Если вариационный ряд имеет вид. Дать определение вариационного ряда

(определение вариационного ряда; составляющие вариационного ряда; три формы вариационного ряда; целесообразность построения интервального ряда; выводы, которые можно сделать по построенному ряду)

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.



Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

Где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

По этому ряду уже можно сделать несколько выводов. Например, средний элемент вариационного ряда (медиана) может быть оценкой наиболее вероятного результата измерения. Первый и последний элемент вариационного ряда (т.е. минимальный и максимальный элемент выборки) показывают разброс элементов выборки. Иногда если первый или последний элемент сильно отличаются от остальных элементов выборки, то их исключают из результатов измерений, считая, что эти значения получены в результате какого-то грубого сбоя, например, техники.

Вариация определяет различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период (момент времени). Причиной вариации бывают разные условия существования разных единиц совокупности. Например, даже близнецы в процессе жизни приобретают различия в росте, весе, а также в таких признаках, как уровень образования, доход, количество детей и т.д.

Вариация возникает в результате того, что сами значения признака складываются под суммарным влиянием разнообразных условий, которые разным образом сочетаются в каждом отдельном случае. Таким образом, величина любого варианта объективна.

Вариация характерна всем без исключения явлениям природы и общества, кроме законодательно закрепленных нормативных значений отдельных социальных признаков. Исследования вариации в статистике имеют огромное значение, помогают познать сущность изучаемого явления. Нахождение вариации, выяснение ее причин, выявление влияния отдельных факторов дают важную информацию для внедрения научно обоснованных управленческих решений.

Средняя величина дает обобщенную характеристику признака совокупности, но она не раскрывает её строения. Среднее значение не показывает, как располагаются вокруг нее варианты осредненного признака, распределены ли они вблизи средней или отклоняются от нее. Средняя в двух совокупностях может быть одинаковой, но в одном варианте все индивидуальные значения отличаются от нее незначительно, а в другом - эти отличия велики, т.е. в первом случае вариация признака мала, а во втором - велика, это имеет очень важное значение для характеристики значимости средней величины.

Для того, чтобы руководитель организации, управляющий, научный работник могли изучать вариацию и управлять ей, статистикой разработаны специальные методы исследования вариации (система показателей). С их помощью вариация находится, характеризуются ее свойства. К показателям вариации относятся : размах вариации, среднее линейное отклонение, коэффициент вариации.

Вариационный ряд и его формы

Вариационный ряд - это упорядоченное распределение единиц совокупности чаще по возрастающим (реже убывающим) значениям признака и подсчет числа единиц с тем или иным значением признака. Когда численность единиц совокупности большая, ранжированный ряд становится громоздким, его построение занимает длительное время. В такой ситуации вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Существуют следующие формы вариационного ряда :

  1. Ранжированный ряд представляет собой, перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.
  2. Дискретный вариационный ряд - это таблица, состоящая из двух строк или граф: конкретных значений варьирующего признака х и числа единиц совокупности с данным значение f - признака частот. Он строится тогда, когда признак принимает наибольшее число значений.
  3. Интервальный ряд .

Размах вариации определяется как абсолютная величина разности между максимальными и минимальными значениями (вариантами) признака:

Размах вариации показывает только крайние отклонения признака и не отражает отдельных отклонений всех вариантов в ряду. Он характеризует пределы изменения варьирующего признака и зависим от колебаний двух крайних вариантов и абсолютно не связан с частотами в вариационном ряду, т. е. с характером распределения, что придает этой величине, случайный характер. Для анализа вариации нужен показатель, который отражает все колебания вариационного признака и даёт общую характеристику. Простейший показатель такого вида — среднее линейное отклонение.

Особое место в статистическом анализе принадлежит определению среднего уровня изучаемого признака или явления. Средний уровень признака измеряют средними величинами.

Средняя величина характеризует общий количественный уровень изучаемого признака и является групповым свойством статистической совокупности. Она нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и выдвигает на первый план основное, типичное свойство изучаемого признака.

Средние величины широко используются:

1. Для оценки состояния здоровья населения: характеристики физического развития (рост, вес, окружность грудной клетки и пр.), выявления распространенности и длительности различных заболеваний, анализа демографических показателей (естественного движения населения, средней продолжительности предстоящей жизни, воспроизводства населения, средней численности населения и др.).

