Неметаллы и их роль в составе живого. Учебный проект "неметаллы в нашей жизни"

Это определение оставляет в стороне элементы VIII группы главной подгруппы - инертные или благородные газы, атомы которых имеют завершенный внешний электронный слой. Электронная конфигурация атомов этих элементов такова, что их нельзя отнести ни к металлам, ни к неметаллам. Они являются теми объектами, которые в естественной системе четко разделяют элементы на металлы и неметаллы, занимая между ними пограничное положение. Инертные или благородные газы («благородство» выражается в инертности) иногда относят к неметаллам, но чисто формально, по физическим признакам. Эти вещества сохраняют газообразное состояние вплоть до очень низких температур.

Инертность в химическом отношении у этих элементов относительна. Для ксенона и криптона известны соединения с фтором и кислородом . Несомненно, в образовании этих соединений инертные газы выступали в роли восстановителей.

Из определения неметаллов следует, что для их атомов характерны высокие значения электроотрнцательности. Оиа изменяется в пределах от 2 до 4. Неметаллы - это элементы главных подгрупп, преимущественно р элементы, исключение составляет водород - s-элемент.
Все элементы-неметаллы (кроме водорода) занимают в Периодической системе химических элементов Д. И. Менделеева верхний правый угол, образуя треугольник, вершиной которого является фтор.

Однако следует особо остановиться на двойственном положении водорода в Периодической системе: в I и VII группах главных подгрупп. Это не случайно. С одной стороны, атом водорода, подобно атомам щелочных металлов , имеет на внешнем (и единственном для него) электронном слое один электрон (электронная конфигурация 1s1), который он способен отдавать, проявляя свойства восстановителя.

В большинстве своих соединений водород, как и щелочные металлы, проявляет степень окисления +1, Но отдача электрона атомом водорода происходит труднее, чем у атомов щелочных металлов. С другой стороны, атому водорода, как и атомам галогенов, для завершения внешнего электронного слоя недостает одного электрона, поэтому атом водорода может принимать один электрон, проявляя свойства окислителя и характерную для галогена степень окисления -1 в гидридах - соединениях с металлами, подобных соединениям металлов с галогенами - галогенидам. Но присоединение одного электрона к атому водорода происходит труднее, чем у галогенов.

При обычных условиях водород Н2 - газ. Его молекула, подобно галогенам , двухатомна.

У атомов неметаллов преобладают окислительные свойства, то есть способность присоединять электроны. Эту способность характеризует значение электроотрицательности, которая закономерно изменяется в периодах и подгруппах (рис. 47).

Фтор - самый сильный окислитель, его атомы в химических реакциях не способны отдавать электроны, то есть проявлять восстановительные свойства.

Конфигурация внешнего электронного слоя

Другие неметаллы могут проявлять восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами; в периодах и подгруппах их восстановительная способность изменяется в обратном порядке по сравнению с окислительной.

Химических элементов-неметаллов всего 161 Совсем немного, если учесть, что известно 114 элементов. Два элемента-неметалла составляют 76% от массы земной коры. Это кислород (49%) и кремний (27%). В атмосфере всодержнтся 0,03% от массы кислорода в земной коре. Неметаллы составляют 98,5% от массы растений, 97,6% от массы тела человека. Шесть неметаллов - С, Н, О, N, Р и S - биогенные элементы, которые образуют важнейшие органические вещества живой клетки: белки, жиры, углеводы, нуклеиновые кислоты. В состав воздуха, которым мы дышим, входят простые и сложные вещества, также образованные элемента ми-неметаллами (кислород О2, азот, углекислый газ СО2, водяные пары Н2О и др.).

Водород - главный элемент Вселенной. Многие космические объекты (газовые облака, звезды, в том числе и Солнце) более чем наполовину состоят из водорода. На Земле его, включая атмосферу, гидросферу и литосферу, только 0,88%. Но это по массе, а атомная масса водорода очень мала. Поэтому небольшое содержание его только кажущееся, и из каждых 100 атомов на Земле 17 - атомы водорода.

Простые вещества-неметаллы. Строение. Физические свойства

В простых веществах атомы неметаллов связаны кова-лентнон неполярной связью. Благодаря этому формируется более устойчивая электронная система, чем у изолированных атомов. При этом образуются одинарные (например, в молекулах водорода Н2, галогенов Ки, Вг2), двойные (например, в молекулах серы тронные (например, в молекулах азота ковалентные связи.

Как вам уже известно, простые вещества-неметаллы могут иметь:

1. Молекулярное строение. При обычных условиях большинство таких веществ представляют собой газы или твердые вещества и лишь единственный бром (Вг2) является жидкостью. Все эти вещества молекулярного строения, поэтому летучи. В твердом состоянии они легкоплавки из-за слабого межмолекулярвого взаимодействия, удерживающего их молекулы в кристалле, и способны к возгонке.

2. Атомное строение. Эти вещества образованы длинными цепями атомов. Из-за большой прочности ковалентных связей они, как правило, имеют высокую твердость, и любые изменения, связанные с разрушением ко-валентной связи в их кристаллах (плавление, испарение), совершаются с большой затратой энергии. Многие такие вещества имеют высокие температуры плавления и кипения, а летучесть их весьма мала. (На рисунке 47 подчеркнуты символы тех элементов-неметаллов, которые образуют только атомные кристаллические решетки.)

Многие элементы-неметаллы образуют несколько простых веществ - аллотропных модификаций. Как вы помните, это свойство атомов называют аллотропией. Аллотропия может быть связана и с разным составом молекул, и с разным строением кристаллов. Аллотропными модификациями углерода являются графит, алмаз, карбин, фуллерен (рис. 48).


Элементы-неметаллы, обладающие свойством аллотропии, обозначены на рисунке 47 звездочкой. Так что простых веществ-неметаллов гораздо больше, чем химических элементов- неметаллов.

Вы знаете, что дли большинства металлов, за редким исключением (золото , медь и некоторые другие), характерна серебристо-белая окраска. А вот у простых веществ-неметаллов гамма цветов значительно разнообразнее.

Несмотря на большие различия в физических свойствах неметаллов, все-таки нужно отметить и некоторые их общие черты. Все газообразные вещества, жидкий бром, а также типичные ковалентные кристаллы - диэлектрики, так как все внешние электроны их атомов использованы для образования химических связей. Кристаллы непластичны, и любая дефор-мация вызывает разрушение ковалентных связей. Большинство неметаллов не имеют металлического блеска.

Химические свойства

Как мы уже отмечали, для атомов неметаллов, а следовательно, и для образованных ими простых веществ характерны как окислительные, так и восстановительные свойства.

Окислительные свойства простых веществ неметаллов

1. Окислительные свойства неметаллов проявляются в первую очередь при их взаимодействии с металлами (как вы знаете, металлы всегда восстановители):


Окислительные свойства хлора Сl2 выражены сильнее, чем у серы, поэтому и металл Ре, который имеет в соединениях устойчивые степени окислеиия +2 b +3. окисляется им до более высокой степени окисления.

2. Большинство неметаллов проявляют окислительные свойства при взаимодействии с водородом. В результате образуются летучие водородные соединения.

3. Любой неметалл выступает в роли окислителя в реакциях с теми неметаллами, которые имеют более низкое значение элек-троотрицател ьности:

Электроотрицательность серы больше, чем у фосфора, поэтому она здесь проявляет окислительные свойства.

Электроотрицательность фтора больше, чем у всех остальных химических элементов, поэтому он проявляет свойства окислителя.
Фтор самый сильный окислитель из неметаллов, проявляет в реакциях только окислительные свойства.

4. Окислительные свойства неметаллы проявляют и в реакциях с некоторыми сложными веществами. Не только кислород, но и другие неметаллы также могут быть окислителями в реакциях со сложными веществами -неорганическими и органическими.

Сильный окислитель хлор Сl2 окисляет хлорид железа (II) в хлорид железа(III).

Вы помните, конечно, качественную реакцию на непредельные соединении - обесцвечивание бромной воды.

Восстановительные свойства простых веществ - неметаллов

При рассмотрении реакции неметаллов друг с другом мы уже отмечали, что в зависимости от значений их электроотрицательности одни из них проявляет свойства окислителя, а другой - свойства восстановителя.

