Приложение. Момент инерции и его вычисление

Приложение. Момент инерции и его вычисление.

Пусть твёрдое тело вращается вокруг оси Z (рисунок 6). Его можно представить как неизменную с течением времени систему разных материальных точек m i , каждая из которых движется по окружности радиусом r i , лежащей в плоскости, перпендикулярной оси Z. Угловые скорости всех материальных точек одинаковы. Моментом инерции тела относительно оси Z называется величина:

где – момент инерции отдельной материальной точки относительно оси ОZ. Из определения вытекает, что момент инерции – аддитивная величина , т. е. момент инерции тела, состоящего из отдельных частей, равен сумме моментов инерции частей.

Рисунок 6

Очевидно, [I ] = кг×м 2 . Важность понятия момента инерции выражается в трёх формулах:

; ; .

Первая из них выражает момент импульса тела, которое вращается вокруг неподвижной оси Z (полезно эту формулу сравнить с выражением для импульса тела P = mV c , где V c – скорость центра масс). Вторая формула носит название основного уравнения динамики вращательного движения тела вокруг неподвижной оси, т.е., иначе говоря, второго закона Ньютона для вращательного движения (сравним с законом движения центра масс: ). Третья формула выражает кинетическую энергию тела, вращающегося вокруг неподвижной оси (сравним с выражением для кинетической энергии частицы ). Сравнение формул позволяет сделать вывод о том, что момент инерции во вращательном движении играет роль, аналогичную массе в том смысле, что чем больше момент инерции тела, тем меньше угловое ускорение при прочих равных условиях оно приобретает (тело, образно говоря, труднее раскрутить). Реально вычисление моментов инерции сводится к вычислению тройного интеграла и может быть произведено лишь для ограниченного числа симметричных тел и лишь для осей симметрии. Количество осей, вокруг которых может вращаться тело, бесконечно велико. Среди всех осей выделяется та, которая проходит через замечательную точку тела – центр масс (точку, для описания движения которой достаточно представить, что вся масса системы сосредоточена в центре масс и к этой точке приложена сила, равная сумме всех сил). Но осей, проходящих через центр масс, также бесконечно много. Оказывается, что для любого твёрдого тела произвольной формы существуют три взаимно перпендикулярных оси С х, С у, С z , называемые осями свободного вращения , обладающие замечательным свойством: если тело закрутить вокруг любой из этих осей и подбросить вверх, то при последующем движении тела ось останется параллельной самой себе, т.е. не будет кувыркаться. Закручивание вокруг любой другой оси этим свойством не обладает. Значение моментов инерции типичных тел относительно указанных осей приведено ниже. Если ось проходит через центр масс, но составляет углы a, b, g с осями С х, С у, С z соответственно, то момент инерции относительно такой оси равен

I c = I cx cos 2 a + I cy cos 2 b + I cz cos 2 g (*)

Рассмотрим кратко вычисление момента инерции для простейших тел.

1. Момент инерции длинного тонкого однородного стержня относительно оси, проходящей через центр масс стержня и ему перпендикулярной.

Пусть т – масса стержня, l – его длина.

,

Индекс «с » у момента инерции I c означает, что это момент инерции относительно оси, проходящий через точку центра масс (центр симметрии тела), C(0,0,0).

2. Момент инерции тонкой прямоугольной пластинки.

; ;

3. Момент инерции прямоугольного параллелепипеда.


, т. С(0,0,0)

4. Момент инерции тонкого кольца.

;

, т. С(0,0,0)

5. Момент инерции тонкого диска.

В силу симметрии

; ;

6. Момент инерции сплошного цилиндра.

;

В силу симметрии:


7. Момент инерции сплошного шара.

, т. С(0,0,0)

8. Момент инерции сплошного конуса.


, т. С(0,0,0)

где R – радиус основания, h – высота конуса.

Напомним, что cos 2 a + cos 2 b + cos 2 g = 1. Наконец, если ось О не проходит через центр масс, то момент инерции тела может быть вычислен с помощью теоремы Гюйгенса Штейнера

I о = I с + md 2 , (**)

где I о – момент инерции тела относительно произвольной оси, I с – момент инерции относительно параллельной ей оси, проходящей через центр масс,
m
– масса тела, d – расстояние между осями.

