Кислород сера селен и их соединения. Общая характеристика

Химия Элементов Неметаллы VIА-подгруппы

Элементы VIА-подгруппы являются неметаллами, кроме Po.

Кислород сильно отличается от других элементов подгруппы и играет особую роль в химии. Поэтому химия кислорода выделена в отдельную лекцию.

Среди остальных элементов наибольшее значение имеет сера. Химия серы очень обширна, так как сера образует огромное количество разнообразных соединений. Ее соединения широко используются в химической практике и в различных отраслях промышленности. При обсуждении неметаллов VIА–подгруппы наибольшее внимание будет уделено химии серы.

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIА-подгруппы. Природные соединения Сера

Простое вещество Соединения серы

Сероводород, сульфиды, полисульфиды

Диоксид серы. Сульфиты

Триоксид серы

Серная кислота. Окислительные свойства. Сульфаты

Другие соединения серы

Селен, теллур

Простые вещества Соединения селена и теллура

Селениды и теллуриды

Соединения Se и Te в степени окисления (+4)

Селеновая и теллуровая кислоты. Окислительные свойства.

Элементы VIA-подгруппы

Общая характеристика

К VIA-подгруппе принадлежат р-элементы : кисло-

род O , сера S , селен Se , теллур Te , полоний Po .

Общая формула валентных элек-

тронов – ns 2 np 4 .

кислород

Кислород, сера, селен и теллур – неметаллы.

Их часто объединяют общим названием «халькогены» ,

что означает «образующие руды». Действительно многие

металлы находятся в природе в виде оксидов и сульфидов;

в сульфидных рудах

в незначительных количествах при-

сутствуют селениды и теллуриды.

Полоний – очень редкий радиоактивный элемент, ко-

торый является металлом.

молибден

Для создания устойчивой восьмиэлектронной обо-

лочки атомам халькогенов не хватает всего двух электро-

нов. Минимальная степень окисления (–2) является ус-

вольфрам

тойчивой у всех элементов . Именно эту степень окисле-

ния элементы проявляют в природных соединениях – ок-

сидах, сульфидах, селенидах и теллуридах.

Все элементы VIA-подгруппе, кроме О, проявляют

сиборгий

положительные степени окисления +6 и +4. Наиболь-

шая степень окисления кислорода равна +2, проявляет-

ся только в соединениях с F.

Наиболее характерными степенями окисления для S, Se, Te являют-

ся: (–2), 0, +4, +6, для кислорода: (–2), (–1), 0.

При переходе от S к Te устойчивость высшей степени окисления +6

понижается, а устойчивость степени окисления +4 усиливается.

У Se, Te, Po, – наиболее устойчивой является степень окисления +4.

Некоторые характеристики атомов элементов ViБ – подгруппы

Относительная

Первая энергия

электроотри-

ионизации,

цательность

кДж./моль

(по Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии ио-

уменьшение электроотри-

цательности

Как видно из приведенных выше данных, кислород сильно отличается от других элементов подгруппы высоким значением энергии ионизации, ма-

лым орбитальным радиусом атома и высокой электроотрицательностью, более высокую электроотрицательность имеет только F.

Кислород, играющий в химии совершенно особую роль, рассмотрен от-

дельно. Среди остальных элементов VIА-группы наиболее важным является сера.

Сера образует очень большое количество разнооб-

разных соединений. Известны ее соединения почти со все-

ми элементами, кроме Au, Pt, I и благородных газов. Кро-

ме широко распространенных соединений S в степенях

3s2 3p4

окисления (–2), +4, +6, известны, как правило, малоус-

тойчивые соединения в степенях окисления: +1 (S2 O), +2

(SF2 , SCl2 ), +3 (S2 O3 , H2 S2 O4 ). Многообразие соединений серы подтверждает и тот факт, что только кислородсодержащих кислот S известно около 20.

Прочность связи между атомами S оказывается соизмеримой с проч-

ностью связей S с другими неметаллами: O, H, Cl, поэтому для S характер-

том числе очень распространенный минерал пирит FeS2 , и политионовые кислоты (например, H2 S4 O6 ).Таким образом химия серы является весьма обширной.

Важнейшие соединения серы, используемые в промышленности

Самым широко используемым соединением серы в промышленности и лаборатории является серная кислота . Мировой объем производства сер-

ной кислоты составляет 136 млн.т. (ни одна другая кислота не производится в таких больших количествах). К распространенным соединениям относятся со-

ли серной кислоты – сульфаты , а также соли сернистой кислоты – сульфиты.

Природные сульфиды используются для получения важнейших цветных ме-

таллов: Cu, Zn, Pb, Ni, Co и др. Среди других распространенных соединений серы следует назвать: сероводородную кислоту H2 S, ди- и триоксиды серы: SO2

и SO3, тиосульфат Na2 S2 O3 ; кислоты: дисерную (пиросерную) H2 S2 O7 , перок-

содисерную H2 S2 O8 и пероксодисульфаты (персульфаты): Na2 S2 O8 и

(NH4 )2 S2 O8 .

