дискретным сигналам такую же роль, как интегральные преобразования Фурье и Лапласа по отно­шению к непрерывным сигналам. В данном параграфе изла­гаются основы теории этого функционального преобразова­ния и некоторые его свойства.

Определение z -преобразования. Пусть - числовая последовательность, конечная или бесконечная, со­держащая отсчетные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицатель­ным степеням комплексной переменнойz :

Назовем эту сумму, если она существует, z -преобразова­нием последовательности к }. Целесообразность введения такого математического объекта связана с тем, что свойства дискретных последовательностей чисел можно изучать, иссле­дуя ихz-преобразования обычными методами математиче­ского анализа.

На основании формулы (2.113) можно непосредственно найти z-преобразования дискретныхсигналов с конечным числом отсчетов. Так, простейшему дискретному сигналу с единс твенным отсчетом соответствует .

Если же, например,

Сходимость ряда. Если в ряде (2.113) число слагаемых бесконечно велико, то необходимо исследовать его сходи­мость. Из теории функций комплексного переменного известно следующее. Пусть коэффициенты рассматриваемого ряда удовлетворяют условию

при любых . ЗдесьМ > 0 иR 0 > 0 - постоянные ве­щественные числа. Тогда ряд (2.113) сходится при всех зна­ченияхz, таких, что |z| >R 0 . В этой области сходимости сумма ряда представляет собой аналитическую функцию переменнойz, не имеющую ни полюсов, ни существенно особых точек.

Рассмотрим,например,дискретный сигнал , образованный одинаковыми единичными отсчетами и служа­щий моделью обычной функции включения. Бесконечный ряд является суммой геометрической прогрессии и сходится при любыхzв кольце .

Сум­мируя прогрессию, получаем

На границе области аналитичности при z= 1эта функция имеет единственный простой полюс.

Аналогично получается z-преобразование бесконечного дис­кретного сигнала , гдеа - некоторое вещественное число. Здесь

Данное выражение имеет смысл в кольцевой области .

z -преобразование непрерывных функций. Полагая, что от­счеты есть значения непрерывной функцииx (t ) в точках , любому сигналуx (t ) можно сопоставить егоz-преобразование при выбранном шаге дискретизации:

Например, если , то соответствующееz-преобразование

.

является аналитической функцией при .

Обратное z -преобразование. ПустьX (z) - функция ком­плексной переменнойz, аналитическая в кольцевой области |z| >R 0 . Замечательное свойствоz-преобразования состоит в том, что функцияX (z) определяет всю бесконечную совокупность отсчетов .

Действительно, умножим обе части ряда (2.113) на множитель :

. (2.115)

а затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произ­вольную замкнутую кривую, лежащую целиком в области аналитичности и охватывающую все полюсы функции X (z). При этом воспользуемся –фундаментальным положением, вытекающим из теоремы Коши:

.

Очевидно, интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером т, поэтому

Данная формула называется обратным z -преобразованием .

Связь с преобразованиями Лапласа и Фурье . Определим при сигнал вида идеальнойМИП:

.

Преобразовав его по Лапласу, получим изображение

которое непосредственно переходит в z-преобразование, если выполнить подстановку . Если же положить , то выражение

Вернемся к формуле дискретного преобразования Фурье:

В теории дискретных систем принято использовать несколько иную форму записи, связанную с введением Z – преобразования. Сделаем такую подстановку:

.

Тогда вышеприведенная формула значительно упростится:

.

Вновь полученная функция X(z) переменной z называется Z – изображением или Z – образом дискретного сигнала x(k).

Z – преобразования для дискретных сигналов и систем играют ту же роль, что и преобразование Лапласа для аналоговых систем. Поэтому рассмотрим ряд примеров определения Z – изображений некоторых типичных дискретных сигналов.

1.Единичный импульс (рис. 9.14) является дискретным аналогом δ - импульса и представляет собой единичный отчет с единичным значением:

Z – преобразование единичного импульса находится как

как и для δ - импульса Дирака.