1. По отношению к фтору все неметаллы (даже кислород) проявляют восстановительные свойства.
2. Разумеется, неметаллы, кроме фтора, служит восстановителями при взаимодействии с кислородом:


8 Многие неметеллы могут выступать в роли восстановителя в реакциях со сложными веществами окислителями:


Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем, в восстановителем, это реакции самоокисления-самовосстановления.

Итак, подведем итоги! Большинство неметаллов могут выступал в химических реакциях как в роли окислителя, так и в роли восстановителя (восстановительные свойства не присущи одному только фтору).

Водородные соединения неметаллов

Общим свойством всех неметаллов является образование летучих водородных соединений, в большинстве которых неметалл имеет низшую степень окисления .


Известно, что наиболее просто эти соединения можно получить непосредственно взаимодействием неметаллв е водородом, то есть синтезом.

Вм водородные соединении неметаллов обдоэоьаны коналентны-ми полярными свялямн, имеют молекулярное строение и при обычных условиях является газами, кроме воды (жидкость). Лла водородных соединений неметаллов характерно рвалнчное отношение к воде. Метай и енлан в ней практмческя нерастворимы. Аммиак при расстворении в воде образует слябое основание - гидрат аммиака.

Кроме рассмотренных свойств, водородные соединения неметаллов в окислительно-восстановительных реакциях всегда проявляют свойства восстановителен, ведь в них неметалл имеет низшую степень окисления.

Оксиды неметаллов и соответствующие им гидроксиды

В оксидах неметаллов связь между атомами ковалентная полярная. Среди оксидов молекулярного строения есть газообразные, жидкие (летучие), твердые (летучие).

Оксиды неметаллов делят на две группы: несолеобразующие и голеобразующие. При растворении кислотных оксидов в воде образуются гидраты оксидов - гидроксиды, по своему характеру являющиеся кислотами. Кислоты и кислотные оксиды в результате химических реакций образуют соли, в которых неметалл сохраняет степень окисления.

Оксиды и соответствующие им гидроксиды - кислоты, в которых неметалл проявляет степень окисления, равную номеру группы, то есть высшее ее значение, называют высшими. При рассмотрении Периодического закона мы уже характеризовали их состав и свойства.

усиление кислотных свойств оксидов и шдронепдоп В пределах одной главной подгруппы, например, VI группы действует следующая закономерность изменения свойств высших оксидов и гидроксидов.

Если неметалл образует два или более кислотных оксидов, а значит, и соответствующих кислородсодержащих кислот, то их кислотные свойства усиливаются с увеличением степени оксиления неметалла.

Оксиды и кислоты, в которых неметалл имеет высшую степень окисления, могут чроявлять только окислительные свойства.

Оксиды и кислоты, где неметалл имеет промежуточную степень окисления, могут проявлять и окислительные, и восстановительные свойства.

Практические задания

1. К каким электронным семействам откосят элементы-неметаллы?
2. Какие элементы-неметаллы являются биогенными?
3. Какие факторы определяют валентные возможности ато-ыов неметаллов? Рассмотрите их на примере атомов кислорода и серы.
4. Почему одни неметаллы при обычных условиях - газы, другие - твердые тугоплавкие вещества? 5. Приведите примеры простых веществ-неметаллов, существующих при обычных условиях в разном агрегатном состоянии: а) газообразном, б) жидком, в) твердом.
6. Составьте уравнения окислительно-восстановительных реакций с участием неметаллов. Какие свойство (окислительные или восстановительные) проявляют в этих реакциях неметаллы?


По какой причине очень сильно различаются температуры кипения воды и сероводорода, но близки между собой температуры кипения серо- и селеноводорода?
7. Почему метан устойчив на воздухе, а силен на воздухе самовозгорается: фтороводород устойчив к нагреванию, иодо-водород уже при слабом нагревании разлагается на иод и водород?
8. Напишите уравнения реакций, с помощью которых можно осуществить следующие переходы:


9. Напишите уравнения реакций, с помощью которых можно осуществить следующие переходы:

12. Через раствор, содержащий 10 г едкого натра, пропустили 20 г сероводорода. Какая соль и в какой количестве получится?
Ответ: 0.25 моль NaHS.
14. При обработке 30 г известняка соляной кислотой получилось 11 г углекислого газа. Какова массовая доля карбоната кальция в природном известняке? Ответ: 83.3%. 15. Применяемая в медицине йодная настойкп является 51% ным раствором кристаллического иода в этиловом спирте. Какой объем спирта, плотность которого 0.8 г/мл. требуется для приготовления 250 г такого раствора?
Ответ: 297 мл. 16. Смесь кремния, графита и карбоната кальция.массой 34 г обработали раствором гидроксида натрия п получили 22.4 л газа (н. у.). При обработке такой порции смеси соляной кислотой получили 2.24 л газа (н. у.). Определите массовый состав смеси.
Ответ: 14 г 81: 10 г С; 10 г СаСО2.
17. Газообразный аммиак объемом 2.24 л (н. у.) поглощен 20 г раствора фосфорной кислоты с массовой долей 49%. Какая соль образовалась, какова ее масса?
Ответ: 11,5г
19. Какой объем аммиака требуется для получения 6,3 т азотной кислоты, считая потери в производстве равными 5%?
Ответ: 2352 м3.
20. Из природного газа объемом 300 л (н. у.) с объемной долей метана в газе 96% получили ацетилен. Определите его объем, если выход продукта 65%.
Ответ: 93.6 л.
21. Определите структурную формулу углеводорода с плотностью паров по воздуху 1,862 и массовой долей углерода 88,9%. Известно, что углеводород взаимодействует с аммиачным раствором оксида серебра.

Роль неметаллов в жизни человека

Неметаллы в жизни человека играют огромную роль, так как без них невозможна жизнь не только человека, но и других живых организмов. Ведь благодаря таким неметаллическим элементам, как кислород, углерод, водород и азот, образуются аминокислоты, из которых затем образуются белки, без чего не может существовать все живое на Земле.

Давайте внимательно рассмотрим картинку внизу, на которой представлены основные неметаллы:



А теперь давайте рассмотрим некоторые неметаллы более подробно и узнаем их значение, которое они играют в жизни человека и в его организме.

Полноценная жизнь человека зависит от воздуха, которым он дышит, а в воздухе содержатся неметаллы и соединения между ними. Обеспечением важнейших функций нашего организма, занимается кислород, а азот и другие газообразные вещества его разбавляют, и тем самым защищают наши дыхательные пути. Ведь, с курса биологий вам уже известно, что все защитные функции организма тесно связаны с наличием кислорода.

От проникновения губительного УФ излучения, на защиту нашего организма становиться озон.

Такой необходимый микроэлемент, как сера, в организме человека выступает в роли минерала красоты, так как благодаря ней, кожа, ногти и волосы, будут оставаться здоровыми. Также, не стоит забывать, что сера принимает участие в формировании хрящевой и костных тканей, помогает улучшить работу суставов, укрепляет нашу мышечную ткань и выполняет еще много других функций, которые очень важны для здоровья человека.

Анионы хлора также играют важную биологическую роль для человека, так как принимают участие в активизации некоторых ферментов. С их помощью поддерживается благоприятная среда в желудке и поддерживается осмотическое давление. Хлор, как правило, попадает в организм человека, благодаря поваренной соли при приеме пищи.

Помимо важных качеств, которые неметаллы оказывают на человеческий организм, и другие живые организмы, эти вещества применяют и в других различных отраслях.

Применение неметаллов

Водород

Такая разновидность неметаллов, как водород, широко применяется в химической промышленности. Его используют для синтеза аммиака, метанола, хлороводорода, а также для гидрогенизации жиров. Также, не обойтись без участия водорода, в качестве восстановителя и при производстве многих металлов и их соединений.

Широко применяется водород и в медицине. При обработке ран и для остановки мелких кровотечений используют трех процентный раствор перекиси водорода.

Хлор

Для производства соляной кислоты, каучука, винилхлорида, пластмасс, а также и многих органических веществ, применяют хлор. Его используют в таких промышленностях, как текстильная и бумажная, в качестве отбеливающего средства. На бытовом уровне, хлор незаменим для обеззараживания питьевой воды, так как, обладая окислительными свойствами, он имеет сильное дезинфицирующее действие. Такими же свойствами обладают и хлорная вода, и известь.