Сера в природе

чается в виде простого вещества , образующего большие подземные залежи,

и в виде сульфидных и сульфатных минералов, а также в виде соединений,

являющихся примесями в угле и нефти. Уголь и нефть получаются в результа-

те разложения органических веществ, а сера входит в состав животных и расти-

тельных белков. Поэтому при сжигании угля и нефти образуются оксиды серы,

загрязняющие окружающую среду.

Природные соединения серы

Рис. Пирит FeS2 – основной минерал, который используется для получения серной кислоты

самородная сера;

сульфидные минералы:

FeS2 – пирит или железный колчедан

FeCuS2 – халькопирит (медный колче-

FeAsS – арсенопирит

PbS – галенит или свинцовый блеск

ZnS – сфалерит или цинковая обманка

HgS – киноварь

Cu2 S- халькозин или медный блеск

Ag2 S– аргентит или серебряный блеск

MoS2 – молибденит

Sb2 S3 – стибнит или сурьмяный блеск

As4 S4 –реальгар;

сульфаты:

Na2 SO4 . 10 H2 O – мирабилит

CaSO4 . 2H2 O – гипс

CaSO4 - ангидрит

BaSOбарит или тяжелый шпат

SrSO4 – целестин.

Рис. Гипс CaSO4 . 2H2 O

Простое вещество

В простом веществе атомы серы связаны -связью с двумя соседними.

Наиболее устойчивой является структура, состоящая из восьми атомов серы,

объединенных в гофрированное кольцо, напоминающее корону. Существует несколько модификаций серы: ромбическая сера, моноклинная и пластическая сера. При обычной температуре сера находится в виде желтых хрупких кри-

сталлов ромбической формы (-S), образован-

ных молекулами S8 . Другая модификация – моноклинная сера (-S) также состоит из восьмичленных колец, но отличается распо-

ложением молекул S8 в кристалле. При рас-

плавлении серы кольца рвутся. При этом мо-

гут образоваться перепутанные нити, которые

Рис. Сера

делают расплав вязким, при дальнейшем по-

вышении температуры полимерные цепи могут разрушаться, и вязкость будет ослабевать. Пластическая сера образуется при резком охлаждении расплавлен-

ной серы и состоит из перепутанных цепей. Со временем (в течение нескольких дней) она преобразуется в ромбическую серу.

Сера кипит при 445о С. В парах серы имеют место равновесия:

450 о С

650 о С

900 о С

1500 о С

S 8  S 6

 S 4

 S 2

 S

Молекулы S2 имеют строение аналогичное О2 .

Сера может быть окислена (обычно до SO2 ), и может быть восста-

новлена до S(-2). При обычной температуре реакции с участием твердой серы почти все заторможены, протекают лишь реакции с фтором, хлором, ртутью.

Эту реакцию используют для связывания мельчайших капель разлитой ртути.

Жидкая и парообразная сера очень реакционоспособны. В парах серы горит Zn, Fe, Cu. При пропускании Н 2 над расплавленной серой образуется

H 2 S. В реакциях с водородом и металлами сера выступает в роли окисли-

Сера способна достаточно легко окисляться под действием галогенов

и кислорода . При нагревании на воздухе сера горит голубым пламенем, окис-

ляясь до SO2 .

S + O2 = SO2

Сера окисляется концентрированной серной и азотной кислотами:

S + 2H2 SO4 (конц.) = 3SO2 + 2H2 O,

S + 6HNO3 (конц.) = H2 SO4 + 6 NO2 + 2H2 O

В горячих растворах щелочей сера диспропорционирует.

3S + 6 NaOH = 2 Na2 S + Na2 SO3 + 3 H2 O.

При взаимодействии серы с раствором сульфида аммония образуются желто-красные полисульфид-ионы (–S–S–)n или Sn 2– .

При нагревании серы с раствором сульфита получается тиосульфат, а

при нагревании с раствором цианида – тиоцианат:

S + Na 2 SO3 = Na2 S2 O3, S + KCN = KSCN

Тиоцианат или роданид калия используется для аналитического обнаружения ионов Fe3+ :

3+ + SCN – = 2+ + H2 O

Образующееся комплексное соединение имеет кроваво-красную окраску,

даже при незначительной концентрации гидратированных ионов Fe3+ в рас-

Ежегодно в мире добывается ~ 33 млн. т самородной серы. Основное количество добываемой серы перерабатывается в серную кислоту и использу-

ется в резиновой промышленности для вулканизации каучука. Сера присоеди-

няется к двойным связям макромолекул каучука, образуя дисульфидные мости-

ки –S– S–, тем самым, как бы их «сшивая», что придает каучуку прочность и упругость. При введении в каучук большого количества серы получается эбо-

нит, который является хорошим изоляционным материалом, используемым в электротехнике. Сера используется также в фармацевтике для изготовления кожных мазей и в сельском хозяйстве для борьбы с вредителями растений.

Соединения серы

Сероводород, сульфиды, полисульфиды

Сероводород H 2 S встречается в природе в серных минеральных водах,

присутствует в вулканическом и природном газе, образуется при гниении бел-

ковых тел.

Сероводород – это бесцветный газ с запахом тухлых яиц, очень ядовит.