Процедура вычисления моментов инерции для тел стандартной формы относительно произвольной оси сводится к следующему.

Наименование параметра Значение
Тема статьи: Момент инерции
Рубрика (тематическая категория) Механика

Рассмотрим материальную точку массой m , которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инœерции J материальной точки относительно оси принято называть скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инœерции системы N материальных точек будет равен сумме моментов инœерции отдельных точек

(76)

К определœению момента инœерции точки

В случае если масса распределœена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объёмы dv, каждый из которых обладает массой dm. В результате получается следующее выражение:

(77)

Для однородного по объёму тела плотность ρ постоянна, и записав элементарную массу в виде

dm = ρdv, преобразуем формулу (70) следующим образом:

(78)

Размерность момента инœерции – кг*м 2 .

Момент инœерции тела является мерой инœертности тела во вращательном движении, подобно тому, как масса тела является мерой его инœертности при поступательном движении.

Момент инœерции - это мера инœертных свойств твердого тела при вращательном движении, зависящая от распределœения массы относительно оси вращения . Иными словами, момент инœерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инœерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инœерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инœерции достаточно прост. Ниже приведены моменты инœерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инœерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска:

Момент инœерции шара радиуса R :

Момент инœерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инœерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инœерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера:

Момент инœерции тела относительно произвольной оси равен сумме момента инœерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инœерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инœерции стержня

Согласно теореме Штейнера, момент инœерции стержня относительно оси O′O′ равен моменту инœерции относительно оси OO плюс md 2 . Отсюда получаем:

Очевидно: момент инœерции неодинаков относительно разных осœей, и в связи с этим, решая задачи на динамику вращательного движения, момент инœерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, к примеру, при конструировании технических устройств, содержащих вращающиеся детали (на желœезнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инœерции этих деталей. При сложной форме тела теоретический расчет его момента инœерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инœерции нестандартной детали опытным путем.

Момент силы F относительно точки O

Момент инерции - понятие и виды. Классификация и особенности категории "Момент инерции" 2017, 2018.

  • - Момент инерции тела относительно произвольной оси.

    Рис.35 Проведем через центр масс С тела произвольные оси Cx"y"z", а через лю­бую точку О на оси Сх" - оси Oxyz, такие, что Оy½½Сy", Oz½½Cz" (рис. 35). Расстояние между осями Cz" и Оz обозначим через d. Тогда но, как видно из рисунка, для любой точки тела или, а. Подставляя... .


  • - Момент инерции тела

    Момент инерции тела – величина, определяющая его инертность во вращательном движении. В динамике поступательного движения инерцию тела полностью характеризует его масса. Влияние собственных свойств тела на динамику вращательного движения оказывается более сложным,... .


  • - Лекция 4-5. Момент силы относительно неподвижной точки и оси. Момент инерции, момент импульса материальной точки и механической системы относительно неподвижной точки и оси.

    Лекция 3. Силы. Масса, импульс материальной точки и механической системы. Динамика поступательного движения в инерциальных системах отсчета. Закон изменения импульса механической системы. Закон сохранения импульса. Динамика изучает движение тел с учетом причин,... .


  • - Момент инерции твердого тела.

    Проанализируем формулу для момента инерции твердого тела. Момент инерции зависит от 1) массы тела, 2) формы и размеров тела, 3) положения оси вращения относительно тела (рис 2) Рис. 2а Рис.2б Итак, момент инерции есть мера инертности тела при вращательном движении,... .


  • - Момент инерции относительно центральной оси называется центральным моментом инерции.

    Момент инерции относительно любой оси равен моменту инерции относительно центральной оси, параллельной данной, плюс произведение площади фигуры на квадрат расстояния между осями. Из формулы видно, что момент инерции относительно центральной оси меньше, чем момент...

  • Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси z имеет вид

    Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (x 2 i + y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

    В качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния х (в этом случае все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от х 2 , умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной dx, то соответствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

    Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.

    А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

    Таким образом, стержень гораздо легче крутить за середину, чем за конец.

    Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси . Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен I 1 = MR 2 ц.м. , где R ц.м — расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1 нужно добавить I ц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

    Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I = Σm i (x 2 i + y 2 i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х` от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
    x i = x` i + X ц.м.
    Возводя это выражение в квадрат, находим
    x 2 i = x` 2 i + 2X ц.м. x` i + X 2 ц.м.