В медицинских целях, как правило, в качестве физраствора, используется хлорид натрия. На его основе производят многие водорастворимые лекарства.

Сера

Такой неметалл, как сера, используют для производства серной кислоты, пороха, спичек. Также он применяется при вулканизации каучука. Ее применяют в производстве красителей и люминофоров. А коллоидная сера необходима в медицине.

Сера нашла применение и в сельском хозяйстве. Ее используют, как фунгицид, для борьбы с различными вредителями.

В синтезе полимерных материалов, а также для изготовления различных медицинских препаратов, широкое применение получили и такие неметаллы, как йод и бром.

«Биогенные элементы в организме человека»

ВВЕДЕНИЕ

1.1 Биогенные элементы - неметаллы, входящие в состав организма человека

2 Биогенные элементы - металлы, входящие в состав организма человека

РОЛЬ КИСЛОРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

РОЛЬ УГЛЕРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

РОЛЬ ВОДОРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

РОЛЬ КАЛИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА

РОЛЬ СЕРЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА

РОЛЬ КАЛЬЦИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Мнение о том, что в организме человека можно обнаружить практически все элементы периодической системы Д.И. Менделеева, становится привычным. Однако учёные предполагают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет какую-то биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. По мере того как развиваются исследования в данном направлении, выявляется биологическая роль всё большего числа химических элементов.

Для сохранения своего здоровья человек должен обеспечивать организм сбалансированным поступлением питательных элементов с пищей, водой, вдыхаемым воздухом. Часто рекламируют продукты питания с повышенным содержанием кальция, йода и других химических элементов, но полезно ли это для нашего организма? К каким заболеваниям может привести избыток или недостаток того или иного химического элемента у детей и взрослых?

В наше время, когда здоровых людей уже с детского возраста становится всё меньше, эта проблема является действительно актуальной.

В человеческом организме непрерывно образуются невообразимое множество различных химических соединений. Часть из синтезированных соединений используется в качестве строительного материала или источника энергопитания и обеспечивает организму рост, развитие и жизнедеятельность; другая же часть, которую можно рассматривать как шлаки или отходы, выводится из организма.

В обмене веществ участвуют и неорганические и органические вещества. Химические элементы, которые образуют эти вещества, называются биогенными элементами. Достоверно биогенными считаются около 30 элементов.

На рисунке 1 представлены основные химические элементы, входящие в состав организма человека.

Рисунок 1 - Диаграмма. Элементарный состав организма человека.

1.1 Биогенные элементы - неметаллы, входящие в состав организма человека

Среди биогенных элементов особое место занимают элементы-органогены, которые образуют важнейшие вещества организма - воду, белки, углеводы, жиры, витамины, гормоны и другие. К органогенам относятся 6 химических элементов: углерод, кислород, водород, азот, фосфор, сера. Их общая массовая доля в организме человека составляет примерно 97,3% (см. таблицу 1).

Все элементы-органогены являются неметаллами. Среди неметаллов биогенными являются также хлор (массовая доля 0,15%), фтор, йод и бром. Эти элементы не включают в число элементов-органогенов, поскольку, в отличие от последних, они не играют столь универсальной роли в построении органических структур организма. Существуют данные о биогенности кремния, бора, мышьяка, селена.

Таблица 1. Содержание элементов-органогенов в организме человека.

Элементы - органогены

Массовая доля (в %)

Масса (в г / 70 кг)

углерод (С)

кислород (О)

водород (H)

фосфор (P)

68117 ≈ 68 кг


1.2 Биогенные элементы - металлы, входящие в состав организма человека

К числу биогенных элементов относится ряд металлов, среди которых особенно важные биологические функции выполняют 10 так называемых «металлов жизни». Этими металлами являются кальций, калий, натрий, магний, железо, цинк, медь, марганец, молибден, кобальт (см. таблицу 2).

Кроме 10 «металлов жизни» к числу биогенных элементов относят еще несколько металлов, например, олово, литий, хром и некоторые другие.

Таблица 2. Содержание «металлов жизни» в организме человека

Массовая доля (в %)

Масса (в г / 70 кг)

Кальций (Ca)

Натрий (Na)

Магний (Mg)

Железо (Fe)

Марганец (Mn)

Молибден (Mo)

Кобальт (Co)


В зависимости от массовой доли в организме все биогенные элементы делятся на:

а) макроэлементы (массовая доля в организме больше 10 -2 %, или больше 7г);

б) микроэлементы (массовая доля в организме меньше 10 -2 %, или меньше 7г).

К макроэлементам относятся все органогены, хлор и 4 «металла жизни»: магний, калий, кальций, натрий. Они составляют 99,5%, причем более 96% приходится на 4 элемента (углерод, кислород, водород, азот). Они являются главными компонентами всех органических соединений.

Микроэлементы содержатся в клетках в очень малых количествах. К ним относятся цинк, марганец, медь, йод, фтор и другие. Но даже те элементы, которые содержатся в ничтожно малых количествах, необходимы для жизни и ничем не могут быть заменены. Биологическая роль и функции, которые выполняют эти элементы в организме человека, очень разнообразны, а их недостаток или избыток может привести к серьезным заболеваниям (см. приложения Б и Г). Достаточно сказать, что около 200 ферментов активизируются металлами. Всего в организме человека выявлено около 70 минеральных веществ, из них 14 микроэлементов считаются незаменимыми - это железо, кобальт, медь, хром, никель, марганец, молибден, цинк, йод, олово, фтор, кремний, ванадий, селен. Многие микроэлементы поступают в организм почти исключительно за счёт плодовоовощного питания. Дикорастущие съедобные растения также богаты микроэлементами, которые, будучи извлечены из глубинных слоёв, накапливаются в листьях, цветах, плодах.

2. РОЛЬ КИСЛОРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

Главной функцией молекулярного кислорода в организме является окисление различных соединений. Вместе с водородом кислород образует воду, содержание которой в организме взрослого человека в среднем составляет около 55-65%.

Кислород входит в состав белков, нуклеиновых кислот и других жизненно-необходимых компонентов организма. Кислород необходим для дыхания, окисления жиров, белков, углеводов, аминокислот, а также для многих других биохимических процессов.

Обычный путь поступления кислорода в организм лежит через легкие, где этот биоэлемент проникает в кровь, поглощается гемоглобином и образует легко диссоциирующее соединение - оксигемоглобин, а затем из крови поступает во все органы и ткани. Кислород поступает в организм также и в связанном состоянии, в виде воды. В тканях кислород расходуется преимущественно на окисление различных веществ в процессе метаболизма. В дальнейшем почти весь кислород метаболизируется до диоксида углерода и воды, и выводится из организма через легкие и почки.

Пониженное содержание кислорода в организме.

При недостаточном снабжении тканей организма кислородом или нарушении его утилизации развиваются явления гипоксии (кислородного голодания).

Основные причины дефицита кислорода:

· прекращение или снижение поступления кислорода в легкие, пониженное парциальное давление кислорода во вдыхаемом воздухе;

· значительное уменьшение количества эритроцитов или резкое понижение содержания в них гемоглобина;

· нарушение способности гемоглобина связывать, транспортировать или отдавать тканям кислород;

· нарушение способности тканей утилизировать кислород;

· угнетение окислительно-восстановительных процессов в тканях;

· застойные явления в сосудистом русле вследствие расстройств сердечной деятельности, кровообращения и дыхания;

· эндокринопатии, авитаминозы;

Основные проявления дефицита кислорода:

· в острых случаях (при полном прекращении поступления кислорода, острых отравлениях): потеря сознания, расстройство функций высших отделов ЦНС;

· в хронических случаях: повышенная утомляемость, функциональные нарушения деятельности ЦНС, сердцебиение и одышка при незначительной физической нагрузке, снижение реактивности иммунной системы.

Токсическая доза для человека: токсичен в виде О 3 .

Повышенное содержание кислорода в организме.

Длительное повышение содержания кислорода в тканях организма (гипероксия) может сопровождаться кислородным отравлением; обычно гипероксии сопутствует повышение содержания кислорода в крови (гипероксемия).