2. Дискретный единичный скачок (рис. 9.15) - это полный аналог функции включения Хевисайда:

Z – образ единичного скачка найдется как

Полученная сумма – это сумма членов бесконечной геометрической прогрессии с начальным членом, равным 1, и знаменателем
. Сумма членов ряда составляет:

.

3. Дискретная экспонента (рис. 9.16) - это сигнал, определяемый выражением:

При
дискретная экспонента является убывающей (рис. 9.16), при
- возрастающей, при
- знакопеременной.Z – образ такой экспоненты

Как и в предыдущем случае, мы получили геометрическую прогрессию с нулевым членом, равным единице, но со знаменателем
. Бесконечная сумма членов прогрессии определяетZ – образ экспоненты:

4. Дискретная затухающая гармоника . В противоположность предыдущим примерам запишем ее в общем виде:

где α – коэффициент затухания гармоники,

ω – частота гармоники,

φ – начальная фаза колебаний,

- период дискретизации.

Введем следующие обозначения:

На рис.9.17 представлен график дискретной затухающей гармоники при следующих данных: а=0.9,
, φ=π/9. С учетом принятых обозначений выражение для дискретной затухающей гармоники можно представить в виде:

.

При получении Z – образа гармоники следует выразить функцию косинуса через сумму двух комплексных экспонент. Тогда, проделав целый ряд алгебраических и тригонометрических преобразований, в конце концов, можно будет получить следующее выражение:

.

Из приведенных примеров видно, что Z – образы большинства дискретных сигналов представляют собой дробно-рациональные функции от переменной
. ПроисхождениеZ – преобразования от преобразования Лапласа и Фурье приводит к тому, что Z – преобразование имеет и похожие свойства.

1. Линейность.

Z – преобразование линейно, так что если имеются два сигнала , то сумма этих сигналов
имеетZ – образ
.

2. Временная задержка дискретного сигнала .

Если дискретный сигнал x(k), имеющий Z – образ X(z), задержать на m шагов дискретизации
, то задержанный сигналy(k)=x(k-m) имеет Z – образ
. Выражение
можно рассматривать как оператор задержки сигнала на один шаг дискретизации.

3. Свертка дискретных сигналов .

По аналогии со сверткой аналоговых сигналов

,

Фурье – образ которой равен произведению Фурье – образов сворачиваемых сигналов, свертка двух дискретных сигналов определяется как

.

Z – образ свертки двух сигналов равен произведению Z – образов исходных дискретных сигналов

4. Умножение на дискретную экспоненту .

Если дискретный сигнал
, имеющийZ – образ
, умножается на экспоненту
, тоZ – образ произведения примет вид
.

Рассмотренные свойства Z – преобразования позволяют во многих случаях без особого труда найти Z – образ заданного сигнала или решить обратную задачу – по известному Z – образу сигнала найти его представление во времени.

Z-преобразованием (преобразованием Лорана) называют свёртывание исходного сигнала, заданного последовательностью вещественных чисел во временно́й области, в аналитическую функцию комплексной частоты. Если сигнал представляет импульсную характеристику линейной системы, то коэффициенты Z-преобразования показывают отклик системы на комплексные экспоненты , то есть на гармонические осцилляции с различными частотами и скоростями нарастания/затухания.

Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform).

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами s k = s(kDt), равно как и непосредственно дискретной функции, можно поставить в соответствие степенной полином по z, последовательными коэффициентами которого являются значения s k:

s k = s(kDt) Û TZ = s k z k = S(z). (8.3.1)

где z = s+jw = r×exp(-jj) - произвольная комплексная переменная. Полином S(z) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину z n означает задержку сигнала на n интервалов: z n S(z) Û s(k-n).

Свойства z-преобразования.

Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность : Если S(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) = y(k)×z k = x(k-n)×z k =z n x(k-n)×z k - n = z n x(m)×z m = z n X(z).

Соответственно, умножение z-образа сигнала на множитель z n вызывает сдвиг сигнала на n тактов дискретизации.