    Что получится, если умножить его на m i и просуммировать по всем r? Вынося постоянные величины за знак суммирования, находим

    I x = Σm i x` 2 i + 2X ц.м. Σm i x` i + X2 ц.м. Σm i

    Третью сумму подсчитать легко; это просто МХ 2 ц.м. . Второй член состоит из двух сомножителей, один из которых Σm i x` i ; он равен x`-координате центра масс. Но это должно быть равно нулю, ведь х` отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от I ц. Таким образом, мы и приходим к формуле (19.7).

    Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML 2 /3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что ML 2 /3=ML 2 /12+M(L/2) 2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.

    Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML 2 , умноженной на некоторый неизвестный коэффициент γ. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4γ. Используя теперь теорему о параллельном переносе оси, докажем, что γ=1/4γ + 1/4, откуда γ=1/3. Всегда можно найти какой-нибудь окольный путь!

    При применении теоремы о параллельных осях важно помнить, что ось I ц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

    Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью z, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

    Момент инерции однородной прямоугольной пластинки, например с массой М, шириной ω и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

    поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mω 2 /12, т. е. точно такой же, как и для стержня длиной ω, а момент инерции относительно другой оси в той же плоскости равен ML 2 /12, такой же, как и для стержня длиной L.

    Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

    1. Момент инерции равен

    2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
    3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
    4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

    В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.

    Момент силы и момент инерции

    В динамике поступательного движения материальной точки кроме кинематических характеристик вводились понятия силы и массы. При изучении динамики вращательного движения вводятся физические вели­чины - момент сил и момент инерции , физический смысл которых рас­кроем ниже.

    Пусть некоторое тело под действием силы , приложенной в точке А , приходит во вращение вокруг оси ОО" (рисунок 5.1).

    Рисунок 5.1 – К выводу понятия момента силы

    Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р , опущенный из точки О (лежащей на оси) на направление силы, назы­вают плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О :

    (5.1)

    Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы :

    (5.2)

    Единица момента силы - ньютон-метр . м). Направление вектора момента силы находиться с помощью пра­вила правого винта .

    Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

    Момент инерции материальной точки относительно оси враще­ния - произведение массы этой точки на квадрат расстояния от оси :

    Момент инерции тела относительно оси вращения - сумма мо­ментов инерции материальных точек, из которых состоит это тело :

    (5.4)

    В общем случае, если тело сплошное и представляет собой совокуп­ность точек с малыми массами dm , момент инерции определяется интег­рированием:

    , (5.5)

    где r - расстояние от оси вращения до элемента массой dm .

    Если тело однородно и его плотность ρ = m /V , то момент инерции тела

    (5.6)

    Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

    Наиболее просто определяется момент инерции тел, имеющих пра­вильную геометрическую форму и равномерное распределение массы по объему.

    Момент инерции однородного стержня относительно оси, прохо­дящей через центр инерции и перпендикулярной стержню,

    Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

    (5.8)

    Момент инерции тонкостенного цилиндра или обруча относи­тельно оси, перпендикулярной плоскости его основания и проходящей через его центр,

    Момент инерции шара относительно диаметра

    (5.10)

    Определим момент инерции диска относительно оси, проходящей че­рез центр инерции и перпендикулярной плоско­сти вращения. Пусть масса диска – m , а его радиус – R .

    Площадь кольца (рисунок 5.2), заключенного между r и , равна .

    Рисунок 5.2 – К выводу момента инерции диска

    Площадь диска . При постоянной толщине кольца,

    откуда или .

    Тогда момент инерции диска,

    Для наглядности на рисунке 5.3 изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

    Рисунок 5.3 – Моменты инерции I C некоторых однородных твердых тел.

    Теорема Штейнера

    Приведенные выше формулы для моментов инерции тел даны при усло­вии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует восполь­зоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции J 0 отно­сительно оси, параллельной данной и проходящей через центр инер­ции тела, и величины md 2:

    (5.12)

    где m - масса тела, d - расстояние от центра масс до выбранной оси вра­щения. Единица момента инерции - килограмм-метр в квадрате (кг . м 2).

    Так, момент инерции однородного стержня длиной l относительно оси, про­ходящей через его конец, по теореме Штейнера равен

    Тела относительно какой-либо оси можно найти вычислением. Если вещество в теле распределено непрерывно, то вычисление момента инерции его сводится к вычислению интеграла

    в котором r - расстояние от элемента массы dm до оси вращения.

    Момент инерции тонкого однородного стержня относительно перпендикулярной оси. Пусть ось проходит через конец стержня А (рис. 4.4).

    Для момента инерции можно написать I A = kml 2 , где l - длина стержня, k - коэффициент пропорциональности. Центр стержня С является его центром масс. По теореме Штейнера I A = I C + m (l /2) 2 . Величину I C можно представить как сумму моментов инерции двух стержней, СА и СВ , длина каждого из которых равна l /2, масса m /2, а следовательно, момент инерции равен Таким образом, I C = km (l/ 2) 2 . Подставляя эти выражения в формулу для теоремы Штейнера, получим

    ,

    откуда k = 1/3. В результате находим

    (4.16)

    Момент инерции бесконечно тонкого круглого кольца (окружности). Момент инерции относительно оси Z (рис. 4.5) равен

    I Z = mR 2 , (4.17)

    где R - радиус кольца. Ввиду симметрии I X = I У .

    Формула (4.17) очевидно, дает также момент инерции полого однородного цилиндра с бесконечно тонкими стенками относительно его геометрической оси.

    Рис. 4.5 Рис. 4.6

    Момент инерции бесконечно тонкого диска и сплошного цилиндра. Предполагается, что диск и цилиндр однородны, т. е. вещество распределено в них с постоянной плотностью. Пусть ось Z проходит через центр диска С перпендикулярно к его плоскости (рис. 4.6). Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным радиусом r + dr . Площадь такого кольца dS = 2 prdr . Его момент инерции найдется по формуле (4.17), он равен dI z = r 2 dm. Момент инерции всего диска определяется интегралом Ввиду однородности диска dm = , где S = pR 2 - площадь всего диска. Вводя это выражение под знак интеграла, получим

    (4.18)

    Формула (4.18) дает также момент инерции однородного сплошного цилиндра относительно его продольной геометрической оси.

    Вычисление момента инерции тела относительно оси часто можно упростить, вычислив предварительно момент инерции его относительно точки . Сам по себе момент инерции тела относительно точки не играет никакой роли в динамике. Он является чисто вспомогательным понятием, служащим для упрощения вычислений. Моментом инерции тела относительно точки О называется сумма произведений масс материальных точек, из которых тело состоит, на квадраты их расстояний R до точки О : q = ΣmR 2 . В случае непрерывного распределения масс эта сумма сводится к интегралу q = ∫R 2 dm . Само собой понятно, что момент θ не следует смешивать с моментом инерции I относительно оси. В случае момента I массы dm умножаются на квадраты расстояний до этой оси, а в случае момента θ - до неподвижной точки.


    Рассмотрим сначала одну материальную точку с массой m и с координатами x , у , z относительно прямоугольной системы координат (рис. 4.7). Квадраты расстояний ее до координатных осей Х , Y , Z равны соответственно у 2 + z 2 , z 2 + x 2 , x 2 + у 2 , а моменты инерции относительно тех же осей

    I X = m (y 2 + z 2), I У = m (z 2 + x 2),

    I Z = m (x 2 + y 2).

    Сложим эти три равенства, получим I X + I У + I Z = 2m (x 2 + у 2 + z 2).

    Но х 2 + у 2 + z 2 = R 2 , где R - расстояние точки m от начала координат О. Поэтому

    I X + I У + I Z = . (4.19)

    Это соотношение справедливо не только для одной материальной точки, но и для произвольного тела, так как тело можно рассматривать как совокупность материальных точек. Таким образом, сумма моментов инерции тела относительно трех взаимно перпендикулярных осей, пересекающихся в одной точке О, равна удвоенному моменту инерции того же тела относительно этой точки.

    Момент инерции полого шара с бесконечно тонкими стенками .

    Сначала найдем момент инерции θ относительно центра шара. Очевидно, он равен θ = mR 2 . Затем применяем формулу (4.19). Полагая в ней ввиду симметрии I X = I Y = I Z = I. В результате находим момент инерции полого шара относительно его диаметра