2. Для изучения деятельности лечебно-профилактических учреждений, медицинских кадров и оценки качества их работы, планирования и определения потребности населения в различных видах медицинской помощи (среднее число обращений или посещений на одного жителя в год, средняя длительность пребывания больного в стационаре, средняя продолжительность обследования больного, средняя обеспеченность врачами, койками и пр.).

3. Для характеристики санитарно-эпидемиологического состояния (средняя запыленность воздуха в цехе, средняя площадь на одного человека, средние нормы потребления белков, жиров и углеводов и т. д.).

4. Для определения медико-физиологических показателей в норме и патологии, при обработке лабораторных данных, для установления достоверности результатов выборочного исследования в социально-гигиенических, клинических, экспериментальных исследованиях.

Вычисление средних величин выполняется на основе вариационных рядов. Вариационный ряд – это однородная в качественном отношении статистическая совокупность, отдельные единицы которой характеризуют количественные различия изучаемого признака или явления.

Количественная вариация может быть двух типов: прерывная (дискретная) и непрерывная.

Прерывный (дискретный) признак выражается только целым числом и не может иметь никаких промежуточных значений (например, число посещений, численность населения участка, число детей в семье, степень тяжести болезни в баллах и др.).

Непрерывный признак может принимать любые значения в определенных пределах, в том числе и дробные, и выражается лишь приближенно (например, вес – для взрослых можно ограничиться килограммами, а для новорожденных – граммами; рост, артериальное давление, время, потраченное на прием больного, и т. д.).



Цифровое значение каждого отдельного признака или явления, входящего в вариационный ряд, называется вариантой и обозначается буквой V . В математической литературе встречаются и другие обозначения, например x или y.

Вариационный ряд, где каждая варианта указана один раз, называется простым. Такие ряды используются в большинстве статистических задач в случае компьютерной обработки данных.

При увеличении числа наблюдений, как правило, встречаются повторяющиеся значения вариант. В этом случае создается сгруппированный вариационный ряд , где указывается число повторений (частота, обозначается буквой «р »).

Ранжированный вариационный ряд состоит из вариант, расположенных в порядке возрастания или убывания. Как простой, так и сгруппированный ряды могут быть составлены с ранжированием.

Интервальный вариационный ряд составляют с целью упрощения последующих вычислений, выполняемых без использования компьютера, при очень большом числе единиц наблюдения (более 1000).

Непрерывный вариационный ряд включает значения вариант, которые могут выражаться любыми значениями.

Если в вариационном ряде значения признака (варианты) заданы в виде отдельных конкретных чисел, то такой ряд называют дискретным .

Общими характеристиками значений признака, отражаемого в вариационном ряду, являются средние величины. Среди них наиболее применяемые: средняя арифметическая величина М, мода Мо и медиана Me. Каждая из этих характеристик своеобразна. Они не могут подменить друг друга и лишь в совокупности достаточно полно и в сжатой форме представляют собой особенности вариационного ряда.

Модой (Мо) называют значение наиболее часто встречающейся варианты.

Медиана (Me) – это значение варианты, делящей ранжированный вариационный ряд пополам (с каждой стороны медианы находится половина вариант). В редких случаях, когда имеется симметричный вариационный ряд, мода и медиана равны между собой и совпадают со значением средней арифметической.

Наиболее типичной характеристикой значений вариант является средняя арифметическая величина(М ). В математической литературе она обозначается .

Средняя арифметическая величина (M, ) – это общая количественная характеристика определенного признака изучаемых явлений, составляющих качественно однородную статистическую совокупность. Различают среднюю арифметическую простую и взвешенную. Средняя арифметическая простая вычисляется для простого вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в данный вариационный ряд. Вычисления проводятся по формуле:

,

где: М - средняя арифметическая простая;

ΣV - сумма вариант;

n - число наблюдений.

В сгруппированном вариационном ряду определяют взвешенную среднюю арифметическую. Формула ее вычисления:

,

где: М - средняя арифметическая взвешенная;

ΣVp - сумма произведений вариант на их частоты;

n - число наблюдений.

При большом числе наблюдений в случае ручных вычислений может применяться способ моментов.

Средняя арифметическая имеет следующие свойства:

· сумма отклонений вариант от средней (Σd ) равна нулю (см. табл. 15);

· при умножении (делении) всех вариант на один и тот же множитель (делитель) средняя арифметическая умножается (делится) на тот же множитель (делитель);

· если прибавить (вычесть) ко всем вариантам одно и то же число, средняя арифметическая увеличивается (уменьшается) на это же число.