Для z-преобразования действительны все известные теоремы о спектрах. В частности, свертка двух сигналов отображается в z-области произведением их z-образов, и наоборот:

s(k) * h(k) Û S(z)H(z), s(k)·h(k) Û S(z) * H(z).

При z = exp(-jwDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.3.1). Спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| = = 1.

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста w N = p/Dt (Re z = -1, Im z = 0).

Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни a i , и переписать полином в виде произведения двучленов:

S(z) = a 0 (z-a 1)(z-a 2)...,

где а 0 - последний отсчет сигнала (коэффициент при старшей степени z).

Z–преобразование применяется в основном для расчета дискретных фильтров. Математический аппарат z-преобразования играет для цифровых устройств ту же роль, что и для аналоговых схем. При помощи z-преобразования легко расчитываются частотные фильтры, фазовые корректоры или преобразователи Гильберта для реализации их в цифровом виде. Сразу же разделим понятия дискретного и цифрового фильтра. В дискретных фильтрах импульсная характеристика дискретна во времени, но при этом отсчеты сигнала и параметры фильтра могут принимать любое значение. В цифровых фильтрах как отсчеты сигналов, так и параметры фильтров (например коэффициенты) представляются двоичными числами определенной разрядности. В качестве примера дискретного фильтра можно привести фильтр на переключаемых конденсаторах.

При рассмотрении дискретизации сигналов мы выяснили, что спектр входного аналогового сигнала при преобразовании в дискретную форму повторяется по оси частот бесконечное количество раз. То же самое происходит и с частотной характеристикой дискретного фильтра. Пример изменения амлитудно-частотной характеристики фильтра НЧ при его дискретной реализации приведен на рисунке 1.


Рисунок 1. Пример амплитудно-частотной характеристики дискретного фильтра

В приведенном примере частота дискретизации выбрана 50 кГц. Поэтому возле данной частоты образуются еще две полосы пропускания дискретного фильтра. Для правильной работы дискретного фильтра, такого как фильтр на переключаемых конденсаторах или цифровой фильтр, потребуется аналоговый антиалиайсинговый фильтр, подавляющий высокочастотные составляющие входного сигнала. Его идеализированная амплитудно-частотная характеристика проведена на рисунке 1 красным цветом.

Если имеется передаточная характеристика аналогового фильтра H (s ) в виде нулей и полюсов фильтра, то в дискретном фильтре нули и полюса периодически повторяются с периодом 1/T , где T — период дискретизации. Другими словами таким образом повторяется фильтра как это показано на рисунке 1. Положение нулей и полюсов на оси частот s-плоскости для обычного и дискретного фильтров приведено на рисунке 2.



Рисунок 2. Периодическое повторение нулей и полюсов на s-плоскости

У дискретного фильтра мы видим бесконечное количество нулей и полюсов, что не совсем удобно при его реализации. Вместо бесконечного повторения нулей и полюсов на бесконечной оси частот можно преобразовать эту ось в кольцевую (использовать вместо декартовой полярную систему координат). Подобное преобразование показано на рисунке 3.



Рисунок 3. Преобразование комплексной s-плоскости в комплексную z-плоскость

При этом преобразовании нулевая частота занимает положение точки +1 на реальной оси z-плоскости, частота, равная ∞, преобразуется в точку −1 на реальной оси z-плоскости, а сама ось частот преобразуется в круг единичного радиуса. При увеличении частоты мы будем двигаться по кругу против часовой стрелки, реализуя тем самым бесконечное повторение амплитудно-частотных характеристик дискретного фильтра.

Математически отображение комплексной s-плоскости в комплексную z-плоскость осуществляется следующим образом:

Z = e s·T (1)

где s = σ + jω

Тогда преобразование Лапласа дискретного сигнала переходит в z–преобразование:

(2)

При переходе из комплексной s–плоскости в комплексную z-плоскость все бесконечно-повторяющиеся нули и полюса дискретного фильтра в s-плоскости отображаются в конечное количество нулей и полюсов в z-плоскости. Тогда выражение для передаточной характеристики дискретного фильтра может быть представлено в следующем виде:

(3)