Токсическое действие озона и избытка кислорода связывают с образованием в тканях большого числа радикалов, возникающих в результате разрыва химических связей. В небольшом количестве радикалы образуются и в норме, как промежуточный продукт клеточного метаболизма. При избытке радикалов инициируется процесс окисления органических веществ, в том числе перекисное окисление липидов, с их последующим распадом и образованием кислородосодержащих продуктов (кетоны, спирты, кислоты).

Кислород входит в состав молекул множества веществ - от самых простых до сложных полимеров; наличие в организме и взаимодействие этих веществ обеспечивает существование жизни. Являясь составной частью молекулы воды, кислород участвует практически во всех биохимических процессах протекающих в организме.

Кислород незаменим, при его недостатке эффективным средством может быть только восстановление нормального снабжения организма кислородом. Даже кратковременное (несколько минут) прекращение поступления кислорода в организм может вызвать тяжелые нарушения его функций и последующую смерть.

3. РОЛЬ УГЛЕРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

УГЛЕРОД - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода достигает около 21% (15 кг на 70 кг общей массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).

Главной функцией углерода является формирование разнообразия органических соединений, тем самым, обеспечивая биологическое разнообразие, участие во всех функциях и проявлениях живого. В биомолекулах углерод образует, полимерные цепи и прочно соединяется с водородом, кислородом, азотом и другими элементами. Столь существенная физиологическая роль углерода определяется тем, что этот элемент входит в состав всех органических соединений и принимает участие практически во всех биохимических процессах в организме. Окисление соединений углерода под действием кислорода приводит к образованию воды и углекислого газа; этот процесс служит для организма источником энергии. Двуокись углерода CO 2 (углекислый газ) образуется в процессе обмена веществ, является стимулятором дыхательного центра, играет важную роль в регуляции дыхания и кровообращения.

В свободном виде углерод не токсичен, но многие его соединения обладают значительной токсичностью. К таким соединениям следует отнести окись углерода СО (угарный газ), четыреххлористый углерод CСl 4 , сероуглерод СS 2 , соли цианистой кислоты HCN, бензол С 6 Н 6 и другие. Углекислый газ в концентрации свыше 10% вызывает ацидоз (снижение рН крови), одышку и паралич дыхательного центра.

Длительное вдыхание каменноугольной пыли может привести к антракозу, заболеванию, сопровождающемуся отложением угольной пыли в ткани легких и лимфатических узлах, склеротическими изменениями легочной ткани. Токсическое действие углеводородов и других соединений нефти у рабочих нефтедобывающей промышленности может проявиться в огрубении кожи, появлении трещин и язв, развитии хронических дерматитов.

Для человека углерод может быть токсичен в форме окиси углерода (СО) или цианидов (CN -).

4. РОЛЬ ВОДОРОДА В ОРГАНИЗМЕ ЧЕЛОВЕКА

Вода важнейшее соединение водорода в живом организме. Основные функции воды следующие:

Вода, обладающая высокой удельной теплоемкостью, обеспечивает поддержание постоянства температуры тела. При перегреве тела происходит испарение воды с его поверхности. Из-за высокой теплоты парообразования этот процесс сопровождается большими затратами энергии, в результате чего температура тела понижается. Так поддерживается тепловой баланс организма.

Вода поддерживает кислотно-основное равновесие организма. Большинство тканей и органов в основном состоят из воды. Соблюдение общего кислотно-основного баланса в организме не исключает больших различий в значениях рН для разных органов и тканей. Важным соединением водорода является пероксид водорода Н2O2 (традиционное название перекись водорода). Н2O2 окисляет липидный слой мембран клеток, разрушая его.

5. РОЛЬ КАЛИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Калий - обязательный участник многих обменных процессов. Важное значение имеет калий в поддержании автоматизма сокращения сердечной мышцы - миокарда; обеспечивает выведение ионов натрия из клеток и замену их ионами калия, что в свою очередь сопровождается выведением избыточной жидкости из организма.

По сравнению с другими продуктами калия больше всего в сушеных абрикосах, инжире, апельсинах, мандаринах, картофеле (500 г картофеля обеспечивают суточную потребность), сушеных персиках, репе, шиповнике, черной и красной смородине, бруснике, землянике, арбузах, дыне, сое, алыче, свежих огурцах, брюссельской капусте, грецких и лесных орехах, зелени петрушки, изюме, черносливе, ржаном хлебе, овсяной крупе.

Суточная потребность калия для взрослого человека 2-3 г в сутки, а для ребенка - 16-30 мг на кг массы тела. Необходимый минимум потребления калия для человека в сутки составляет около 1 г. При нормальном пищевом рационе суточная потребность в калии полностью удовлетворяется, но отмечаются еще сезонные колебания в потреблении калия. Так, весной его потребление невысоко - около 3 г/сутки, а осенью максимальное потребление - 5-6 г/сутки.

Учитывая тенденцию современных людей к употреблению с пищей большого количества поваренной соли, также возрастает и потребность в калии, который может нейтрализовать неблагоприятное влияние избытка количества натрия на организм.

Недостаток поступления калия с пищей может привести к дистрофии даже при нормальном содержании белков в рационе. Нарушение обмена калия проявляется при хронических заболеваниях почек и сердечно-сосудистой системы, при заболеваниях желудочно-кишечного тракта (особенно, сопровождающихся поносом и рвотой), при заболевании желез внутренней секреции и другой патологии.

Недостаток калия в организме проявляется, прежде всего нарушениями нервно-мышечной и сердечнососудистой систем (сонливость, нарушение движений, дрожание конечностей, замедленное сердцебиение). В лечебных целях применяются препараты калия.

Избыток калия наблюдается значительно реже, но представляет собой крайне опасное состояние: вялые параличи конечностей, изменения со стороны сердечно-сосудистой системы. Такое состояние может проявляться при выраженном обезвоживании организма, гиперкортицизме с нарушением функции почек и при введении больному большого количества калия.

Сера в организме человека - непременная составная часть клеток, тканей органов, ферментов, гормонов, в частности, инсулина важнейшего фермента поджелудочной железы и серосодержащих аминокислот; обеспечивает пространственную организацию молекул белков, необходимую для их функционирования, защищает клетки, ткани и пути биохимического синтеза от окисления, а весь организм - от токсического действия чужеродных веществ. Довольно много ее в нервной, соединительной, костной тканях. Сера является компонентом структурного белка коллагена. Пополнение организма серой обеспечивается правильно организованным питанием, в которое включают мясо, куриное яйцо, овсяную и гречневую крупы, мучные изделия, молоко, сыры, бобовые овощи и капусту.

Несмотря на значительное число проведенных исследований, роль серы в обеспечении жизнедеятельности организма выяснена не в полной мере. Так, пока отсутствуют четкие клинические описания каких-либо специфических расстройств, связанных с недостаточным поступлением серы в организм. В то же время известны ацидоаминопатии - расстройства, связанные с нарушением обмена серосодержащих аминокислот (гомоцистинурия, цистатионурия). Имеется также обширная литература, относящаяся к клинике острых и хронических интоксикаций соединениями серы.

Основные проявления дефицита серы:

· симптомы заболеваний печени;

· симптомы заболеваний суставов;

· симптомы заболеваний кожи;

· разнообразные и многочисленные проявления дефицита в организме и нарушения метаболизма биологически активных серосодержащих соединений.

Повышенное содержание серы в организме.

При высоких концентрациях сероводорода во вдыхаемом воздухе, клиническая картина интоксикации развивается очень быстро, в течение нескольких минут возникают судороги, потеря сознания, остановка дыхания. В дальнейшем последствия перенесенного отравления могут проявляться стойкими головными болями, нарушениями психики, параличами, расстройствами функций системы дыхания и желудочно-кишечного тракта.

Установлено, что парентеральное введение мелко измельченной серы в масляном растворе в количестве 1-2 мл сопровождается гипертермией с гиперлейкоцитозом и гипогликемией. Полагают, что при парентеральном введении токсичность ионов серы в 200 раз выше, чем ионов хлора.

Токсичность соединений серы, попавших в желудочно-кишечный тракт, связана с их превращением кишечной микрофлорой в сульфид водорода, весьма токсичным соединением.

В случаях смертельных исходов после отравления серой при вскрытии, отмечают признаки эмфиземы легких, воспаления мозга, острого катарального энтерита, некроза печени, кровоизлияния (петехии) в миокард.

При хронических интоксикациях (сероуглерод, сернистый газ), наблюдаются нарушения психики, органические и функциональные изменения нервной системы, слабость мышц, ухудшение зрения и разнообразные расстройства деятельности других систем организма.

В последние десятилетия одним из источников избыточного поступления серы в организм человека стали серосодержащие соединения (сульфиты), которые добавляются во многие пищевые продукты, алкогольные и безалкогольные напитки в качестве консервантов. Особенно много сульфитов в копченостях, картофеле, свежих овощах, пиве, сидре, готовых салатах, уксусе, красителях вина. Возможно, увеличивающееся потребление сульфитов отчасти повинно в росте заболеваемости бронхиальной астмой. Известно, напр., что 10% больных бронхиальной астмой проявляют повышенную чувствительность к сульфитам (т.е., являются сенсибилизированными к сульфиту). Для снижения отрицательного действия сульфитов на организм рекомендуется увеличивать содержание в рационе сыров, яиц, жирного мяса, птицы.

Основные проявления избытка серы:

· кожный зуд, сыпи, фурункулез;

· покраснение и опухание конъюнктивы;

· появление мелких точечных дефектов на роговице;

· ломота в бровях и глазных яблоках, ощущением песка в глазах;

· светобоязнь, слезотечение;

· общая слабость, головные боли, головокружение, тошнота;

· катар верхних дыхательных путей, бронхит;

· ослабление слуха;

· расстройства пищеварения, поносы, снижение массы тела;

· малокровие;

· судороги и потеря сознания (при острой интоксикации);

· психические нарушения, понижение интеллекта.

Роль серы в организме человека чрезвычайно важна, а нарушения серного обмена сопровождаются многочисленными патологиями. Между тем, клиника этих нарушений недостаточно разработана. Точнее сказать, различные "неспецифические" проявления расстройства здоровья человека пока не ассоциируются у клиницистов с нарушениями обмена серы.

7. РОЛЬ КАЛЬЦИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Кальций непосредственно участвует в самых сложных процессах, например, таких, как свертываемость крови; регуляция внутриклеточных процессов; регуляция проницаемости клеточных мембран; регуляция процессов нервной проводимости и мышечных сокращений; поддержание стабильной сердечной деятельности; формирование костной ткани, минерализация зубов.

Кальций является важной составляющей частью организма; его общее содержание около 1,4% (1000 г на 70 кг массы тела). В организме кальций распределен неравномерно: около 99% его количества приходится на костную ткань и лишь 1% содержится в других органах и тканях. Выводится кальций из организма через кишечник и почки.

Кроме того, длительный недостаток кальция в пище нежелательно сказывается на возбудимости сердечной мышцы и ритме ее сокращений.

Несмотря на то, что в питании большинства людей вполне достаточно кальцийсодержащих продуктов, очень многие страдают от недостаточности кальция. Причина в том, что кальций тяжело усваивается.

Прежде всего, следует отметить, что кальций теряется при термической обработке (например, при варке овощей - 25%). Потери кальция будут незначительны, если вода, в которой варились овощи, идет в употребление.

Необходимо также помнить, что всасываемость кальция в кишечнике затрудняется фитиновой кислотой, которой больше всего в ржаном хлебе, и щавелевой кислотой, имеющейся в изобилии в щавеле, какао. Затрудняется утилизация кальция пищей, богатой жирами. "Врагами" кальция являются тростниковый сахар, шоколад и какао.

Основные проявления дефицита кальция .

Последствия дефицита кальция могут проявляться как на уровне всего организма, так и его отдельных систем:

· общая слабость, повышенная утомляемость;

· боли, судороги в мышцах;

· боли в костях, нарушения походки;

· нарушения процессов роста;

· гипокальциемия, гипокальциноз;

· декальцинация скелета, деформирующий остеоартроз, остеопороз, деформация позвонков, переломы костей;

· мочекаменная болезнь;

· болезнь Кашина-Бека;

· нарушения иммунитета;

· снижение свертываемости крови, кровоточивость.

Повышенное содержание кальция в организме.

Токсическое действие кальция проявляется только при длительном приеме и обычно у лиц с нарушенным обменом этого биоэлемента (напр., при гиперпаратиреозе). Отравление может наступить при регулярном потреблении более 2,5 г кальция в сутки.

Основные проявления избытка кальция:

· подавление возбудимости скелетных мышц и нервных волокон;

· уменьшение тонуса гладких мышц;

· гиперкальциемия, повышение содержания кальция в плазме крови;

· повышение кислотности желудочного сока, гиперацидный гастрит, язвы желудка;

· кальциноз, отложение кальция в органах и тканях (в коже и подкожной клетчатке; соединительной ткани по ходу фасций, сухожилий, апоневрозов; мышцах; стенках кровеносных сосудов; нервах);

· брадикардия, стенокардия;

· подагра, обызвествление туберкулезных очагов и т.д.;

· увеличение содержания солей кальция в моче;

· нефрокальциноз, почечно-каменная болезнь;

· увеличение свертываемости крови;

· увеличение риска развития дисфункции щитовидной и околощитовидных желез, аутоиммунного тиреоидита;

· вытеснение из организма фосфора, магния, цинка, железа.

Самым легкоусвояемым является кальций молока и молочных продуктов (за исключением сливочного масла) в сочетании с овощами и фруктами. Для удовлетворения суточной потребности достаточно 0,5 л молока или 100 г сыра. Кстати, молоко не только является прекрасным источником кальция, но и способствует усвоению кальция, содержащегося в других продуктах.

Очень важным для усвоения кальция является присутствие в рационе витамина D, который нейтрализует действие различных антикальцирующих веществ и является регулятором фосфорно-кальциевого обмена.

химический биологический органоген кислород

ЗАКЛЮЧЕНИЕ

Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента (смотрите таблицу № 1). Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na -70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. Содержание в организме элементов IIIA-VIA групп, ковалентносвязанных с органической частью молекул, уменьшается с ростом заряда ядра атомов данной группы периодической системы Д. И. Менделеева.

Современное состояние знаний о биологической роли элементов можно характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток. Составлены карты биогеохимического районирования и биогеохимических провинций. Но нет общей теории рассматривающей функции, механизм воздействия и роль микроэлементов в биосфере

Обычные микроэлементы, когда их концентрация в организме превышает биотическую концентрацию, проявляют токсическое действие на организм. Токсичные элементы при очень малых концентрациях не оказывают вредного воздействия на растения и животных. Например, мышьяк при микроконцентрациях оказывает биостимулирующее действие. Следовательно, нет токсичных элементов, а есть токсичные дозы. Таким образом, малые дозы элемента - лекарство, большие дозы - яд. «Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным» - Парацельс. Уместно вспомнить слова таджикского поэта Рудаки: «Что нынче снадобьем слывет, то завтра станет ядом».

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Авцын А.П., Жаворонков А.А. и др. Микроэлементы человека. -М.: Медицина, 1991. -496 с.

Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.З., Михайличенко Н.И. Общая химия. Биофизическая химия. Химия биогенных элементов. -М.: Высшая школа, 1993. -560 с.

Ершов Ю.А., Плетнева Т.В. Механизмы токсического действия неорганических соединений. -М.: Медицина, 1989. -272 с.

Жолнин А.В. Комплексные соединения. Челябинск: ЧГМА, 2000. -28 с.

Бингам Ф.Г., Коста М., Эйхенберг Э. И др. Некоторые вопросы токсичности ионов металлов. -М.: Медицина, 1993. -368 с.

Фримантл М. Химия в действии. -М.: Мир, 1991. т.2, 620 с.

Хьюз М. Неорганическая химия биологических процессов. -М.: Мир, 1983. - 416 с.

Жолнин А.В., Арбузина Р.Ф., Констанц Э.В., Рыльникова Г.И. Методическое пособие к лабораторным занятиям по общей химии. ч. II. -Челябинск: ЧГМА, 1993 -176 с.

Энтеросорбция. /Под. ред. проф. Н.А. Белякова. Центр сорбционной технологии. -Л., 1991. - 336 с.

Неметаллы-органогены (О, С, Н, N, P, S), а также галогены образуют главные биогеохимические циклы природы. Простые неорганические соединения этих неметаллов (H2 O, CO, CO2 , NH3 , NO2 , SO2 , H2 SO4 , Н3 РО4 и др.) являются продуктами жизнедеятельности человека и животных. Фрагментами этих циклов являются превращения одних соединений органогенов в другие с участием различных видов бактерий, например, в почве осуществляются переходы H2 → H2 O, CO → CO2 , N2 → NH3 , NH3 → NO2 , NO3 - → NO2 , NO3 - → NH3 , S → S2 O3 2- → SO2 → SO4 2- . Располагая элементы-органогены в порядке убывания их содержания (в масс.%), получим: O > C > H > N > P > S. Согласно именно этому ряду, а не традиционному обращению к группам Периодической Системы, рассмотрим свойства неметаллов-органогенов.

4.1 . Кислород

Кислород – это элемент, обеспечивающий жизнь на Земле. В атмосфере находится около 20,8% кислорода. 0стальные компоненты воздуха – это преобладающий азот N2 (78,08%), а также Ar (0,93%), CO2 (0,02 – 0,04%), Ne (1,92·10-3 %), He (5,24·10- 4 %), Kr (1,14 ·10-4 %), H2 (5,0· 10-5 %), Xe (8,7· 10-6 %). Надо отметить, что содержание ки-

слорода в атмосфере сохраняется удивительно постоянным, несмотря на все окислительные процессы дыхания и горения, протекающие на Земле. Главным фактором, поддерживающим постоянство содержания кислорода а атмосфере Земли, является фотосинтез, причем главный вклад вносят не наземные зеленые растения, а планктон и водоросли мирового океана, на долю которых приходится около 80% выделяемого кислорода. Вообще, жизнь на Земле возможна лишь в достаточно узком интервале содержания кислорода в атмосфере: от 13 до 30%. При содержании кислорода менее 13% аэробные существа (т.е. использующие в своей жизнедеятельности кислород) погибают, а при более высоком, чем 30%, процессы окисления и горения идут настолько интенсивно, что может загореться даже мокрая тряпка, а первый же удар молнии сжег бы все на Земле дотла.

Для многочисленных живых организмов важную часть метаболизма (обмена веществ) составляет дыхательный цикл, который приводит к быстрому образованию многих веществ. Так, в выдыхаемом воздухе, кроме СО2 , в небольших количествах содержатся углеводороды, спирты, аммиак, муравьиная кислота НСООН, уксусная кислота СН3 СООН, формальдегид НСНО, иногда ацетон (СН3 )2 СО. При дыхании человека на высоте 10 км в разреженном воздухе из-за недостатка в нем кислорода в выдыхаемой смеси газов резко возрастает содержание аммиака, аминов, фенола, ацетона и даже появляется сероводород.

Без кислорода невозможны многочисленные и чрезвычайно важные жизненные процессы, в особенности дыхание. Только немногие растения и простейшие животные могут обходиться без кислорода и поэтому носят название анаэробных. В живых организмах кислород расходуется на окисление различных веществ, причем главный процесс – реакция кислорода с атомами водорода с образованием воды, в результате которой выделяется значительное количество энергии. Аэробные организмы получают энергию также за счет окисления питательных веществ в клетках и тканях до СО2 , Н2 О,

(NH2 )2 CO.

В процессе нормального дыхания поступающий в легкие молекулярный кислород восстанавливается до воды: О2 + 4Н+ + 4е 2Н2 О, причем ионы Н+ вместе с электронами высвобождаются при потере органическим субстратом организма атомов Н: [субстрат(4Н)] → 4Н + субстрат → 4Н+ + 4е + субстрат. При патологии происходит неполное восстановление: О2 + 2Н+ + 2е Н2 О2 или О2 + е О2 - . Этот радикал называ-

ется супероксид-радикалом (СОР). Он может быть полезным, когда разрушает бесконтрольно растущие клетки, но может быть и очень токсичным, когда разрушает клеточные мембраны здоровых, необходимых организму клеток. Кроме этого, вредное действие СОР состоит в том, что он инактивирует ферменты, деполимеризует полисахариды, вызывает одиночные разрывы структуры ДНК. В промежуточном медленном одноэлектронном восстановлении О2 до СОР могут принимать участие любые вещества организма с подходящим потенциалом. При этом образуется Н2 О2 , который в следующей стадии одноэлектронного восстановления даёт гидроксид-радикал ОНс высокой реакционной способностью, быстро окисляющий любое вещество клетки. Гидрофобная молекула О2 легко проходит внутрь клетки через гидрофобные липидные мембраны и начинает окислять органические вещества до радикалов О2 - и ОН. Эти полярные радикалы оказываются «запертыми» в клетке, так как не могут выйти обратно через клеточные мембраны. Для погашения их «агрессивности» служат специальные ферменты супероксиддисмутаза, каталаза и пероксидаза. Кроме этого, есть низкомолекулярные вещества – антиоксиданты (например, витамины А и Е), которые неферментативно обезвреживают эти опасные частицы. СОР, например, активно связывается также ионами Fe(3+). Иногда выделение СОР полезно, например, противоопухолевые антибиотики (блеомицин) образуют комплекс с ионами металла Мn+, катализирующими быстрое восстановление О2 до СОР, уничтожающего ДНК в опухоли.

Аллотропная модификация кислорода – озон О3 . В атмосфере озон образуется по фотохимической реакции О2 + О →hν→ О3 , причем атомарный активный кислород образуется также благодаря реакции NO + O2 → NO2 + O . Полезное действие озона в атмосфере заключается в том, что озон не только поглощает биологически активную и тем самым опасную часть ультрафиолетового излучения Солнца, но и принимает участие в формировании теплового режима поверхности нашей планеты. Он задерживает уходящее от Земли тепло в тех спектральных интервалах («окна прозрачности»), где СО2 и Н2 О поглощают это тепло плохо. Озон для человека сильно токсичен. Его предельно допустимая концентрация (ПДК) в воздухе составляет 0,5 мг/м3 . Озон изменяет структуру легких, подавляя их функции, тем самым снижая устойчивость к респираторным заболеваниям. Будучи сильнейшим окислителем (на 2-ом месте после фтора), озон интенсивно окисляет аминокислоты и ферменты, содержащие серу

(цистеин HSCH2 CH(NH2 )COOH, метионин CH3 SCH2 CH2 CH(NH2 )COOH, а также триптофан C8 H6 NCH2 CH(NH2 )COOH, гистидин C3 H3 N2 CH(NH2 )COOH, тирозин HOC6 H4 CH2 CH(NH2 )COOH .

Таким образом, молекулярный кислород О2 не токсичен для живых организмов в отличие от других форм: озона О3 , возбужденной молекулы О2 , радикала ОН, атомарного О, радикала НО2 , СОР О2 - .

4.2. Углерод

Углерод по своему содержанию в организме (21%) и значению для живых организмов – один из важнейших органогенов. Так как данное пособие посвящено именно бионеорганической химии, то мы не будем касаться органических соединений живой природы, что является предметом изучения биоорганической химии. Простейшие соединения углерода, например, свободный углерод в виде сажи и его оксид СО, токсичны для человека. Длительный контакт с сажей или угольной пылью вызывает рак кожи («болезнь трубочистов», как её называли ранее). Мельчайшая пыль угля вызывает изменение структуры легких, а значит, нарушает их функции. Крайне токсичен оксид СО, отравляющее действие которого вызвано тем, что СО связывается с гемоглобином крови в ~10 3 раз легче, чем кислород, и поэтому вызывает удушье.

Углекислый газ СО2 присутствует в биосфере как продукт продуктов дыхания и окисления. Ежегодный выброс СО и СО2 в атмосферу составляет 2 108 и 9 109 тонн

соответственно (для сравнения выброс углеводородов равен 8 107 тонн в год). СО2 мало растворим в воде, поэтому присутствие его в биожидкостях незначительно. Однако, в желудке протекает важная ферментативная реакция СО2 + Cl- + H2 O→ НCO3 - + H+ + Cl- , в результате чего в кислой среде расщепляются белки. Отметим, что без ферментов эта реакция протекает в обратном направлении.

4.3. Водород

Водород присутствует в природе в виде воды и многочисленных органических соединений (табл.1). Вода – главная среда жизнедеятельности организма. В ней растворяется большинство веществ, участвующих в процессах метаболизма. Содержание воды в органах и тканях организма достаточно высоко:

Таблица 3

Ткань, орган, био-

жидкость

Головной мозг

Спинной мозг

Желудочный сок

Плазма крови

Слезная жидкость

Физиологической средой для человека является 0,9%-ный раствор NaCl. Вода обладает высокой удельной теплоемкостью и, вследствие медленного теплообмена с окружающей средой, обеспечивает поддержание постоянной температуры тела. При перегреве происходит испарение воды с поверхности тела. Из-за высокой теплоты парообразования воды этот процесс сопровождается затратами энергии, и температура тела понижается. В водной среде за счет буферных систем (карбонатной, фосфатной и гемоглобиновой) поддерживается кислотно-основной баланс организма.

Как видно из табл.3, среднее значение рН организма отвечает рН физиологического раствора и колеблется от 6,8 до 7,4. Однако, отдельные органы и ткани могут иметь значения рН, сильно отличающиеся от физиологического. Так, в желудке кислотность велика, и рН равен 0,9 – 1,1. Это необходимо для того, чтобы под действием фермента пепсина, активного в кислой среде, шло расщепление пептидов белковой составляющей пищи. Желчь имеет слабощелочную реакцию (рН 7,5 – 8,5), что необходимо для щелочного гидролиза жиров.

4.4. Азот

Азот присутствует в живых организмах в виде разнообразных органических соединений: аминокислот, пептидов, пуриновых оснований и др., а также в виде свободного N2 , поступающего с вдыхаемым воздухом. Круговорот азота в природе тесно свя-

зывает геосферу и биосферу, подтверждая их единство. Существует множество бактерий, способных легко переводить одни соединения азота в другие, причем с изменением степени окисления азота. Так, например, если в технике синтез аммиака осуществляется в жестких условиях, то в биосфере связывание атмосферного N 2 и его превращение в NH3 протекает более легким ферментативным способом с участием нитрогеназы:

N2 + 16ATP + 8e + 8H+ 2NH3 +16ADP +16[Р в неорганических фосфатах] +Н2 , где АТР и АDP – аденозинтрифосфат и аденозиндифосфат соответственно, причем считают, что исходная АТР находится в виде комплекса с Mg. Микроорганизмы, участвующие в этой реакции, присутствуют в корневых клубеньках некоторых растений, а также

в синезеленых водорослях. Фермент нитрогеназа, содержащий белки, а также Мо и Fe, активен только в анаэробных условиях. Исследования показали, что при восстановле-

нии N2 в NH3 не образуются NH=NH и NH2 -NH2 . Это говорит о том, что на ферменте, вероятно, действуют 2 активных центра: на одном расщепляется молекула азота, а на другом координирован атом Н. В природе протекают и другие взаимные превращения

соединений азота: нитрификация или окисление NH3 до NO2 , а также восстановление нитрат-иона из удобрений под действием ферментов растений или анаэробных бакте-

рий до NO2 или даже до NH3 . Неорганические соединения азота, как правило, токсич-

ны, за исключением простого вещества N2 и в небольших количествах N2 O. Ежегодно в атмосферу выбрасывается ~ 5· 107 тонн различных оксидов азота NOx и ~ 107 тонн иных соединений азота. Молекула NO , по современным представлениям, несмотря на кажу-

щуюся трудность её образования из простых веществ, присутствует в атмосфере в огромных количествах. Считают, что до 7 107 тонн атмосферного N2 в год реагируют с О2 в результате высокотемпературных процессов, как то: сжигание топлива в промышленности и работа транспорта. Показано, что оксиды азота, как и озон, способны взаимодействовать с продуктами неполного сгорания топлива с образованием высокоток-

сичных пероксонитратов RСОООNO2 . Под действием солнечной радиации в верхних слоях атмосферы протекают фотохимические реакции с участием NOx , которые катализируются содержащимися там твердыми частицами пыли. В организме человека NO

образуется в количестве ~100 мг в сутки из аргинина по реакции: NH=C(NH2 )- NH(CH2 )3 CH(NH2 )COOH + 3/2O2 →фермент NO-синтетаза → H2 NCONH(CH2 )3 CH(NH2 )COOH +2NO + H2 O. Известно, что молекулы NO способны проникать в клетки стенок кровеносных сосудов и регулировать кровоток; кроме того, NO контролирует секрецию инсулина, почечную фильтрацию, репаративные процессы

в тканях и др. Таким образом, NO – двуликая молекула, проявляющая как токсичное, так и несомненно полезное действие. Например, при приёме такого распространенного кардиологического препарата, как нитроглицерин, происходит гидролиз его с образованием нитрат-иона, который восстанавливается железом гемоглобина до NO, а затем уже именно NO вызывает расслабление гладких мышц сосудов. Другие оксиды азота

NO2 , N2 O3 сильно токсичны и способны вызвать удушье и отек легких. Особенно токсичен нитрит-ион NO2 - , потому что он окисляет метгемоглобин и нарушает процесс переноса О2 в организме. Кроме этого, нитрит-ион образует в желудке канцерогенный нитрозоамин. Однако, NaNO2 применяли раньше как сосудорасширяющее средство при стенокардии и спазмах сосудов головного мозга. В последнее время от NaNO2 из-за его несомненной токсичности отказались, заменив его нитроглицерином или нитросорби-

том, которые не имеют таких побочных эффектов. Вдыхание паров аммиака NH3 в больших количествах вредно, так как аммиак создает сильнощелочную среду на поверхности слизистых оболочек гортани и легких, что вызывает их раздражение и отек.

Кроме того, небольшие молекулы NH3 легко проникают через клеточные мембраны и становятся конкурентами многим лигандам в координации с ионами металлов.

Мы уделили большое внимание роли металлов. Однако необходимо учитывать, что некоторые неметаллы также являются совершенно необходимыми для функционирования организма.

Кремний

Кремний является также необходимым микроэлементом. Это было подтверждено тщательным изучением питания крыс с использованием различных диет. Крысы заметно прибавили в весе при добавлении метасиликата натрия (Na2(SiO)3 . 9H2O) в их рацион (50мг на 100г). цыплятам и крысам кремний нужен для роста и развитие скелета. Недостаток кремния приводит к нарушению структуры костей и соединительной ткани. Как выяснилось кремний присутствует в тех участках кости, где происходит активная кальцинация, например в кости образующих клетках, остеобластах. С возрастом концентрация кремния в клетках падает.

О том, в каких процессах участвует кремний в живых системах, известно мало. Там он находится в виде кремневой кислоты и, наверное, участвует в реакциях сшивки углеродов. У человека богатейшим источником кремния оказалась гиалуроновая кислота пуповины. Она содержит 1,53мг свободного и 0,36мг связанного кремния на один грамм.

Селен

Недостаток селена вызывает гибель клеток мышц и приводит к мускульной, в частности сердечной, недостаточности. Биохимическое изучение этих состояний привело к открытию фермента глутатионпероксидазе, разрушающей пероксиды Недостаток селена ведет к уменьшению концентрации этого фермента, что в свою очередь вызывает окисление липидов. Способность селена предохранять от отравления ртутью хорошо известна. Гораздо менее известен тот факт, что существует корреляция между высоким содержанием селена в рационе и низкой смертностью от рака. Селен входит в рацион человека в количестве 55 110мг в год, а концентрация селена в крови составляет 0,09 0,29мкг/см. При приёме внутрь селен концентрируется в печени и почках. Ещё один пример защитного действия селена от интоксикации лёгкими металлами является его способность предохранять от отравления соединениями кадмия. Оказалось, что как и в случае с ртутью, селен вынуждает эти токсические ионы связываться с ионными активными центрами, с теми, на которое их токсическое действие не влияет.

Мышьяк

Несмотря на хорошо известные токсические действия мышьяка и его соединений, имеются достоверные данные согласно которым недостаток мышьяка приводит к понижению рождаемости и угнетению роста, а добавление в пищу арсенита натрия привело к увеличению скорости роста у человека.

Хлор и бром

Анионы галогенов отличаются от всех тем, что они представляют собой простые, а не оксо анионы. Хлор распространён чрезвычайно широко, он способен проходить сквозь мембрану и играет важную роль в поддержание осмотического равновесия. Хлор присутствует в виде соляной кислоты в желудочном соке. Концентрация соляной кислоты в желудочном соке человека равна 0,4-0,5%.

По поводу роли брома как микроэлемента существуют некоторые сомнения, хотя достоверно известно его седативное действие.

Фтор

Для нормального роста фтор совершенно необходим, и его недостаток приводит к анемии. Большое внимание было уделено метаболизму фтора в связи с проблемой кариеса зубов, так как фтор предохраняет зубы от кариеса.

Кариес зубов изучен достаточно подробно. Он начинается с образования на поверхности зуба пятна. Кислоты, вырабатываемые бактериями, растворяют под пятном зубную эмаль, но, как ни странно, не с её поверхности. Часто верхняя поверхность остаётся неповреждённой до тех пор, пока участки под ней не окажутся полностью разрушенными. Предполагается, что на этой стадии фторид ион может облегчать образования аппатита. Таким образом совершается реминелизация начавшегося повреждения.

Фтор используют для предотвращения разрушений зубной эмали. Можно вводить фториды в зубную пасту или же непосредственно обрабатывать ими зубы. Концентрация фтора, необходимая для предотвращения кариеса, составляет в питьевой воде около 1мг/л, но уровень потребления зависит не только от этого. Применение высоких концентраций фторидов (более8мг/л) может неблагоприятным образом повлиять на тонкие равновесные процессы образования костной ткани. Чрезмерное поглощение фторидов приводит к фторозу. Фтороз приводит к нарушениям в работе щитовидной железы, угнетению роста и поражению почек. Длительное воздействие фтора на организм прводит к минерализации тела. В итоге деформируются кости, которые даже могут срастись, и происходит кальцификация связок.

Йод

Основной физиологической роль йода является участие в метаболизме щитовидной железы и присущих ей гормонах. Способность щитовидной железы аккумулировать йод присуща также слюнным и молочным железам. А также некоторым другим органам. В настоящее время, однако, считают, что ведущую роль йод играет только в жизни деятельности щитовидной железы.

Недостаток йода приводит к возникновению характерных симптомов: слабости, пожелтению кожи, ощущение холода и сухости. Лечение тиреоидными гормонами или йодом устраняет эти симптомы. Недостаток тереоидных гормонов может привести к увеличению щитовидной железы. В редких случаях (отягощение в организме различных соединений, мешающих поглощению йода, например тиоцианата или антитиреоидного агента гоитрина, имеющегося в различных видах капусты) образуется зоб. Недостаток йода особенно сильно отражается на здоровье детей они отстают в физическом и умственном развитии. Йод дефицитная диета во время беремености приводит к рождению гипотироидных детей (кретинов).

Избыток гормонов щитовидной железы приводит к истощению, нервозности, тремору, потере веса и повышенной потливости. Это связано с увеличением пероксидазной активности и вследствие этого с увеличением йодирования тиреоглобулинов. Избыток гормонов может быть следствием опухоли щитовидной железы. При лечение используют радиоактивные изотопы йода, легко усваивающиеся клетками щитовидной железы.

Цели урока:

  • обобщить, проанализировать и расширить знания учащихся о неметаллах, их роли в живой и неживой природе, в жизни человека, о необходимости правильного обращения с неметаллами, роли каждого человека в решении экологических проблем атмосферы;
  • сориентировать учащихся на применение новых знаний в системе мультидисциплинарных понятий.

Девиз урока: "Мощь и сила науки - во множестве фактов, цель - в обобщении этого множества". (Д.И.Менделеев)

Оборудование (на демонстрационном столе):

  • образцы неметаллов: иода, брома, серы;
  • карандаши, хрустальная посуда, фаянс, образцы керамики, стекла.

На доске: иллюстрации скульптур, зданий, минералов неметаллов.

Ход урока

I. Формулировка познавательной цели. Эмоциональное погружение в тему

Здравствуйте, ребята! Я рада вас всех видеть, и надеюсь, что наша встреча пройдет интересно и познавательно. Мы завершаем знакомство с миром неметаллов и сегодня на уроке подведем итог всему, что узнали.

Мне бы хотелось начать урок со строк С.Щипачева

: Все, от травинки малой до планет
Из элементов состоит единых.

(Начинается показ слайдов презентации). Что объединяет все эти иллюстрации? (Выслушиваются ответы учащихся). Да, все это образовано небольшой группой элементов, имя которым - неметаллы. Сегодня из множества фактов мы выделим самые главные, наиболее полно характеризующие мир этих удивительных веществ.

Объясняю порядок работы в группах, условия представления результатов.

II. Аналитическая работа в группах.

Обращаю внимание учащихся на эпиграф к уроку, разъясняю задачи урока, и учащиеся приступают к аналитической групповой работе (10-12 мин), во время которой звучит классическая музыка.

  1. Работа групп включает следующие виды деятельности:
  2. Изучение учебной и научно-популярной литературы;
  3. Работа с наглядным материалом (географический атлас для 9-го класса, коллекции)
  4. Анализ диаграмм
  5. Заполнение таблиц

Обязательное условие успешной работы на семинаре и реализации поставленных задач - обеспечение каждого рабочего места комплектом литературы, наглядных пособий и других средств.

Задание 1.

Неметаллы в природе. Значение неметаллов для жизни человека.

1. Какие элементы называют неметаллами? Сколько элементов неметаллов в периодической системе?

2. Что такое парниковый эффект? Какую роль играют в этом водородные соединения углерода?

Источники информации:

1. Детская энциклопедия, т.3, стр. 433, М., 1975

2. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. Неорганическая химия - 9. М., 1988, стр. 93-95

Задание 5.

Значение неметаллов и их соединений в промышленности и жизни человека.

1 Что такое силикатная промышленность? Какие отрасли выделяют в силикатной промышленности? Что служит сырьем? Рассмотрите коллекции "Стекло и изделия из стекла", "Строительные материалы", "Сырье для строительной промышленности" и отберите из них образцы для иллюстрации своего ответа у доски. Результаты оформите в виде схемы 1 на листе бумаги формата А3 (Приложение 5).

4. Что такое майолика? Терракота? Гжель? Какое отношение они имеют к силикатной промышленности?

3. Как вы думаете, почему серную кислоту называют "хлебом промышленности"?

Источники информации:

1.Детская энциклопедия, т.3, стр. 438, М., 1975

2. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. Неорганическая химия - 9. М., 1988, стр. 90-93.

3. Книга для чтения по неорганической химии. Ч.2., М., Просвещение, 1975, стр. 284-286

4. Фельдман Ф.Г., Рудзитис Г.Е. Химия.9 класс, М., Просвещение, 1994, стр.97

5. Химия для гуманитариев. Волгоград, 2005, стр. 43-48

III. Представление результатов групповой работы.

Представители групп выступают с сообщениями по своим темам. Для иллюстрации ответов у доски школьники используют образцы из коллекций "Стекло и изделия из стекла", "Строительные материалы", "Сырье для строительной промышленности". Перед началом выступлений они размещают на классной доске составленные схемы и диаграммы, выданные им для анализа.

Порядок представления результатов определяется номерами заданий.

По материалам, представленным на доске, все учащиеся составляют краткий конспект урока.

IV. Обсуждение результатов. Выводы.

Организую краткое обсуждение результатов семинара, и формулируем выводы.

V. Итоги урока. Рефлексивный анализ.

При подведении итогов семинара возвращаюсь к девизу урока. Учащиеся делают вывод о достижении цели урока.

На фоне классической музыки выдаю учащимся карточки рефлексивного анализа, на которых они указывают класс, фамилию, имя, оценивают свою работу на уроке, работу группы и форму организации урока по 5-балльной шкале.

Затем школьники отвечают на вопросы:

1. Что вам особенно понравилось на уроке?

2. В чем польза этого урока для вас?

3. С какими трудностями вы столкнулись на уроке?

Карточка рефлексивного анализа

Класс _____________________

Фамилия, имя ____________________________________________

Свою работу на уроке _____________

Работу группы _______________

Форму организации урока _______________