Средние арифметические величины, взятые сами по себе, без учета вариабельности рядов, из которых они вычислены, могут не в полной мере отражать свойства вариационного ряда, в особенности когда необходимо сопоставление с другими средними. Близкие по значению средние могут быть получены из рядов с различной степенью рассеяния. Чем ближе друг к другу отдельные варианты по своей количественной характеристике, тем меньше рассеяние (колеблемость, вариабельность) ряда, тем типичнее его средняя.

Основными параметрами, которые позволяют оценить вариабельность признака, являются:

· Размах;

· Амплитуда;

· Среднее квадратическое отклонение;

· Коэффициент вариации.

Приблизительно о колеблемости признака можно судить по размаху и амплитуде вариационного ряда. Размах указывает на максимальную (V max) и минимальную (V min) варианты в ряду. Амплитуда (A m) является разностью этих вариант: A m = V max - V min .

Основной, общепринятой мерой колеблемости вариационного ряда являются дисперсия (D ). Но наиболее часто применяется более удобный параметр, вычисляемый на основе дисперсии - среднее квадратическое отклонение (σ ). Оно учитывает величину отклонения (d ) каждой варианты вариационного ряда от его средней арифметической (d=V - M ).

Поскольку отклонения вариант от средней могут быть положительными и отрицательными, то при суммировании они дают значение «0» (Sd=0 ). Чтобы избежать этого, величины отклонения (d ) возводятся во вторую степень и усредняются. Таким образом, дисперсия вариационного ряда является средним квадратом отклонений вариант от средней арифметической и вычисляется по формуле:

.

Она является важнейшей характеристикой вариабельности и применяется для вычисления многих статистических критериев.

Поскольку дисперсия выражается квадратом отклонений, ее величина не может использоваться в сопоставлении со средней арифметической. Для этих целей применяется среднее квадратическое отклонение , которое обозначается знаком «Сигма» (σ ). Оно характеризует среднее отклонение всех вариант вариационного ряда от средней арифметической величины в тех же единицах, что и сама средняя величина, поэтому они могут использоваться совместно.

Среднее квадратическое отклонение определяют по формуле:

Указанная формула применяется при числе наблюдений (n ) больше 30. При меньшем числе n значение среднего квадратического отклонения будет иметь погрешность, связанную с математическим смещением (n - 1). В связи с этим, более точный результат может быть получен с помощью учета такого смещения в формуле расчета стандартного отклонения:

стандартное отклонение (s ) – это оценка среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии.

При значениях n > 30 среднее квадратическое отклонение (σ ) и стандартное отклонение (s ) будут одинаковыми (σ =s ). Поэтому в большинстве практических пособий эти критерии рассматриваются как разнозначные. В программе Excel вычисление стандартного отклонения может быть выполнено функцией =СТАНДОТКЛОН(диапазон). А с целью расчета среднего квадратического отклонения требуется создать соответствующую формулу.

Среднее квадратическое или стандартное отклонение позволяет определить, насколько значения признака могут отличаться от среднего значения. Предположим, существуют два города с одинаковой средней дневной температурой в летний период. Один их этих городов расположен на побережье, а другой на континенте. Известно, что в городах, расположенных на побережье, различия дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднее квадратическое отклонение дневных температур у прибрежного города будет меньше, чем у второго города. На практике это означает, что средняя температура воздуха каждого конкретного дня в городе, расположенного на континенте будет сильнее отличаться от среднего значения, чем в городе на побережье. Кроме того стандартное отклонение позволяет оценить возможные отклонения температуры от средней с требуемым уровнем вероятности.

Согласно теории вероятности, в явлениях, подчиняющихся нормальному закону распределения, между значениями средней арифметической, среднего квадратического отклонения и вариантами существует строгая зависимость (правило трех сигм ). Например, 68,3% значений варьирующего признака находятся в пределах М ± 1σ , 95,5% - в пределах М ± 2σ и 99,7% - в пределах М ± 3σ .

Величина среднего квадратического отклонения позволяет судить о характере однородности вариационного ряда и исследуемой группы. Если величина среднего квадратического отклонения небольшая, то это свидетельствует о достаточно высокой однородности изучаемого явления. Среднюю арифметическую в таком случае следует признать вполне характерной для данного вариационного ряда. Однако слишком малая величина сигмы заставляет думать об искусственном подборе наблюдений. При очень большой сигме средняя арифметическая в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности изучаемого признака или явления или о неоднородности исследуемой группы. Однако сопоставление величины среднего квадратического отклонения возможно только для признаков одинаковой размерности. Действительно, если сравнивать разнообразие веса новорожденных детей и взрослых, мы всегда получим более высокие значения сигмы у взрослых.