Мало растворяется в воде, при комнатной температуре в одном объеме воды растворяются три объема газообразного H2 S. Концентрация H 2 S в насыщен-

ном растворе составляет ~ 0,1 моль/л. При растворении в воде образуется

сероводородная кислота, которая является одной из самых слабых кислот:

H2 S  H+ + HS – , K1 = 6. 10 –8 ,

HS –  H+ + S 2– ,

K2 = 1. 10 –14

Исполнитель:

вестно много природных сульфидов (см. список сульфидных минералов).

Сульфиды многих тяжелых цветных металлов (Cu, Zn, Pb, Ni, Co, Cd, Mo) яв-

ляются промышленно важными рудами. Их путем обжига на воздухе переводят в оксиды, например,

2 ZnS + 3 O2 = 2 ZnO + 2 SO2

затем оксиды чаще всего восстанавливают углем: ZnO + C = Zn + CO

Иногда оксиды переводят в раствор действием кислоты, а затем раствор подвергают электролизу с целью восстановления металла.

Сульфиды щелочных и щелочно-земельнвых металлов являются практи-

чески ионными соединениями. Сульфиды остальных металлов – преимущест-

венно ковалентные соединения, как правило, нестехиометрического состава.

Ковалентные сульфиды образуют и многие неметаллы: B, C, Si, Ge, P, As, Sb. Известны природные сульфиды As и Sb.

Сульфиды щелочных и щелочноземельных металлов, а также суль-

фид аммония хорошо растворимы в воде, остальные сульфиды нераство-

римы . Они выделяются из растворов в виде характерно окрашенных осадков,

например,

Pb(NO3 )2 + Na2 S = PbS (т.) + 2 NaNO3

Эту реакцию используют для обнаружения H2 S и S2– в растворе.

Некоторые из нерастворимых в воде сульфидов могут быть переведены в раствор кислотами, благодаря образованию очень слабой и летучей сероводо-

родной кислоты, например,

NiS + H2 SO4 = H2 S + NiSO4

В кислотах можно растворить сульфиды: FeS, NiS, CoS , MnS, ZnS .

Сульфиды металлов и значения ПР

Сульфиды

Цвет осадка

Значение ПР

5 . 10–18

1 . 10–24

2 . 10–25

2 . 10–27

6 . 10–36

4 . 10–53

коричневый

2 . 10–27

2 . 10–28

2 . 10–10

2 . 10–24

Сульфиды, характеризующиеся очень низким значением произведения растворимости, не могут растворяться в кислотах с образованием H2 S. В ки-

слотах не растворяются сульфиды: CuS, PbS, Ag2 S, HgS , SnS, Bi2 S3 , Sb2 S3 , Sb2 S5 , CdS, As2 S3 , As2 S5 , SnS2 .

Если реакция растворения сульфида за счет образования H2 S невозможна,

то в раствор его можно перевести действием концентрированной азотной ки-

слоты или царской водки.

CuS + 8HNO3 = CuSO4 + 8NO2 + 4H2 O

Сульфидный анион S 2– является сильным акцептором протона (ос-

нованием по Бренстеду). Поэтому растворимые сульфиды в сильной степени

В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены , что означает «образующие руды».

Свойства элементов подгруппы кислорода

Свойства

Те

Ро

1. Порядковый номер

2. Валентные электроны

2 s 2 2р 4

З s 2 3р 4

4 s 2 4р 4

5s 2 5p 4

6s 2 6p 4

3. Энергия ио низации атома, эВ

13,62

10,36

9,75

9,01

8,43

4. Относительная электроотрицательность

3,50

2,48

2,01

1,76

5. Степень окисления в соединениях

1, -2,

2, +2, +4, +6

4, +6

4, +6

2, +2

6. Радиус атома, нм

0,066

0,104

0,117 0,137

0,164

У атомов халькогенов одинаковое строение внешнего энергетического уровня - ns 2 nр 4 . Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами - обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окис­ления, равная номеру группы. Он проявляет степень окисления обыч­но -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов

У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали . Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н 2 О и ОF 2). Таковы же валентность и степени окисления у а тома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр — , а затем 3s -электроны (показано стрелками). Число неспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO 2), а во втором - шести (например, в SO 3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы - селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

Водородные соединения элементов подгруппы кислорода отвечают формуле Н 2 R (R — символ элемента): Н 2 О, Н 2 S , Н 2 S е, Н 2 Те. Они называ ются хальководородами . При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом по­рядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н 2 R . Вода, диссоциирующая на ионы Н + и ОН — , является амфотерным электролитом .

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа R О 2 и R О 3- . Им соответствуют кислоты типа Н 2 R О 3 и Н 2 R О 4- . С ростом порядкового номера элемента сила этих кислот убы вает. Все они проявляют окислительные свойства, а кислоты типа Н 2 R О 3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур - неметаллы, но последний обладает металлическим блеском и проводит электричество.

Селен мало распространен в природе. В земной коре содержание селена составляет . Его соединения встречаются в виде примесей к природным соединениям серы с металлами и . Поэтому селен получают из отходов, образующихся при производстве серной кислоты, при электролитическом рафинировании меди и при некоторых других процессах.

Теллур принадлежит к числу редких элементов: содержание его в земной коре составляет всего .

В свободном состоянии селен, подобно сере, образует несколько аллотропических видоизменений, из которых наиболее известны аморфный селен, представляющий собой красно-бурый порошок, и серый селен, образующий хрупкие кристаллы с металлическим блеском.

Теллур тоже известен в виде аморфной модификации и в виде кристаллов светло-серого цвета, обладающих металлическим блеском.

Селен - типичный полупроводник (см. § 190). Важным свойством его как полупроводника является резкое увеличение электрической проводимости при освещении. На границе селена с металлическим проводником образуется запорный слой - участок цепи, способный пропускать электрический ток только в одном направлении. В связи с этими свойствами селен применяется в полупроводниковой технике для изготовления выпрямителей и фотоэлементов с запорным слоем. Теллур - тоже полупроводник, но его применение более ограничено. Селениды и теллуриды некоторых металлов также обладают полупроводниковыми свойствами и применяются в электронике. В небольших количествах теллур служит легирующей добавкой к свинцу, улучшая его механические свойства.

Селеноводород и теллуроводород представляют собой бесцветные газы с отвратительным запахом. Водные растворы их являются кислотами, константы диссоциации которых несколько больше, чем константа диссоциации сероводорода.

В химическом отношении селеноводород и теллуроводород чрезвычайно похожи на сероводород. Как и сероводород, они в сильной степени обладают восстановительными свойствами. При нагревании оба они разлагаются. При этом менее стоек, чем : подобно тому, как это происходит в ряду галогеноводородов, прочность молекул уменьшается при переходе . Соли селеноводорода и теллуроводорода - селениды и теллуриды - сходны с сульфидами в отношении растворимости в воде и кислотах. Действуя на селениды и теллуриды сильными кислотами, можно получить селеноводород и теллуроводород.

При сжигании селена и теллура на воздухе или в кислороде получаются диоксиды и , находящиеся при обычных условиях в твердом состоянии и являющиеся ангидридами селенистой и теллуристой кислот.

В отличие от диоксида серы, и проявляют преимущественно окислительные свойства, легко восстанавливаясь до свободных селена и теллура, например:

Действием сильных окислителей диоксиды селена и теллура могут быть переведены соответственно в селеновую и теллуровую кислоты.

ХАЛЬКОГЕНЫ
ПОДГРУППА VIA. ХАЛЬКОГЕНЫ
КИСЛОРОД
Элемент кислород O восьмой элемент периодической системы элементов и первый элемент подгруппы VIA (табл. 7а). Этот элемент наиболее распространен в земной коре, составляя около 50% (масс.). В воздухе, которым мы дышим, находится ХАЛЬКОГЕНЫ20% кислорода в свободном (несвязанном) состоянии, и 88% кислорода находится в гидросфере в связанном состоянии в виде воды H2O.
Наиболее распространен изотоп 168O. Ядро такого изотопа содержит 8 протонов и 8 нейтронов. Существенно менее распространен (0,2%) изотоп c 10 нейтронами, 188O. Еще менее распространен (0,04%) изотоп с 9 нейтронами, 178O. Средневзвешенная масса всех изотопов равна 16,044. Так как атомная масса изотопа углерода с массовым числом 12 равно точно 12,000 и все другие атомные массы основаны на этом стандарте, то атомная масса кислорода по этому стандарту должна быть равна 15,9994.
Кислород двухатомный газ, как водород, азот и галогены фтор, хлор (бром и иод тоже образуют двухатомные молекулы, но они не газы). Большую часть кислорода, используемого в промышленности, получают из атмосферы. Для этого разработаны относительно недорогие методы сжижения химически очищенного воздуха с помощью циклов сжатия и охлаждения. Сжиженный воздух медленно нагревают, при этом более летучие и легко испаряемые соединения выделяются, а жидкий кислород накапливается. Такой метод называется фракционной перегонкой или ректификацией жидкого воздуха. При этом неизбежно загрязнение кислорода примесью азота, и для получения высокочистого кислорода процесс ректификации повторяют до полного удаления азота.
См. также ВОЗДУХ .
При температуре 182,96° С и давлении 1 атм кислород из бесцветного газа превращается в жидкость бледноголубого цвета. Наличие окраски свидетельствует о том, что вещество содержит молекулы с неспаренными электронами. При 218,7° C кислород твердеет. Газообразный О2 в 1,105 раз тяжелее воздуха, и при 0° C и 1 атм 1 л кислорода имеет массу 1,429 г. Газ слабо растворим в воде (ХАЛЬКОГЕНЫ0,30 см 3/л при 20° C), но это важно для существования жизни в воде. Большие массы кислорода используют в сталелитейной промышленности для быстрого удаления нежелательных примесей, прежде всего углерода, серы и фосфора, в виде оксидов в процессе обдувки или непосредственно продувкой кислорода через расплав. Одно из важных применений жидкого кислорода в качестве окислителя ракетного топлива. Кислород, хранящийся в баллонах, применяют в медицине для обогащения воздуха кислородом, а также в технике при сварке и резке металлов.
Образование оксидов. Металлы и неметаллы реагируют с кислородом с образованием оксидов. Реакции могут происходить с выделением большого количества энергии и сопровождаться сильным свечением, вспышкой, горением. Свет фотовспышки образуется при окислении алюминиевой или магниевой фольги или проволоки. Если при окислении образуются газы, то в результате выделения тепла реакции они расширяются и могут стать причиной взрыва. Не все элементы реагируют с кислородом с выделением тепла. Оксиды азота, например, образуются с поглощением тепла. Кислород реагирует с элементами, образуя оксиды соответствующих элементов а) в обычной либо б) в высокой степени окисления. Дерево, бумага и многие природные вещества или органические продукты, содержащие углерод и водород, сгорают по типу (а), образуя, например, CO, или по типу (б), образуя CO2.
Озон. Кроме атомарного (одноатомного) кислорода O и молекулярного (двухатомного) кислорода O2 существует озон вещество, молекулы которого состоят из трех атомов кислорода O3. Эти формы являются аллотропными модификациями. Пропуская тихий электрический разряд через сухой кислород, получают озон:
3O2 2O3 Озон обладает резким раздражающим запахом и часто обнаруживается вблизи электрических двигателей или генераторов тока. Озон при тех же температурах химически более активен, чем кислород. Он обычно реагирует с образованием оксидов и выделением свободного кислорода, например: Hg + O3 -> HgO + O2 Озон эффективен для очистки (дезинфекции) воды, для отбеливания тканей, крахмала, очистки масел, при сушке и выдержке древесины и чая, в производстве ванилина и камфоры. См. КИСЛОРОД .
СЕРА, СЕЛЕН, ТЕЛЛУР, ПОЛОНИЙ
При переходе от кислорода к полонию в подгруппе VIA изменение свойств от неметаллических к металлическим выражено слабее, чем у элементов подгруппы VA. Электронное строение ns2np4 халькогенов предполагает скорее прием электронов, чем их отдачу. Частичное оттягивание электронов от активного металла к халькогену возможно с образованием соединения с частично ионным характером связи, однако не такой степени ионности, как аналогичное соединение с кислородом. Тяжелые металлы образуют халькогениды с ковалентной связью, соединения окрашены и совершенно нерастворимы.
Молекулярные формы. Образование октета электронов вокруг каждого атома выполняется в элементном состоянии за счет электронов соседних атомов. В результате, например, в случае серы получается циклическая молекула S8, построенная по типу короны. Между молекулами прочной связи нет, поэтому сера при невысоких температурах плавится, кипит и испаряется. Аналогичные строение и набор свойств имеет селен, образующий молекулу Se8; теллур, возможно, образует цепочки Te8, но эта структура точно не установлена. Не ясна также и молекулярная структура полония. Сложность строения молекул определяет различные формы их существования в твердом, жидком и газообразном состоянии (аллотропия) это свойство, очевидно, является отличительной особенностью халькогенов среди других групп элементов. Наиболее устойчивой формой серы является a-форма, или ромбическая сера; вторая метастабильная форма b, или моноклинная сера, которая может превращаться в a-серу при хранении. Другие модификации серы приведены на схеме:

A-Cера и b-сера растворимы в CS2. Известны и другие формы серы. m-Форма вязкая жидкость, вероятно, образуется из структуры "корона", чем и объясняется ее резиноподобное состояние. При резком охлаждении или конденсации паров серы образуется порошковая сера, которую называют "серный цвет". Пары, а также пурпуровый порошок, получаемый резким охлаждением паров, по результатам исследований в магнитном поле, содержит неспаренные электроны. Для Se и Te аллотропия менее характерна, но имеет общее сходство с серой, причем модификации селена аналогичны модификациям серы.
Реакционная способность. Все элементы VIA подгруппы реагируют с одноэлектронными донорами (щелочные металлы, водород, метильный радикал ЧCH3), образуя соединения состава RMR, т.е. проявляя координационное число 2, например, HSH, CH3SCH3, NaSNa и ClSCl. Шесть валентных электронов координируются вокруг атома халькогена, два на валентной s-оболочке и четыре на валентной p-оболочке. Эти электроны могут участвовать в образовании связи с более сильным акцептором электронов (например, кислородом), который оттягивает их с образованием молекул и ионов. Таким образом, эти халькогены проявляют степени окисления II, IV, VI, образуя преимущественно ковалентные связи. В семействе халькогенов проявление степени окисления VI ослабевает с увеличением атомного номера, так как электронная пара ns2 все слабее участвует в образовании связей у более тяжелых элементов (эффект инертной пары). К соединениям с такими степенями окисления относятся SO и H2SO2 для серы(II); SO2 и H2SO3 для серы(IV); SO3 и H2SO4 для серы(IV). Аналогичные составы имеют соединения и других халькогенов, хотя есть некоторые различия. Сравнительно немного существует и нечетных степеней окисления. Методы извлечения свободных элементов из природного сырья различны для разных халькогенов. Известны большие месторождения свободной серы в горных породах, в отличие от незначительных количеств других халькогенов в свободном состоянии. Осадочную серу можно добывать геотехнологическим методом (фраш-процесс): перегретую воду или пар закачивают по внутренней трубе для плавления серы, затем расплавленную серу сжатым воздухом выдавливают на поверхность через внешнюю концентрическую трубу. Таким способом получают чистую дешевую серу на месторождениях в Луизиане и под Мексиканским заливом у побережья Техаса. Селен и теллур извлекают из газовых выбросов металлургии меди, цинка и свинца, а также из шламов электрометаллургии серебра и свинца. Некоторые заводы, на которых концентрируется селен, становятся источниками отравления животного мира. Свободная сера находит большое применение в сельском хозяйстве как порошковый фунгицид. Только в США около 5,1 млн т. серы используется ежегодно для различных процессов и химических технологий. Много серы расходуется в производстве серной кислоты.
Отдельные классы соединений халькогенов, особенно галогениды, сильно различаются по свойствам.
Водородные соединения. Водород медленно реагирует с халькогенами, образуя гидриды H2M. Существует большая разница между водой (гидрид кислорода) и гидридами других халькогенов, которые обладают отвратительным запахом и ядовиты, а их водные растворы представляют собой слабые кислоты (самая сильная из них H2Te). Металлы непосредственно реагируют с халькогенами с образованием халькогенидов (например, сульфид натрия Na2S, сульфид калия K2S). Сера в водных растворах этих сульфидов образует полисульфиды (например, Na2Sx). Гидриды халькогенов могут быть вытеснены из подкисленных растворов сульфидов металлов. Так, из подкисленных растворов Na2Sx выделяются сульфаны H2Sx (где x может быть больше 50; однако изучены только сульфаны с x Ј 6).
Галогениды. Халькогены непосредственно реагируют с галогенами, образуя галогениды различного состава. Ассортимент реагирующих галогенов и устойчивость образующихся соединений зависит от соотношения радиусов халькогена и галогена. Возможность образования галогенида с высокой степенью окисления халькогена убывает с увеличением атомной массы галогена, так как галогенид-ион будет окисляться до галогена, а халькоген восстанавливаться до свободного халькогена или галогенида халькогена в низкой степени окисления, например: TeI6 -> TeI4 + I2 Степень окисления I для серы, возможно, реализуется в соединении (SCl)2 или S2Cl2 (этот состав установлен недостаточно надежно). Наиболее необычным из галогенидов серы является SF6, отличающийся высокой инертностью. Сера в этом соединении настолько прочно экранирована атомами фтора, что даже наиболее агрессивные вещества практически не действуют на SF6. Из табл. 7б следует, что сера и селен не образуют иодидов.
Известны комплексные галогениды халькогенов, которые образуются при взаимодействии галогенида халькогена с галогенид-ионами, например,
TeCl4 + 2Cl= TeCl62.
Оксиды и оксокислоты. Оксиды халькогенов образуются при прямом взаимодействии с кислородом. Сера сгорает на воздухе или в кислороде с образованием SO2 и примеси SO3. Для получения SO3 используют другие методы. При взаимодействии SO2 с серой возможно образование SO. Селен и теллур образуют аналогичные оксиды, но они имеют существенно меньшее значение на практике. Электрические свойства оксидов селена и, особенно, чистого селена определяют рост их практического применения в электронике и электротехнической промышленности. Сплавы железа с селеном являются полупроводниками и применяются для изготовления выпрямителей. Поскольку проводимость селена зависит от освещенности и температуры, это свойство используется при изготовлении фотоэлементов и температурных датчиков. Триоксиды известны для всех элементов этой подгруппы, кроме полония. Каталитическое окисление SO2 до SO3 лежит в основе промышленного получения серной кислоты. Твердый SO3 имеет аллотропические модификации: перьевидные кристаллы, асбестоподобную структуру, льдоподобную структуру и полимерную циклическую (SO3)3. Селен и теллур растворяются в жидком SO3, образуя межхалькогенные соединения типа SeSO3 и TeSO3. Получение SeO3 и TeO3 сопряжено с определенными трудностями. SeO3 получают из газовой смеси Se и O2 в разрядной трубке, а TeO3 образуется при интенсивной дегидратации H6TeO6. Упомянутые оксиды гидролизуются или энергично реагируют с водой, образуя кислоты. Наибольшее практическое значение имеет серная кислота. Для ее получения применяют два процесса постоянно развивающийся контактный метод и устаревший башенный нитрозный метод (см. также СЕРА).
Серная кислота является сильной кислотой; она активно взаимодействует с водой с выделением тепла по реакции H2SO4 + H2O H3O+ + HSO4 Поэтому следует соблюдать осторожность при разбавлении концентрированной серной кислоты, так как перегрев может вызвать выброс паров из емкости с кислотой (ожоги от серной кислоты часто связаны с добавлением в нее малого количества воды). Благодаря высокому сродству к воде H2SO4 (конц.) интенсивно взаимодействует с хлопковой одеждой, сахаром и живыми тканями человека, отнимая воду. Огромные количества кислоты используют для поверхностной обработки металлов, в сельском хозяйстве для получения суперфосфата (см. также ФОСФОР), при переработке сырой нефти до стадии ректификации, в технологии полимеров, красителей, в фармацевтической промышленности и многих других отраслях. Серная кислота наиболее важное неорганическое соединение с промышленной точки зрения. Оксокислоты халькогенов приведены в табл. 7в. Следует отметить, что некоторые кислоты существуют только в растворе, другие только в виде солей.
Среди остальных оксокислот серы важное место в промышленности занимает сернистая кислота H2SO3, образующаяся при растворении SO2 в воде слабая кислота, существующая только в водных растворах. Ее соли достаточно стабильны. Кислота и ее соли являются восстановителями и используются как "антихлораторы" для удаления избыточного хлора из отбеливателя. Тиосерная кислота и ее соли применяются в фотографии для удаления избытка непрореагировавшего AgBr из фотопленки: AgBr + S2O32 []+ Br
Название "гипосульфит натрия" для натриевой соли тиосерной кислоты является неудачным, правильное название "тиосульфат" отражает структурную связь этой кислоты с серной кислотой, в которой один атом негидратированного кислорода замещен на атом серы ("тио"). Политионовые кислоты представляют интересный класс соединений, в котoром образуется цепочка атомов серы, расположенная между двумя группами SO3. Имеется много данных о производных H2S2O6, но политионовые кислоты могут содержать и большое число атомов серы. Пероксокислоты важны не только как окислители, но и как промежуточные соединения для получения пероксида водорода. Пероксодисерная кислота получается при электролитическом окислении иона HSO4на холоду. Пероксосерная кислота образуется при гидролизе пероксодисерной кислоты: 2HSO4 -> H2S2O8 + 2e
H2S2O8 + H2O -> H2SO5 + H2SO4 Ассортимент кислот селена и теллура существенно меньше. Селенистая кислота H2SeO3 получается при испарении воды из раствора SeO2. Она является окислителем в отличие от сернистой кислоты H2SO3 (восстановитель) и легко окисляет галогениды до галогенов. Электронная пара 4s2 селена неактивно участвует в образовании связи (эффект инертной пары; см. выше в разделе о реакционной способности серы), и поэтому селен легко переходит в элементное состояние. Селеновая кислота по той же причине легко разлагается с образованием H2SeO3 и Se. Атом Te имеет больший радиус и поэтому малоэффективен при образовании двойных связей. Поэтому теллуровая кислота не существует в обычной форме


а 6 гидроксогрупп координируются теллуром с образованием H6TeO6, или Te(OH)6.
Оксогалогениды. Оксокислоты и оксиды халькогенов реагируют с галогенами и PX5, образуя оксогалогениды состава MOX2 и MO2X2. Например, SO2 реагирует с PCl5, образуя SOCl2 (тионилхлорид):
PCl5 + SO2 -> POCl3 + SOCl2
Cоответствующий фторид SOF2 образуется при взаимодействии SOCl2 и SbF3, а тионилбромид SOBr2 из SOCl2 и HBr. Сульфурилхлорид SO2Cl2 получается при хлорировании хлором SO2 (в присутствии камфоры), аналогично получают сульфурилфторид SO2F2. Хлорофторид SO2ClF образуется из SO2Cl2, SbF3 и SbCl3. Хлорсульфоновая кислота HOSO2Cl получается при пропускании хлора через дымящую серную кислоту. Аналогично образуется и фторсульфоновая кислота. Известны также оксогалогениды селена SeOCl2, SeOF2, SeOBr2.
Азот- и серусодержащие соединения. Сера образует разные соединения с азотом, многие из которых мало изучены. При обработке S2Cl2 аммиаком образуется N4S4 (тетранитрид тетрасеры), S7HN (имид гептасеры) и другие соединения. Молекулы S7HN построены как циклическая молекула S8, в которой один атом серы замещен на азот. N4S4 образуется также из серы и аммиака. Он превращается в тетраимид тетрасеры S4N4H4 при действии олова и хлороводородной кислоты. Промышленное значение имеет другое азотпроизводное сульфаминовая кислота NH2SO3H белое, негигроскопичное кристаллическое вещество. Она получается при взаимодействии мочевины или аммиака с дымящей серной кислотой. Эта кислота по силе близка к серной кислоте. Ее аммониевая соль NH4SO3NH2 используется как ингибитор горения, а соли щелочных металлов как гербициды.
Полоний. Несмотря на ограниченное количество полония, химия этого последнего элемента подгруппы VIA изучена относительно неплохо благодаря использованию его свойства радиоактивности (обычно в химических реакциях он смешивается с теллуром как носителем или сопутствующим реагентом). Период полураспада наиболее устойчивого изотопа 210Po составляет всего 138,7 сут, поэтому понятны трудности его изучения. Для получения 1 г Po требуется переработать более 11,3 т урановой смолки. 210Po можно получить нейтронной бомбардировкой 209Bi, который сначала переходит в 210Bi, а затем выбрасывает b-частицу, образуя 210Po. По-видимому, полоний проявляет такие же степени окисления, как и другие халькогены. Синтезированы гидрид полония H2Po, оксид PoO2, известны соли со степенями окисления II и IV. Очевидно, PoO3 не существует.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ХАЛЬКОГЕНЫ" в других словарях:

    ХАЛЬКОГЕНЫ, химические элементы VI группы периодической системы: кислород, сера, селен, теллур. Соединения халькогенов с более электроположительными химическими элементами халькогениды (оксиды, сульфиды, селениды, теллуриды) … Современная энциклопедия

    Химические элементы VI группы Периодической системы кислород, сера, селен, теллур … Большой Энциклопедический словарь

    Группа → 16 ↓ Период 2 8 Кислород … Википедия

    Химические элементы VI группы периодической системы кислород, сера, селен, теллур. * * * ХАЛЬКОГЕНЫ ХАЛЬКОГЕНЫ, химические элементы VI группы Периодической системы кислород, сера, селен, теллур … Энциклопедический словарь

    халькогены - chalkogenai statusas T sritis chemija apibrėžtis S, Se, Te, (Po). atitikmenys: angl. chalcogens rus. халькогены … Chemijos terminų aiškinamasis žodynas

    Хим. элементы VIa гр. периодич. системы: кислород О, сераS, селен Se, теллур Те, полонийPo. Внеш. электронная оболочка атомов X. имеет конфигурацию s2p4. С увеличением ат. н. возрастают ковалентные и ионные радиусы X, уменьшаются энергия… … Химическая энциклопедия

Соединения со степенью окисления –2. H 2 Se и H 2 Te - бесцветные газы с отвратительным запахом, растворимые в воде. В ряду H 2 О - H 2 S - H 2 Se - H 2 Te устойчивость молекул падает, поэтому в водных растворах H 2 Se и H 2 Te ведут себя как двухосновные кислоты более сильные, чем сероводородная кислота. Образуют соли - селениды и теллуриды. Теллуро- и селеноводород, а также их соли чрезвычайно ядовиты. Селениды и теллуриды по свойствам аналогичны сульфидам. Среди них имеются основные (K 2 Se, K 2 Te), амфотерные (Al 2 Se 3 , Al 2 Te 3) и кислотные соединения (CSe 2 , CTe 2).

Na 2 Se + H 2 О NaHSe + NaOH; CSe 2 + 3H 2 О = H 2 CO 3 + 2H 2 Se

Большая группа селенидов и теллуридов – полупроводники. Наибольшее применение имеют селениды и теллуриды элементов подгруппы цинка.

Соединения со степенью окисления +4. Оксиды селена(IV) и теллура(IV) образуются при окислении простых веществ кислородом и являются твердыми полимерными соединениями. Типичные кислотные оксиды. Оксид селена(IV) растворяется в воде, образуя селенистую кислоту, которая, в отличие от H 2 SO 3 , выделена в свободном состоянии и представляет собой твердое вещество.

SeO 2 + H 2 O = H 2 SeO 3

Оксид теллура(IV) в воде нерастворим, но взаимодействует с водными растворами щелочей, образуя теллуриты.

TeO 2 + 2NaOH = Na 2 TeO 3

H 2 ТeO 3 склонен к полимеризации, поэтому при действии кислот на теллуриты выделяется осадок переменного состава ТeO 2 ·nH 2 O.

SeO 2 и TeO 2 - более сильные окислители по сравнению с SO 2:

2SO 2 + SeO 2 = Se + 2SO 3

Соединения со степенью окисления +6. Оксид селена(VI) – твердое вещество белого цвета (т.пл. 118,5 ºС, разлагается > 185 ºС), известен в стекловидной и асбестовидной модификациях. Получают действием SO 3 на селенаты:

K 2 SeO 4 + SO 3 = SeO 3 + K 2 SO 4

Оксид теллура(VI) также имеет две модификации оранжевого и желтого цвета. Получают обезвоживанием ортотеллуровой кислоты:

H 6 TeO 6 = TeO 3 + 3H 2 O

Оксиды селена(VI) и теллура(VI) - типичные кислотные оксиды. SeO 3 растворяется в воде образуя селеновую кислоту - H 2 SeO 4 . Селеновая кислота представляет собой белое кристаллическое вещество, в водных растворах - сильная кислота (К 1 = 1·10 3 , К 2 = 1,2·10 -2), обугливает органические соединения, сильный окислитель.

H 2 Se +6 O 4 + 2HCl -1 = H 2 Se +4 O 3 + Cl 2 0 + H 2 O

Соли - селенаты бария и свинца нерастворимы в воде.

TeO 3 в воде практически нерастворим, но взаимодействует с водными растворами щелочей, образуя соли теллуровой кислоты - теллураты.

TeO 3 + 2NaOH = Na 2 TeO 4 + H 2 O

При действии на растворы теллуратов соляной кислоты выделяется ортотеллуровая кислота - H 6 TeO 6 – белое кристаллическое вещество хорошо растворимое в горячей воде. Обезвоживанием H 6 TeO 6 можно получить теллуровую кислоту. Теллуровая кислота очень слабая, К 1 = 2·10 -8 , К 2 = 5·10 -11 .

Na 2 TeO 4 + 2HCl + 2H 2 O = H 6 TeO 6 + 2NaCl; H 6 TeO 6 ¾® H 2 TeO 4 + 2H 2 O.

Соединения селена токсичны для растений и животных, соединения теллура значительно менее ядовиты. Отравление соединениями селена и теллура сопровождается появлением у пострадавшего устойчивого отвратительного запаха.

Литература: с. 359 - 383, с. 425 - 435, с. 297 - 328