Сравнение вариабельности признаков различной размерности может быть выполнено с помощью коэффициента вариации . Он выражает разнообразие в процентах от средней величины, что позволяет производить сравнение различных признаков. Коэффициент вариации в медицинской литературе обозначается знаком «С », а в математической «v » и вычисляемого по формуле:

.

Значения коэффициента вариации менее 10% свидетельствует о малом рассеянии, от 10 до 20% – о среднем, более 20% – о сильном рассеянии вариант вокруг средней арифметической.

Средняя арифметическая величина, как правило, вычисляется на основе данных выборочной совокупности. При повторных исследованиях под влиянием случайных явлений средняя арифметическая может изменяться. Это обусловлено тем, что исследуется, как правило, только часть возможных единиц наблюдения, то есть выборочная совокупность. Информация обо всех возможных единицах, представляющих изучаемое явление, может быть получена при изучении всей генеральной совокупности, что не всегда возможно. В то же время с целью обобщения данных эксперимента представляет интерес величина средней в генеральной совокупности. Поэтому для формулировки общего вывода об изучаемом явлении, результаты, полученные на основе выборочной совокупности, должны быть, перенесены на генеральную совокупность статистическими методами.

Чтобы определить степень совпадения выборочного исследования и генеральной совокупности, необходимо оценить величину ошибки, которая неизбежно возникает при выборочном наблюдении. Такая ошибка называется «Ошибкой репрезентативности » или «Средней ошибкой средней арифметической». Она фактически является разностью между средними, полученными при выборочном статистическом наблюдении, и аналогичными величинами, которые были бы получены при сплошном исследовании того же объекта, т.е. при изучении генеральной совокупности. Поскольку выборочная средняя является случайной величиной, такой прогноз выполняется с приемлемым для исследователя уровнем вероятности. В медицинских исследованиях он составляет не менее 95%.

Ошибку репрезентативности нельзя смешивать с ошибками регистрации или ошибками внимания (описки, просчеты, опечатки и др.), которые должны быть сведены до минимума адекватной методикой и инструментами, применяемыми при проведении эксперимента.

Величина ошибки репрезентативности зависит как от объема выборки, так и от вариабельности признака. Чем больше число наблюдений, тем ближе выборка к генеральной совокупности и тем меньше ошибка. Чем более изменчив признак, тем больше величина статистической ошибки.

На практике для определения ошибки репрезентативности в вариационных рядах пользуются следующей формулой:

,

где: m – ошибка репрезентативности;

σ – среднее квадратическое отклонение;

n – число наблюдений в выборке.

Из формулы видно, что размер средней ошибки прямо пропорционален среднему квадратическому отклонению, т. е. вариабельности изучаемого признака, и обратно пропорционален корню квадратному из числа наблюдений.

При выполнении статистического анализа на основе вычисления относительных величин построение вариационного ряда не является обязательным. При этом определение средней ошибки для относительных показателей может выполняться по упрощенной формуле:

,

где: Р – величина относительного показателя, выраженного в процентах, промилле и т.д.;

q – величина, обратная Р и выраженная как (1-Р), (100-Р), (1000-Р) и т. д., в зависимости от основания, на которое рассчитан показатель;

n – число наблюдений в выборочной совокупности.

Однако, указанная формула вычисления ошибки репрезентативности для относительных величин может применяться только в том случае, когда значение показателя меньше его основания. В ряде случаев расчета интенсивных показателей такое условие не соблюдается, и показатель может выражаться числом более 100% или 1000%о. В такой ситуации выполняется построение вариационного ряда и вычисление ошибки репрезентативности по формуле для средних величин на основе среднего квадратического отклонения.

Прогнозирование величины средней арифметической в генеральной совокупности выполняется с указанием двух значений – минимального и максимального. Эти крайние значения возможных отклонений, в пределах которых может колебаться искомая средняя величина генеральной совокупности, называются «Доверительные границы ».

Постулатами теории вероятностей доказано, что при нормальном распределении признака с вероятностью 99,7%, крайние значения отклонений средней будут не больше величины утроенной ошибки репрезентативности (М ± 3m ); в 95,5% – не больше величины удвоенной средней ошибки средней величины (М ± 2m ); в 68,3% – не больше величины одной средней ошибки (М ± 1m ) (рис. 9).

P%

Рис. 9. Плотность вероятностей нормального распределения.

Отметим, что приведенное выше утверждение справедливо только для признака, который подчиняется нормальному закону распределения Гаусса.

Большинство экспериментальных исследований, в том числе и в области медицины, связано с измерениями, результаты которых могут принимать практически любые значения в заданном интервале, поэтому, как правило, описываются моделью непрерывных случайных величин. В связи с этим в большинстве статистических методов рассматриваются непрерывные распределения. Одним из таких распределений, имеющим основополагающую роль в математической статистике, является нормальное, или гауссово, распределение .

Это объясняется целым рядом причин.

1. Прежде всего, многие экспериментальные наблюдения можно успешно описать с помощью нормального распределения. Следует сразу же отметить, что не существует распределений эмпирических данных, которые были бы в точности нормальными, поскольку нормально распределенная случайная величина находится в пределах от до , чего никогда не встречается на практике. Однако нормальное распределение очень часто хорошо подходит как приближение.

Проводятся ли измерения веса, роста и других физиологических параметров организма человека - везде на результаты оказывает влияние очень большое число случайных факторов (естественные причины и ошибки измерения). Причем, как правило, действие каждого из этих факторов незначительно. Опыт показывает, что результаты именно в таких случаях будут распределены приближенно нормально.

2. Многие распределения, связанные со случайной выборкой, при увеличении объема последней переходят в нормальное.

3. Нормальное распределение хорошо подходит в качестве приближенного описания других непрерывных распределений (например, асимметричных).

4. Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивших его широкое применение в статистике.

В то же время следует отметить, что в медицинских данных встречается много экспериментальных распределений, описание которых моделью нормального распределения невозможно. Для этого в статистке разработаны методы, которые принято называть «Непараметрическими».

Выбор статистического метода, который подходит для обработки данных конкретного эксперимента, должен производиться в зависимости от принадлежности полученных данных к нормальному закону распределения. Проверка гипотезы на подчинение признака нормальному закону распределения выполняется с помощью гистограммы распределения частот (графика), а также ряда статистических критериев. Среди них:

Критерий асимметрии (b );

Критерий проверки на эксцесс (g );

Критерий Шапиро – Уилкса (W ) .

Анализ характера распределения данных (его еще называют проверкой на нормальность распределения) осуществляется по каждому параметру. Чтобы уверенно судить о соответствии распределения параметра нормальному закону, необходимо достаточно большое число единиц наблюдения (не менее 30 значений).

Для нормального распределения критерии асимметрии и эксцесса принимают значение 0. Если распределение смещено вправо b > 0 (положительная асимметрия), при b < 0 - график распределения смещен влево (отрицательная асимметрия). Критерий асимметрии проверяет форму кривой распределения. В случае нормального закона g =0. При g > 0 кривая распределения острее, если g < 0 пик более сглаженный, чем функция нормального распределения.

Для проверки на нормальность по критерию Шапиро – Уилкса требуется найти значение этого критерия по статистическим таблицам при необходимом уровне значимости и в зависимости от числа единиц наблюдения (степеней свободы). Приложение 1. Гипотеза о нормальности отвергается при малых значениях этого критерия, как правило, при w <0,8.

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения .

Наличие общего признака является основой для образования статистической совокупности, которая представляет собой результаты описания или измерения общих признаков объектов исследования.

Предметом изучения в статистике являются изменяющиеся (варьирующие) признаки или статистические признаками.

Виды статистических признаков .

Атрибутивными называют ряды распределения , построенные по качественным признакам. Атрибутивный – это признак, имеющий наименование, (например профессия: швея, учитель и т.д.).
Ряд распределения принято оформлять в виде таблиц. В табл. 2.8 приведён атрибутивный ряд распределения.
Таблица 2.8 - Распределение видов юридической помощи, оказанной адвокатами гражданам одного из регионов РФ.

Вариационный ряд – это значения признака (или интервалы значений) и их частоты.
Вариационными рядами называют ряды распределения , построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.
Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.
Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.
Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %. Вариационный ряд позволяет по фактическим данным оценить форму закона распределения.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды .
Пример дискретного вариационного ряда приведен в табл. 2.9.
Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй – помещены частоты вариационного ряда, в третьей – показатели частости.

Вариационный ряд

В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x 1 , x 2 , …, x n по возрастанию. Каждое наблюдаемое значение x i называется вариантой . Частота m i – это число наблюдений значения x i в выборке. Относительная частота (частость) w i – это отношение частоты m i к объему выборкиn : .
При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: для x i n называется накопленной частостью w i max .
Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

Таблица 1. Общий вид дискретного вариационного ряда частот

Значения признака x i x 1 x 2 x n
Частоты m i m 1 m 2 m n

Признак называется непрерывно варьирующим, если его значения отличаются друг от друга на сколь угодно малую величину, т.е. признак может принимать любые значения в некотором интервале. Непрерывный вариационный ряд для такого признака называется интервальным.

Таблица 2. Общий вид интервального вариационного ряда частот

Таблица 3. Графические изображения вариационного ряда

Ряд Полигон или гистограмма Эмпирическая функция распределения
Дискретный
Интервальный
Просматривая результаты проведенных наблюдений, определяют, сколько значений вариантов попало в каждый конкретный интервал. Предполагается, что каждому интервалу принадлежит один из его концов: либо во всех случаях левые (чаще), либо во всех случаях правые, а частоты или частости показывают число вариантов, заключенных в указанных границах. Разности a i – a i +1 называются частичными интервалами. Для упрощения последующих расчетов интервальный вариационный ряд можно заменить условно дискретным. В этом случае серединное значение i -го интервала принимают за вариант x i , а соответствующую интервальную частоту m i – за частоту этого интервала.
Для графического изображения вариационных рядов наиболее часто используются полигон, гистограмма, кумулятивная кривая и эмпирическая функция распределения.

В табл. 2.3 (Группировка населения России по размеру среднедушевого дохода в апреле 1994г.) представлен интервальный вариационный ряд .
Удобно ряды распределения анализировать при помощи графического изображения, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон и гистограмма .
Полигон используется при изображении дискретных вариационных рядов .
Изобразим, например графически распределение жилого фонда по типу квартир, (табл. 2.10).
Таблица 2.10 - Распределение жилого фонда городского района по типу квартир (цифры условные).


Рис. Полигон распределения жилого фонда


На оси ординат могут наноситься не только значения частот, но и частостей вариационного ряда.
Гистограмма принимается для изображения интервального вариационного ряда . При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. Гистограмма – график, на котором ряд изображен в виде смежных друг с другом столбиков.
Изобразим графически интервальный ряд распределения, приведённый в табл. 2.11.
Таблица 2.11 - Распределение семей по размеру жилой площади, приходящейся на одного человека (цифры условные).
N п/п Группы семей по размеру жилой площади, приходящейся на одного человека Число семей с данным размером жилой площади Накопленное число семей
1 3 – 5 10 10
2 5 – 7 20 30
3 7 – 9 40 70
4 9 – 11 30 100
5 11 – 13 15 115
ВСЕГО 115 ----


Рис. 2.2. Гистограмма распределения семей по размеру жилой площади, приходящейся на одного человека


Используя данные накопленного ряда (табл. 2.11), построим кумуляту распределения.


Рис. 2.3. Кумулята распределения семей по размеру жилой площади, приходящейся на одного человека


Изображение вариационного ряда в виде кумуляты особенно эффективно для вариационных рядов, частоты которых выражены в долях или процентах к сумме частот ряда.
Если при графическом изображении вариационного ряда в виде кумуляты оси поменять, то мы получим огиву . На рис. 2.4 приведена огива, построенная на основе данных табл. 2.11.
Гистограмма может быть преобразована в полигон распределения, если найти середины сторон прямоугольников и затем эти точки соединить прямыми линиями. Полученный полигон распределения изображён на рис. 2.2 пунктирной линией.
При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах.
Плотность распределения – это частота, рассчитанная на единицу ширины интервала, т.е. сколько единиц в каждой группе приходится на единицу величины интервала. Пример расчета плотности распределения представлен в табл. 2.12.
Таблица 2.12 - Распределение предприятий по числу занятых (цифры условные)
N п/п Группы предприятий по числу занятых, чел. Число предприятий Величина интервала, чел. Плотность распределения
А 1 2 3=1/2
1 До 20 15 20 0,75
2 20 – 80 27 60 0,25
3 80 – 150 35 70 0,5
4 150 – 300 60 150 0,4
5 300 – 500 10 200 0,05
ВСЕГО 147 ---- ----

Для графического изображения вариационных рядов может также использоваться кумулятивная кривая . При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательно суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.


Рис. 2.4. Огива распределения семей по размеру жилой площади, приходящейся на одного человека

При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты.