Проводящие полимеры основы электроники 21 века. "Органическая и печатная электроника: на волне успеха"

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2014 год

Тема: Полимеры и их применение в XXI веке

1. Полимеры

1. Определение полимер поликонденсация молекулярный

v По своему определению, полимер -- это высокомолекулярное соединение, содержащее в своём составе достаточное количество мономеров или «мономерных звеньев.

v Иными словами, полимеры это линейные цепи, состоящие из большего (N>1) числа одинаковых звеньев. К примеру, для синтетических полимеров N~ 102-104.

v Как правило, полимеры -- вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

2. Первое получение полимера:

v В 1867 году российский химик Александр Бутлеров получил первый полимер - неизвестный ранее полиизобутилен.

v А в 1910 году Сергей Лебедев, тоже российский химик, синтезировал первый образец искусственного каучука {(CH3)2C=CH2}n

3. Реакции получения полимеров - поликонденсация и полимеризация:

v В основном, все полимеры получают двумя методами - реакциями поликонденсации и полимеризации.

v В реакцию полимеризации вступают молекулы, содержащие кратную (чаще - двойную) связь. Такие реакции протекают по механизму присоединения, всё начинается с разрыва двойных связей (реакция №1- получение полиэтилена):

v Этим видом реакции получают многие полимеры, в том числе капрон.

Размещено на http://www.allbest.ru/

2014 год

1. Классификация полимеров:

2. Структура полимеров:

3. Применение:

v Благодаря ценным свойствам, полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве, медицине. Автомобиле- и судостроении, авиастроении и в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы).

v На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия.

2. Полимеры. Применение в XXI веке

v Наука уже давно не стоит на месте и за тот период времени от открытия полимера до наших дней, создано великое множество модификаций этого удивительного вещества. Одними из последних разработок являются следующие три полимера, каждый из которых обладает уникальными свойствами.

1. «Умный пластилин»

v Главным компонентов такого пластилина является полидиметилсилоксан - (C2H6OSi)n. Этот полимер сочетает в себе несколько необычных свойств. Так, в зависимости от разных условий среды, он ведёт себя по-разному: в состоянии покоя он растекается как жидкость, при резком механическом воздействии разрывается на куски как твердое тело.

v “Умный пластилин” был получен случайно, его изобретатель смешал силиконовое масло с борной кислотой в надежде получить новый вид резины, но клейкая масса оказалась не на что не похожей.

2. Гидрогель

v Гидрогели - представляют собой твердые гранулы, полимерное вещество способное за пару часов увеличится в объеме больше чем в десять раз. Все что для этого нужно это вода, разбухнув гранулы, станут мягкими как воск, когда вода испарится, они снова уменьшатся и затвердеют. Подобные вещества называются - супер-абсорбентами, они не только поглощают огромное количество воды, набухший полимер удерживает её внутри собственными молекулами.

v При поглощении растворителя полимером происходит растяжении клубков, т.е. в исходном состоянии сжатый полимерный клубок поглощает в себя растворитель, например воду и происходит её включение внутрь клубка.

v Этот принцип лежит и в основе эко-почвы, гидрогели, используемые в сельском хозяйстве. Обычно при поливе растений большая часть воды уходит в более глубокие слои почвы. Добавленный в почву гидрогель не позволяет утечь ей как сквозь пальцы, даже если растение пустит корни сквозь гранулу, вода из неё не выльется.

v Так как молекулу воды встроены внутрь полимерных цепей гидрогеля, то при физическом разрушении гидрогели не наблюдается вытекания воды, а система сохраняет такие же свойства, как и до разрушения.

v Самый яркий пример работы супер-абсорбента - детские одноразовые подгузники, даже тот, кто не сталкивался с ними, знает принцип работы. В многослойной конструкции содержится тот же полимер впитывающий жидкость как губка. Гидрогель, подобное вещество из подгузника способен выполнять и более серьезную работу, например в нефтедобывающей промышленности.

v В нефтедобыче давно существуют серьезные проблемы. При откачке на каждую тонну “черного золота” приходится три тонны воды. На очистку нефти от лишней жидкости тратятся огромные средства. Долгое время ученые искали способ отделить нефть от воды до того как она попадет в трубопровод, решение было найдено в лаборатории Московского государственного университета.

v Полимерная жидкость закачивается в нефтяную скважину и она ведет себя по-разному в зависимости от того проходит скважина через водный пласт или через нефтеносный пласт.

v Принцип действия достаточно прост. Попав в скважину, полимерная жидкость по разному реагирует на нефть и воду, с “черным золотом” она в реакцию не вступает, но когда на своем пути полимер встречает воду, он тут же впитывает её. Набухший гель закупоривает пласт воды и не выпускает её наружу. Расширение гидрогеля создает дополнительное давление на нефть что приводит к её выдавливанию наружу в чистом состоянии.

3. «Умное лекарство

v Некоторые полимеры обладают свойством реагировать на изменения внешней среды, так “умный пластилин” меняет цвет в зависимости от температуры. В холодной воде заметно темнеет, если перенести его в воду комнатной температуры возвращается к своему первоначальному цвету. При изменении температуры изменяется плотность клубка, т.е. чем ниже температура, тем клубок имеет меньший объем и таким образом при понижении температуры происходит выдавливание красителя, а при его увлечении краситель втягивается в клубок, что и приводит к изменению цвета.

v Полимер выдавливает краску как губка воду, а что если заменить краситель лекарством, сможет ли полимер контролировано выдавать нужную дозу препарата? Есть такое направленное транспортное лекарство в живом организме, эта проблема, которая решается и которую необходимо решать достаточно серьезно бьются.

v Большая часть лекарственных препаратов расходуется впустую. Таблетка не умеет находить больной орган, растворившись в желудке, она через кровь разойдется по всему организму, до нужного места доберется не более 10% препарата. В идеале, лекарство должно попадать сразу к больному органу и не вызывать побочных эффектов.

v “Умные полимеры” могут реагировать не только на температуру, они чувствительны к любому изменению среды, на которую они будут запрограммированы. Мы знаем, что ранение сопровождается подкислением, т.е. среда становится кислой, а вот этот гелий сделан, так что при подкислении он немного сжимается и вытесняет лекарство, которое ему было введено.

v На основе полимерного геля создали уникальное лекарство - ранозаживляющие гидрогели. Гидрогель состоит из восьми компонентов, которые смешиваются в дистиллированной воде в определенной последовательности. В промышленных масштабах каждый компонент добавляется с определенным интервалом времени, при реакции эти вещества создают стойкую полимерную структуру, в которую затем добавляется лекарство.

v Гель представляет собой транспортное средство, который в микрокапсулах содержит лекарственный препарат, еще его называют “умный гель” - потому что не зависимо от людей, которые его применяют, он сам ищет и находит места поражения и оказывает помощь. В составе гидрогеля не одно а сразу несколько лекарств, попав на рану полимер отдает их поочередно, в зависимости от того что требуется организму обезболить или начать процесс заживления, лекарство на рану поступают постепенно причем продолжительное время, а потом его можно просто смыть водой. До этой работы ничего подобного в России не было.

v По тому же принципу действует и оболочка капсулы (таблетки), она изготовлена из специального полимера, он отвечает не только за доставку медикаментов по назначению, но и за выделение определенной дозы лекарства в течение долгого времени.

Список литературы

1. ru.wikipedia.org

2. http://www.sigmapluss.ru/umniipolimer.php

3. http://www.kation-msk.ru/ru/press/article/15_8.html

4. http://xn--e1aogju.xn--p1ai/

5. http://www.km.ru/referats/7FA5CF33809646779974A80FDAD7A6CC

Размещено на Allbest.ru

...

Подобные документы

    Образование высокомолекулярного соединения из простых молекул-мономеров в ходе реакций полимеризации и поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Молекулярные цепи.

    реферат , добавлен 28.01.2009

    Изучение понятия и строения полимеров, их классификации по происхождению, форме молекул, по природе. Характеристика основных способов получения - поликонденсации и полимеризации. Пластмассы и волокна. Применение полимеров в медицине и строительстве.

    презентация , добавлен 12.10.2015

    Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.

    статья , добавлен 22.02.2010

    Классификация реакций поликонденсации, глубина ее протекания, уравнение Карозерса. Влияние различных факторов на молекулярную массу и выход полимера при поликонденсации. Методы осуществления реакции. Полимеры, получаемые реакцией поликонденсации.

    контрольная работа , добавлен 19.09.2013

    Полиэтилен - высокомолекулярное соединение, полимер этилена; белый твёрдый продукт, устойчивый к действию масел, ацетона, бензина и других растворителей. Сфера применения полиэтилена. Области применения полиэтиленовых труб и их основные преимущества.

    реферат , добавлен 27.10.2010

    Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат , добавлен 23.04.2013

    Что такое полимеры и особенности развития науки о полимерах. Описание различий в свойствах высоко- и низкомолекулярных соединений. История развития производства полимеров. Технологический процесс образования, получения и распространения полимеров.

    реферат , добавлен 12.06.2011

    Образование высокомолекулярного соединения из молекул-мономеров в ходе реакций полимеризации, поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Каталитическая полимеризация.

    реферат , добавлен 28.01.2009

    Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

    презентация , добавлен 10.11.2010

    Классификация, строение полимеров, их применение в различных отраслях промышленности и в быту. Реакция образования полимера из мономера - полимеризация. Формула получения полипропилена. Реакция поликонденсации. Получение крахмала или целлюлозы.

Полярные полимеры характеризуются наличием в их структуре постоянных диполей. Если конформация полимера жестко закреплена, результирующий момент молекулы будет определяться тем, складываются или вычитаются моменты отдельных сегментов. В общем случае полимерные молекулы не находятся в одной фиксированной конформации и экспериментальная величина - среднеквадратичный дипольный момент - является усреднением по многим различным конформациям.

У полярных полимеров диэлектрическая проницаемость определяется не только электронной, но также резонансной и релаксационной поляризацией. Характерное время установления резонансной поляризации зависит от температуры и составляет 10-13 -10-12 с. Время установления релаксационной поляризации зависит от температуры и изменяется на много порядков. Поэтому диэлектрическая проницаемость полярных полимеров уменьшается с частотой и сложным образом зависит от температуры.

Для полярных полимеров, обладающих более высокой диэлектрической проницаемостью, чем неполярные, молярная поляризация с ростом температуры уменьшается. Соотношение (1.5) в этом случае преобразуется к виду

где - составляющие тензора деформационной поляризуемости молекулы,- ее постоянный (результирующий) дипольный момент молекулы,- постоянная Больцмана,- температура. Уравнение (1.6) часто называют уравнением Дебая для молярной поляризации.

Дипольные моменты атомных групп существенным образом зависят от типа их химической связи с молекулой, в которую они входят. Необходимость учета сильного локального взаимодействия между молекулой и ее окружением и, как следствие этого, локального

упорядочения, было учтено введение коэффициента корреляции , определяемого как:

где - число ближайших молекул в системе, γ - угол между молекулой в точке отсчета и ее ближайшим соседом. При учете коэффициента корреляции и некоторых других улучшений, осуществленных Фрелихом, конечным результатом явилось следующее уравнение (называемое уравнением Фрелиха), которое связывает макроскопическую диэлектрическую проницаемость с дипольным моментом молекулы:

где показатель преломления света в данном диэлектрике.

Во всех полярных полимерах различают два типа релаксационных потерь: дипольно-сегментальные и дипольно-групповые. Первый тип обусловлен движением крупномасштабных сегментов макромолекул, которые можно представить как изгибные колебания основной молекулярной цепи. Второй тип потерь связан с вращением малых полярных групп, содержащихся в боковых ветвях макромолекулы. Несколько областей максимумов дипольно-групповых потерь (β, γ, δ) наблюдаются тогда, когда у полимера есть полярные группы, обладаю различной подвижностью. Отметим, что некоторая подвижность полярных групп сохраняется вплоть до гелиевых температур.

С увеличением полярности полимера возрастают диэлектрические потери, вызванные электрической проводимостью. Они наблюдаются при высоких температурах на низких частотах и экспоненциально увеличиваются с повышением температуры.

сти между проводниками и компонентами схемы в различных электронных чипах, позволяя увеличить их быстродействие.

Полиимиды рассматриваются в современной микроэлектронике как одни из наиболее перспективных изоляционных материалов. Эти полимеры обладают хорошими термическими, механическими и электрическими свойствами, которые можно еще улучшить, если уменьшить их диэлектрическую проницаемость. Один из самых простых ароматических полиимидов имеет следующую структурную формулу:

С целью уменьшения диэлектрической проницаемости полиимида было предложено заменить часть атомов водорода на атомы фтора, поскольку поляризуемость связей C – F меньше, чем связей C – H. Связь C – F очень полярна, что, тем не менее, не сказывается на диэлектрической проницаемости на высоких частотах, но может привести к ее возрастанию на низкой частоте. Однако полиимиды обычно используются при температурах ниже температуры стеклования, поэтому ориентационная поляризация затруднена и не вносит заметного вклада в рабочем диапазоне частот. Более того, использование симметричного замещения помогает избежать появления результирующего дипольного момента:

Использование фторированных полиимидов позволяет снизить диэлектрическую проницаемость от 3,4 до 2,8.

Другим способом, позволяющим снизить диэлектрическую проницаемость, является увеличение доли свободного объема1 в полимерном материале. Увеличение свободного объема приводит к снижению числа поляризующихся групп в единице объема, снижая тем самым диэлектрическую проницаемость полимера. Оценки показывают, что данный способ позволяет уменьшить значение диэлектрической проницаемости на несколько десятков процентов относительно первоначального значения.

В целом, рассматривая оба способа, можно сделать вывод о том, что при создании молекулярных структур с низкой диэлектрической проницаемостью регулирование свободного объема столь же важно, как и выбор функциональных групп с малой поляризуемостью.

Наряду с созданием полимерных диэлектриков с низкой диэлектрической проницаемостью в последние годы стала актуальной и другая задача - создание тонкопленочных полимерных диэлектрических материалов со сверхвысоким значением диэлектрической проницаемости. Их предполагается использовать в качестве подзатворных диэлектрических слоев в органических полевых транзисторах (ОПТ). К подзатворным диэлектрикам ОПТ предъявляется ряд специфических требований. Эти слои должны обладать высокой диэлектрической проницаемостью, низкой проводимостью и потерями, а толщина их не должна превышать нескольких сотен нанометров. В настоящее время при изготовлении ОПТ в качестве подзатворных диэлектрических слоев широко используются тонкие слои неорганических окислов, таких как SiO2 , Ta2 O5 , Al2 O3 и ряда других. Диэлектрическая проницаемость этих окислов составляет примерно 6 – 30 при толщине слоя от 5 до 500 нм.

1 Свободный объем в полимере - это объем, дополнительный к занимаемому атомами, исходя из их вандерваальсового радиуса, объему.

Задача перехода от неорганических оксидных к полимерным диэлектрическим слоям связана с необходимостью упрощения технологии изготовления ОПТ, поскольку реализация «принтерной»1 технологии изготовления ОПТ с оксидными диэлектриками затруднительна.

Полярные полимерные диэлектрики следует рассматривать как перспективные материалы, которые можно использовать для этих целей. Особый интерес представляют полимерные диэлектрики, в молекулах которых присутствуют полярные группы с большим значением дипольного момента. Типичным представителем этого класса полимерных диэлектриков является циановый эфир поливинилового спирта (ЦЭПС). Структурная формула мономерного звена ЦЭПС имеет вид

ЦЭПС характеризуется одним из наиболее высоких значений диэлектрической проницаемости среди известных полимерных материалов. Значение ε этого полимера на частоте порядка 103 Гц равно

15, а tgδ не превышает 0,1 – 0,15.

Столь значительная диэлектрическая проницаемость ЦЭПС обусловлена присутствием сильно полярных нитрильных (C N), кар-

бонильных (C=O) и гидроксильных (OH) групп, способных к ориентации под действием внешнего электрического поля (рис. 1.12). При благоприятной ориентации этих групп, обеспечивается максимальное значение дипольного момента равное 5,13 Д, но в среднем суммарный

1 «Принтерная» технология изготовления ОПТ основана на методе струйной печати, а также полиграфическом методе микроконтактной печати и печати термопереносом.

дипольный момент мономерного звена (с учетом коэффициента корреляции g = 0,84) составляет 3,63 Д.

Рис. 1.12. Значительный дипольный момент мономерного звена ЦЭПС возникает в результате ориентации полярных групп

Полимерные диэлектрики широко применяемые в различных электронных устройствах. В органической электронике они чаще всего используются в виде тонких пленок, поэтому даже при относительно невысоких рабочих напряжениях, напряженность электрического поля в них достигает значительных величин. Действительно, в пленке толщиной 100 нм при воздействии на нее напряжения 10 В средняя напряженность поля уже составляет 106 В/с, но в локальных областях полимера, например, на границе аморфной или кристаллической областей или на интерфейсе электрод-полимер, может существенно превосходить это значение. Таким образом, проблемы связанные с электрической прочностью тонких полимерных пленок и их работоспособностью в сильном электрическом поле приобретают первостепенное значение.

К настоящему времени установлено, что электрическое разрушение пленок не является критическим событием, происходящим при достижении определенной напряженности поля. Время их жизни в электрическом поле (долговечность) экспоненциально уменьшается при увеличении его напряженности. Электрическое разрушение по-

лимерных пленок можно рассматривать как процесс, состоящий из двух последовательных этапов. На первом (подготовительном) этапе происходит инициируемое электрическим полем накопление повреждений макромолекул. Длительность этого этапа определяет долговечность образца пленки в электрическом поле (время от момента приложения напряжения к полимеру до пробоя). На втором (завершающем) этапе полимерный диэлектрик теряет способность сопротивляться протеканию тока высокой плотности, наблюдается резкое его возрастание, т. е. происходит электрический пробой.

Электрическая прочность пленок многих полимеров изучалась на постоянном, переменном и импульсном напряжении. Проведенные исследования показывают, что пробой тонких пленов полимеров раз-

личных типов происходит в полях с напряженностью (2–6) 108 В/м.

Эта величина практически не отличается от напряженности полей, в которых в условиях ограничения частичных разрядов пробиваются более толстые пленки полимеров.

Важными факторами, во многом определяющими подходы, используемые при рассмотрении механизма электрического пробоя тонкопленочных полимерных структур, являются зависимость их электрической долговечности от напряженности поля и влияние скорости подъема напряжения и материала электродов на величину пробивной напряженности.

Наблюдаемое влияние напряженности электрического поля на долговечность и скорости подъема напряжения на пробивную напряженность, представляется весьма важным фактом, поскольку его можно рассматривать как указание на то, что электрическое разрушение тонких полимерных пленок действительно является следствием постепенного накопления повреждений (изменений), завершающегося пробоем. В ходе этого процесса создаются условия, при которых в определенный момент времени под воздействием сильного электрического поля полимерный диэлектрик теряет свои «диэлектрические

свойства» и оказывается способным пропускать значительные токи, приводящие к его разрушению (пробою) вследствие выделения тепла.

Деградация полимерного материала в электрическом поле протекает вследствие разрыва химических связей в молекулах полимеров, выделения энергии при рекомбинации зарядов и тепловыделения при протекании тока высокой плотности.

1.6. ПОЛИМЕРЫ С СОБСТВЕННОЙ ПРОВОДИМОСТЬЮ

Основное различие между полимерными диэлектриками и полимерами, обладающими собственной электронной проводимостью, заключается в том, что первые не содержат сопряженных химических связей, которые есть во вторых.

Среди многообразия проводящих полимеров, в соответствие с классификацией, предложенной А. В. Ванниковым, исходя из особенностей транспорта носителей заряда, условно можно выделить следующие группы.

1. Проводимость определяется транспортом носителей заряда по полимерным полисопряженным цепям. Типичными представителями этой группы полимеров являются ориентированный полиацетилен, политиофен, полипиррол.

2. Носители заряда движутся по полимерным полисопряженным цепям, но суммарный транспорт определяется прыжками носителей заряда между полимерными цепями. В эту большую группу входят многочисленные производные полифениленвинилена, полиметилфенилсилилен и другие. Здесь следует отметить, что межмолекулярный перенос заряда сильно затрудняет транспорт, поэтому подвижность носителей заряда в таких полимерах существенно ниже, чем внутримолекулярная подвижность.

3. Локализованные транспортные центры расположены в основной цепи полимера, не имеющей полисопряжения, например полиимид, содержащий в основной цепи трифениламинные или антраценовые транспортные группы.

4. Локализованные транспортные центры являются боковыми заместителями основной цепи полимера. Сюда относятся поливинилкарбазол, полиэпоксипропилкарбазол, поливинилантрацен и т. д.

5. Последняя, самая обширная группа включает полимеры, допированные активными низкомолекулярными соединениями. В таких соединениях именно полимерная матрица, как правило, определяет физико-механические и спектральные свойства системы.

Механизм проводимости полимеров, относящихся ко 2–5 группам, является прыжковым и связан с переносом носителей заряда по транспортным центрам. По своей природе и наблюдаемым закономерностям он подобен прыжковому механизму подвижности. В зависимости от природы полимера подвижность в них может быть электронной или дырочной.

Дырочный транспорт осуществляется по транспортным центрам, имеющим минимальный потенциал ионизации. Обычно это ароматические аминные группы или соединения. Транспорт дырки связан с прыжком электрона с высшей заполненной молекулярной орбитали (уровня НОМО) нейтрального транспортного центра, на молекулярную орбиталь соседнего положительно заряженного транспортного центра.

Транспорт электронов происходит по транспортным центрам, характеризующимся максимальным сродством к электрону. Чаще всего, в качестве таких центров выступают кислородосодержащие группы. Электрон с молекулярной орбитали отрицательно заряженного центра переходит на низшую свободную орбиталь (уровень LUMO) соседнего нейтрального транспортного центра.

Проводимость,

Структурная формула Название

полиацетилен 10 4

полифенилен 10 3

полипиррол 10 3

политиофен 10 3

полианилин 10 2

Рис. 1.13. Структурные формулы проводящих полимеров

Электропроводность полимеров, относящихся к первой группе, определяется электропроводностью полимерных цепей. Эти полимеры относятся к полимерам с высокой темновой проводимостью. Структурные формулы и удельная проводимость некоторых из них представлены на рис. 1.13.

-/a 0 /a

Рис. 1.14. График зависимости энергии от волнового вектора электрона в моноатомной линейной цепочке (а ) и плотность состоянийg (E )

для этой цепочки (б ). Состояния, занятые электронами приT = 0, заштрихованы

ИСТОРИЧЕСКИЙ ЭКСКУРС
Полимеры с высокой электропроводностью, псевдометаллическими и полупроводниковыми свойствами были получены еще в 60-е годы. Классический пример полимера этого класса – полиацетилен. Благодаря полисопряженным химическим связям, его электропроводность можно менять в широком диапазоне как в процессе синтеза (путем контроля длины полимерных цепей), так и при полевых воздействиях (тепловом, электромагнитном, ионизирующим излучением), приводящих к соответствующему изменению либо первичной структуры полимера (структурная перестройка), либо к изменению степени его полимеризации. Проводящие полимеры широко используются для изготовления электродов химических источников тока (полианилины), автоматических терморегуляторов и стабилизаторов напряжения (полиакрилонитрилы), в качестве электролитов конденсаторов (соли полипироллов) и т.п. Открытие и изучение эффекта фотопроводимости в полинитрилах, полифталоцианинах, полифенилах и полифениленвиниленах привело к формированию фотодетекторов на их основе, а высокая “чувствительность” спектральных характеристик полимеров к исходной структуре и полимерной составляющей позволила создать приборы с широким спектральным диапазоном. Правда, справедливости ради, следует признать, что их квантовый выход люминесценции не превышал нескольких процентов. В 80-е годы в результате исследований проводящих полимеров с высокой степенью ориентации полимерных цепей в объемном образце (что позволяет использовать характеристики квазиодномерной структуры макромолекул) были получены полимерные квазикристаллические материалы с высокой анизотропией электрических характеристик. Подвижность носителей зарядов в них достигла 5000–6000 см2/В.с.
Многообразие структур полимерных систем и возможности их модификации предоставили исследователям широчайший выбор характеристик материала. Это, естественно, подтолкнуло их к попыткам реализации активных электронных приборов на базе полимерных материалов. Работы велись на основе достаточно хорошо проработанных к тому времени теории полупроводниковых приборов, физических и технологических принципов их формирования. При этом в полимерных (молекулярных) системах аналогом уровня Ферми выступали энергетические состояния носителей на самом высоком и самом низком незанятых уровнях молекулярных орбиталей, а аналогом процесса легирования, приводящего к изменению положения уровня Ферми, – операция химического замещения, вызывающая изменение потенциала ионизации и электронного сродства. Изменяя первичную структуру полимера, можно задавать уровни молекулярных орбиталей и, следовательно, ширину его запрещенной зоны. Продолжая рассмотрение аналогий, укажем, что в качестве межсоединений можно использовать системы линейных полимеров с сопряженными связями.
После краткого исторического экскурса рассмотрим "продвижение" полимеров в мир современных электронных приборов.

ОРГАНИЧЕСКИЕ СИД С ВЫСОКОЙ ЯРКОСТЬЮ СВЕЧЕНИЯ
Первыми электронными приборами на основе полимеров стали светоизлучающие диоды (СИД). Сейчас уже можно считать, что разработки практически достигли уровня, позволяющего перейти к промышленному производству органических СИД, и задача сегодняшнего дня сводится к созданию приборов с высокой яркостью свечения. Многочисленные исследования в этой области различными путями привели к оптимальному конструктивно-технологическому варианту, который получил название "прозрачный органический светоизлучающий диод" (Transparent Organic Light Emitting Diode – TOLED, рис.1). Принцип работы его предельно прост и заключается в генерации излучения молекулами полимера под действием электрического поля в результате рекомбинации носителей в электролюминесцентном слое. Конструктивно СИД должен быть выполнен так, чтобы прозрачный электрод, слой переноса дырок, электролюминесцентный слой и волновод были максимально прозрачны, а слой переноса электронов и отрицательный электрод обеспечивали максимальное интерференционное и зеркальное отражение излучения. Для усиления вклада отраженного излучения в некоторых конструкциях СИД отрицательному электроду придают соответствующую форму (например, вогнутого параболического зеркала) и вводят формируемые в слое пластика оптические элементы на основе линз Френеля.
Сейчас активно изучаются новые органические материалы для СИД. Так, на фирме Fujitsu на основе сополимера пара- и метабутадиена получен проводящий полимер с максимальной интенсивностью излучения при соотношении пара- и метамодификаций 2:1. В качестве инжектирующего дырки слоя используют проводящий полимер на основе тиофена, позволивший снизить рабочее напряжение СИД при больших значениях тока. Положительный электрод, изготовленный из сплава Mg–In, отличается высокой стабильностью и обеспечивает высокий уровень инжекции электронов. Отрицательный электрод из окиси олова–индия наносится на стеклянную подложку.
В дальнейшем фирма предполагает использовать этот органический СИД с поликремниевыми полевыми тонкопленочными транзисторами для создания дисплеев, способных воспроизводить "живое" изображение. Эти дисплеи будут обладать высокой яркостью и большим углом обзора, а стоимость их будет значительно ниже, чем у ныне выпускаемых АМ ЖК-дисплеев.

СИСТЕМЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ
До недавнего времени СИД на основе органических соединений использовались только в сотовых телефонах и часах, так как существовали значительные технологические проблемы сохранения свойств СИД при формировании матриц. Развитие “низкотемпературных” технологий устранило это препятствие. Об интенсивности работ и круге решаемых задач по созданию плоских индикаторов и дисплеев на основе органических материалов свидетельствуют исследования в области получения перестраиваемых цветных СИД с вертикальной структурой (Принстонский университет) и цветного органического ЭЛ-дисплея для настенных телевизоров и мобильных мультимедийных систем (компания Idemitsu Kosan), а также по освоению опытного производства полимерных СИД на основе технологии компании Cambridge Display Technology (фирма Uniax) и производства ЖКИ на пластиковых подложках (Ricon). Световая эффективность современных органических СИД и приборов отображения информации на их основе составляет 10–60 лм/Вт, яркость светового излучения достигает 50000 кд/м2, а ресурс – 10 тыс. часов (при яркости 150 кд/м2).
Главное достижение 90-х годов – разработка органических СИД синего свечения, что позволило перейти к созданию полноцветных экранов на основе RGB-триад. Одна из основных технологических проблем при этом – повреждающее воздействие технологических процессов обработки при формировании набора СИД (первые элементы набора испытывают химическое воздействие при формировании второго, а на первые два влияет процесс изготовления третьего элемента набора). Наличие даже незначительных химических загрязнений (особенно щелочными металлами) способно привести к существенной деградации свойств электролюминесцентного материала и вызвать значительные изменения интенсивности свечения и спектральных характеристик, сократить срок службы прибора. Технология маскирования для защиты слоев при последовательном изготовлении элементов триад неизбежно приводит к ограничению разрешающей способности дисплея.
Эта проблема успешно решена за счет перехода к безмасочной технологии изготовления трехмерной, а не планарной структуры. По этой технологии элементы триад выполняются в виде трех- или четырехгранных пирамид, формируемых методом прессования на пластиковой подложке. На определенную грань всех пирамид матрицы направленным осаждением из паровой фазы наносится органический материал, обеспечивающий излучение одного цвета. Затем подложка поворачивается на соответствующий угол (120° или 90°), и осаждается материал следующего цвета свечения. На четвертой грани формируется слой одного из цветов уменьшенной яркости, что позволяет расширить воспроизводимую дисплеем цветовую гамму, а также стабилизировать баланс белого в процессе эксплуатации. Такая конструкция обеспечивает увеличение разрешающей способности почти в три раза. Полимерный слой с пирамидами и отверстиями под контакты наносится поверх схемы активной матричной адресации на тонкопленочных полевых транзисторах (ТПТ), изготавливаемой совместно со столбиковыми выводами на стеклянной подложке. Все составляющие технологического маршрута уже отработаны, и разработчики надеются выпускать достаточно дешевые дисплеи с высокими характеристиками.
Несомненный интерес представляют разработки сверхтонких органических дисплеев. В Массачусетском технологическом институте разработана технология получения дисплеев на слое пластика толщиной всего 100 мкм, который можно скручивать без изменения свойств в рулон радиусом 5 мм. Изображение формируется в слое электрофоретической пасты, наносимой на сетку электродов на гибкой полимерной подложке. Паста состоит из микрокапсул, содержащих белые (двуокись титана – стандартная составляющая обычных белил) и черные (смесь органических красителей) микрочастицы, взвешенные в расплавленном полиэтилене. Оболочка капсул проходит специальную обработку для обеспечения ее прозрачности. Средний размер капсул – около 50 мкм. Поверх слоя пасты наносится сетка прозрачных электродов. При подаче напряжения одной полярности отрицательно заряженные белые частицы перемещаются в верхнюю часть капсул и загораживают черные частицы. В результате капсула приобретает белый цвет. При изменении полярности белые частицы перемещаются в нижнюю часть капсулы, и цвет ее становится черным. Разрешение такого дисплея определяет шаг сетки электродов, и уже для первых образцов оно было сопоставимо со стандартными значениями для лазерных принтеров. Потребляемая мощность дисплея с диагональю экрана 30 см – 12 мВт, длительность воспроизведения информации при снятии напряжения не ограничена (до новой адресации). Изображение можно менять более 107 раз без ухудшения рабочих характеристик. На основе такого конструктива можно создавать “электронную бумагу”.
Фирма Xerox сообщила о подготовке на базе "электронной бумаги" копировальных устройств – сверхтонких дисплеев, изготовленных по технологии Gyricon, предусматривающей использование масляных полостей с пластиковыми сферами. При подаче напряжения сферы ориентируются относительно поверхности либо черной, либо белой стороной. Для воспроизведения изображения достаточно двух батарей типа АА. Допускается исправление и обновление информации. Единственный недостаток дисплеев – необходимость защиты от электрических помех, в частности от статического электричества. "Электронная бумага", так же как обычная, – легкая, гибкая, удобная для чтения под любыми углами зрения. К тому же она обладает такими новыми свойствами, как возможность обновлять информацию несколько тысяч раз и пользоваться электронной указкой. По оценке специалистов фирмы Xerox, цена такой бумаги не превысит 25 центов за лист формата А4.

ОРГАНИЧЕСКИЕ ТОНКОПЛЕНОЧНЫЕ ТРАНЗИСТОРЫ
При изготолении дисплеев совместное формирование ТПТ по традиционной технологии и органических СИД затруднено из-за высокотемпературных процессов, вызывающих деградацию свойств органических материалов. ТПТ на органических материалах можно изготавливать при меньших температурах и при этом использовать вместо дорогих стеклянных дешевые пластиковые подложки, что позволит значительно снизить стоимость всего изделия. Развитие технологии органических ТПТ открывает широкие возможности для создания сверхлегких и сверхплоских дисплеев, обладающих высокими гибкостью и прочностью. Решение технологических вопросов получения ТПТ на основе органических материалов позволит изготавливать все элементы дисплеев по сходным технологическим процессам, что снизит издержки производства и уменьшит разнородность используемого оборудования. По своим характеристикам современные органические ТПТ не уступают стандартным на пленках аморфного кремния. Типовая структура органического ТПТ представлена на рис.2.
Опытный образец ТПТ на пентацене с длиной и шириной затвора 5 и 500 мкм, соответственно, и толщиной подзатворного диэлектрика 140 нм имел пороговое напряжение 10 В и дрейфовую подвижность насыщения 1,7 см2/В.с (рекордный результат для органических транзисторов). Для снижения тока утечки между отдельными ТПТ используется специфическая топология Corbino, в которой электрод истока формирует вокруг активной области ТПТ замкнутое кольцо, в центре которого располагается электрод стока. При такой конструкции затвор управляет всем током, текущим от стока к истоку, что обеспечивает отношение токов во включенном и выключенном состоянии ~108, а также малые токи утечки (ток в выключенном состоянии близок к уровню шумов).
Таким образом, можно констатировать, что уже сегодня решена технологическая задача формирования приборов отображения информации полностью из органических материалов.

ОПТОЭЛЕКТРОНИКА И ЛАЗЕРНАЯ ТЕХНИКА
Успехи в создании органических СИД и систем отображения информации стимулируют и разработки устройств с электрическим возбуждением на органических полимерах – одном из самых перспективных материалов для изготовления новых типов оптоэлектронных ИС. Основные достоинства таких ИС – низкая стоимость и достаточно простая технология, пригодная для освоения массового производства. Исследования в этой области ведут многие фирмы США, Германии, Австрии и Италии. И сегодня в стандартных гибридных оптоэлектронных схемах уже применяются промышленные полимерные световоды.
Изучено более десятка полимеров с полупроводниковыми свойствами, пригодных для лазерной генерации во всем видимом диапазоне. Особый интерес разработчиков вызывают сопряженные полимеры с боковыми цепями, так как именно боковые цепи определяют ширину энергетической зоны, т.е. длину волны излучения. Благодаря высокой экстинкции генерируемого излучения (пленки толщиной всего 0,1 мкм поглощают 90% излучения), слабой зависимости квантовой эффективности фотолюминесценции от количества активного полимера в резонаторе и большому энергетическому сдвигу между спектрами поглощения и излучения (что позволяет легко достигать инверсии заселенности), сопряженные полимеры уже при малых толщинах пригодны для формирования активной среды лазера. Высокая растворимость сопряженных полимеров с боковыми цепями в обычных органических растворителях значительно упрощает технологию нанесения и формирования необходимых слоистых пленочных топологических структур, в том числе и традиционными методами фотолитографии, хорошо отработанными в микроэлектронике.
Одна из самых серьезных проблем изготовления на полимерных пленках приборов с электрическим возбуждением – высокая плотность порогового тока генерации (~1 кАЧсм2). Решается она за счет ввода распределенной обратной связи и распределенного отражателя Брэгга (РОБ) с целью повышения добротности резонатора. РОБ выполняет функцию зеркала резонатора. Образуют его чередующиеся полимерные слои различной толщины с низким и высоким значениями коэффициента преломления. Так как длина резонатора изменяется в зависимости от длины волны излучения, РОБ с подобной структурой может поддерживать многомодовую генерацию.
Пример удачного применения полимеров в лазерной технике – первый пригодный для промышленного производства лазер на органическом материале с электрическим возбуждением фирмы Lucent Technologies. Он выполнен на кристаллах тетрацена, молекулы которого содержат четыре бензольных кольца. Полевая структура (канал шириной 25 мкм и длиной 200–400 мкм) создавалась на слоях тетрацена толщиной 1–10 мкм, полученных методом осаждения на диэлектрическую подложку из паровой фазы в потоке инертного газа. В качестве диэлектрика использовался слой окиси алюминия толщиной 0,15 мкм, а управляющие электроды изготавливались из окиси цинка, легированной алюминием. Структура представляет собой планарный многомодовый волновод с полными внутренними потерями ~100 см-2. Лазерный резонатор формировался путем скола кристалла тетрацена с образованием граней с коэффициентом отражения ~8%. При высокой плотности инжекционного тока в резонаторе наблюдалась канализация излучения на длине волны 575,7 нм с усилением при работе в многомодовом режиме. При комнатной температуре лазер работал в импульсном режиме, а при 200К – в режиме непрерывного излучения. При уменьшении потерь на отражение за счет введения распределенной обратной связи и РОБ возможна работа в непрерывном режиме и при комнатной температуре. Достоинство лазера – возможность перестройки по частоте, поскольку спектр излучения тетрацена достаточно широкий.
Лазеры на органических материалах значительно дешевле полупроводниковых, а широкий выбор материалов позволяет перекрывать значительный спектральный диапазон. Можно с уверенностью прогнозировать, что подобные лазеры в ближайшем будущем найдут широкое применение в оптических ЗУ и лазерных принтерах.

ПРОМЫШЛЕННОЕ ОСВОЕНИЕ ПОЛИМЕРНОЙ ТЕХНОЛОГИИ
Несмотря на всю разнородность используемых полимерных материалов, большинство операций создания приборов и элементов конструкции сходны по своей структуре и могут быть в значительной степени унифицированы. К таким операциям, в первую очередь, относятся процессы осаждения (нанесения) полимерных слоев и процессы формообразования. Выше уже указывалось, что для большинства тонкопленочных и толстопленочных материалов можно применять хорошо освоенные процессы осаждения из паровой фазы, трафаретной печати и литографии (для растворимых композиций).
Революционный подход к разработке технологии массового производства электронных приборов на основе органических пленок продемонстрировала калифорнийская фирма Rolltronics. По ее технологии, названной roll-to-roll (с катушки на катушку), в конвейерном цикле производства используется большая катушка с гибким пластиком, играющим роль подложки будущего прибора (рис.3). Длина ленты пластика – более 300 м, а ширина может превышать 1 м. Последовательное нанесение и формирование слоев ведется в специализированных камерах обработки, обеспечивающих выполнение всего технологического цикла. Разработчики полагают, что им удастся формировать структуры при температурах не выше 100–125°С, что позволит использовать большинство современных полимерных материалов.
Совместно с фирмой Iowa Thin Film Technologies компания Rolltronics планировала к концу 2001 года ввести в строй производственную линию roll-to-roll. В качестве "пробы пера" выбран основной элемент будущих конструкций – тонкопленочный транзистор. Помимо ТПТ, фирма намерена изготавливать схемы памяти, силовые приборы и дисплейные элементы, а также все компоненты электронных книг и электронную бумагу. Технология roll-to-roll пригодна для формирования плоских экранов, осветительных и информационных СИД-панелей, солнечных элементов, оптоэлектронных приборов и полупроводниковых лазеров. Представители фирмы называют эту технологию прорывом в будущее, подчеркивая ее чрезвычайно высокую экономичность и производительность, что позволит перейти к массовому производству новых видов электронных приборов и резко снизить их стоимость.

ПЕРСПЕКТИВЫ РАЗВИТИЯ
Используемые физические принципы и технология "полимерной электроники" – первый естественный шаг на пути к молекулярной электронике. Это объясняется тем, что в отличие от классической твердотельной электроники, где рассматриваются свойства кристаллического тела и активные структуры формируются в его объеме, в случае применения полимеров необходимо уже учитывать свойства молекул. При переходе к истинно молекулярной электронике, когда активным элементом уже выступают единичные молекулы, основная задача – выбор технологического метода точечного (локального) воздействия на молекулу и изменения ее первичной химической структуры. Естественно, если технологический инструмент не способен локально модифицировать исходную молекулярную систему на атомном уровне, следует развивать методы ее самопостроения и саморегуляции, как это происходит в природе в жизненном цикле вирусов и бактериофагов. В первом приближении к ним можно отнести метод Лэнгмюра-Блоджетт получения монослойных пленок или метод самопостроения монослоев олигомеров на металлической подложке (Self-assembled monolayers – SAM). Эти методы можно условно, по аналогии с технологией твердотельных приборов, отнести к "однослойной" эпитаксии.
Один из вариантов перехода к молекулярной электронике – “гибридная” технология, когда используются “молекулярные элементы” с применением методов классической электроники. Пример такой комбинированной технологии – предложенное фирмой IBM конструктивное применение углеродных нанотрубок для создания транзисторов, размеры которых в 500 раз меньше, чем у современных кремниевых приборов. К тому же в отсутствие кислорода они способны выдерживать нагрев до 1000°С.
Современные средства модификации и контроля атомных структур – атомная силовая микроскопия (AFM) и сканирующая туннельная микроскопия (STM) – могут обеспечить технологические требования на атомарном уровне. Но, к сожалению, и AFM, и STM – последовательные методы с не очень высокой производительностью, и в ближайшем будущем они будут использоваться только как лабораторный инструмент. Тем не менее, именно с помощью AFM и STM впервые были успешно созданы приборы молекулярной электроники. Эти методы позволяют решать и самую сложную задачу сборки молекулярных электронных приборов – формирование контактов. Теоретические модели AFM- и STM-методов формирования структур и измерений пока еще только развиваются, и здесь можно ожидать еще множество открытий. Однако реализация пригодных к промышленному освоению методов молекулярной электроники – дело будущего.

ЗАКЛЮЧЕНИЕ
Все изложенное показывает, что электроника стоит на пороге "полимерной" революции. В ближайшие три–пять лет появится возможность "печатать" изделия электроники как обои. На таких пластиковых "обоях" будут создаваться полноцветные экраны и дисплеи, солнечные батареи и осветительные панели на СИД белого свечения, электронная бумага и многое другое. Новые изделия электроники на базе полимерных материалов, которые появятся в ближайшем десятилетии, революционным образом изменят условия эксплуатации электронного оборудования, расширят возможности информационных технологий, создадут предпосылки перехода на новые принципы организации, обучения, быта и развлечений. Задача российской электроники – "не прозевать" этот рывок и достойным образом включиться в развитие полимерной электроники.

Литература
Laser Focus World, 2001, v.37, №3, p. 41–44.
Semiconductor International, 2000, v.23, №8, p.46.
Semiconductor International, 2001, v.24, №6, p.50.
Semiconductor International, 2001, v.24, №8, p.40.
Solid State Technology, 2000, v.43, №3, p. 63–77.
Photonics Spectra 2000, v.34, №5, p.44.
Journal of American Chemical Society, 2000, v.122, №2, p. 339–347.
Зарубежная электронная техника, 2000, вып.1, с. 66–72.

Статья на конкурс «био/мол/текст»: Ученые давно мечтают превратить животных и растения в киборгов, управляемых электрическими сигналами, и пробуют сделать это самыми разными способами. Так, около 10 лет назад появилась новая научная область - органическая биоэлектроника, - в которой посредниками между живыми существами и компьютерами выступают электропроводящие полимеры. Дистанционное управление цветом листьев розы, искусственный нейрон и точечное лечение боли - первые результаты этого тройственного союза уже впечатляют.

Спонсор номинации - .

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсор публикации этой статьи - Андрей Александрович Киселёв.

Все живые организмы суть немного роботы или компьютеры. Только вместо привычного электричества - электронов, бегущих по проводам в розетку и обратно, - нами управляют нервные импульсы, потоки заряженных молекул, называемых ионами. А на «кнопки» в живых электрических схемах нажимают не пальцы, а особые вещества - нейромедиаторы. Когда их концентрация превышает определенный предел, в клеточных мембранах нейронов начинается цепочка биохимических реакций, которая заканчивается возбуждением нервного импульса.

Сейчас ученые стараются «поженить» компьютеры внутри нас с привычными кремниевыми микросхемами: интерфейсы «мозг-компьютер» уже умеют распознавать активность нервных клеток и преобразовывать их в осмысленные команды для электроники . Так, используя силу мысли, можно играть в простенькие игры, двигать роботизированным протезом руки или даже управлять квадрокоптером. Однако все эти устройства пока еще грешат ошибками и неточностями - скрестить в одном устройстве электронные и ионные токи непросто.

«Переводчиками» с языка живого на язык микросхем могут стать электропроводящие полимеры, которые проводят одновременно оба типа тока (рис. 1). Открытые в 70-х годах прошлого века, эти материалы активно исследовались многими учеными: на их основе делали транзисторы, солнечные батареи, органические светоизлучающие диоды (OLED) и другие устройства органической электроники.

Рисунок 1. Схематическое представление органических (справа ) и неорганических (слева ) полупроводников в контакте с электролитом. Размеры заряженных ионов значительно больше расстояний между атомами в неорганических полупроводниках и потому ионная проводимость в этих материалах невозможна. Одновременно с этим характерные размеры пустот между цепочками макромолекул сопряженных полимеров сопоставимы с размерами гидратированных ионов и потому ионная проводимость в этом классе соединений возможна.

Теперь преимущества электропроводящих полимеров - гибкость, простоту и вариативность синтеза, а также биосовместимость и ионную проводимость - пробует использовать органическая биоэлектроника - совсем молодая область материаловедения, которой уже есть, чем похвалиться .

Диагностика изнутри

Работа многих интерфейсов «мозг-компьютер» завязана на снятии ЭЭГ: на голове у человека закрепляют шапочку с электродами, в которых под действием ионных токов, протекающих в головном мозге, возникают свои собственные электронные токи. В работе 2013 года ученые из Франции предложили для тех же целей использовать органические электрохимические транзисторы .

Обычные полупроводниковые транзисторы - это основные компоненты всех электрических логических схем, своеобразные электронные кнопки с тремя контактами. Сравнительно большим током, протекающим в них от одного контакта к другому, можно управлять с помощью небольшого сигнала (значительно меньшего тока или напряжения в случае полевого транзистора), который подается на третий контакт. Собирая много транзисторов в одной схеме, можно усиливать, ослаблять и преобразовывать любые электрические сигналы или, говоря другими словами, обрабатывать информацию.

Похожим образом работают и органические транзисторы, с помощью которых исследователи записывали эпилептическую активность у живых лабораторных мышей. Третий управляющий контакт в этом транзисторе был сделан из проводящего полимера и введен прямо в мозг грызунов. Полимер менял свою структуру (и, как следствие, проводимость) вместе с колебаниями электрической активности нервных клеток и в результате даже небольшие характерные изменения ионных токов в мозгу «киборга» приводили к заметным перепадам тока, текущего от входного контакта транзистора к выходному (рис. 2).

Рисунок 2. In vivo регистрация электрической активности мозга с помощью органических транзисторов. Розовым цветом дана зависимость, снятая с помощью органического электрохимического транзистора, синим - пластикового электрода, черным - металлического электрода. Обращаем внимание, что последние два электрода регистрируют электрический сигнал по скачкам потенциала, а транзистор - по скачкам тока в электропроводящем канале.

В своем эксперименте французы показали, что органические транзисторы позволяют фиксировать электрическую активность мозга заметно точнее их современных неорганических аналогов. В экспериментах других научных групп органические транзисторы успешно используют для снятия ЭКГ или, например, определения концентрации молочной кислоты , глюкозы и других биомолекул.

Пластиковые нейроны

Сегодня неврологические и психиатрические заболевания лечат, в основном, с помощью лекарств, но подобрать их дозировку, точечно доставить препарат в определенные клетки и одновременно учесть его побочное действие на самые разные процессы в организме бывает очень сложно. Большой коллектив шведских ученых из нескольких институтов предложил решать эти проблемы с помощью все тех же электропроводящих полимеров, а точнее, с помощью еще одного устройства органической биоэлектроники - органического электронного ионного насоса, способного перекачивать ионы из одной среды в другую .

В своей работе исследователи изучали лабораторных крыс, у которых они сначала вызывали нейропатическую боль (ее причина - не внешний раздражитель, а нарушенная работа самих нейронов), а потом лечили ее с помощью точечного введения нейромедиатора ГАМК (гамма-аминомасляная кислота ), который снижает раздражение центральной нервной системы . Миниатюрный органический насос (около 12 см в длину и диаметром 6 мм) вводили в спинной мозг крыс, а его резервуар был наполнен ГАМК (рис. 3). С подачей внешнего электрического напряжения молекулы ГАМК начинали выходить по четырем ионпроводящим полимерным каналам в межклеточное пространство (видео 1).

Рисунок 3. Имплантируемый органический электрохимический насос. A - фотография устройства, B - схематическое представление устройства, слева - электрический контакт, по центру - резервуар с ГАМК, справа - выводящие каналы. Общая длина устройства составляет 120 мм, диаметр резервуара - 6 мм. С - четыре выхода органического электрохимического расположены в тех точках, где ветви седалищного нерва входят в спинной мозг.

Видео 1. Органоэлектронный ионный насос

В результате у крыс пропадала боль (это проверяли с помощью тактильного теста: к лапам крыс подводили эластичные нити различной жесткости и следили, начиная с какого давления животное отдернет лапу), и не наблюдалось никаких побочных эффектов. С использованием всех остальных методов лечения нейропатической боли при помощи ГАМК препарат вводится в спинной мозг в большой дозе, которая распределяется по нервной системе и помимо подавления боли приводит к нарушениям ходьбы, заторможенности и другим побочным действиям.

Параллельно с этой работой та же группа исследователей сделала первый искусственный нейрон на основе полимеров . В нем ионный насос совместили с биосенсорами, чувствительными к глутаминовой кислоте (самому распространенному возбуждающему нейромедиатору ) и ацетилхолину (нейромедиатору, передающему сигнал от нейронов к мышечной ткани ). К примеру, в одном из экспериментов «пластиковый» нейрон следил за уровнем глутамата в чашке Петри, и при превышении определенного порога в нем возбуждался ток, который открывал резервуар ионного насоса, выпускающего в окружающую среду ацетилхолин.

Работа искусственного нейрона очень похожа на то, как функционируют настоящие: нервный импульс возбуждается в одном из них и бежит через всю клетку к месту контакта с другим нейроном, там выделяется глутаминовая кислота, которая как бы нажимает кнопку и возбуждает следующий нейрон (рис. 4). Так, по цепочке нейронов, импульс добегает до мышечной клетки, которая уже возбуждается не глутаминовой кислотой, а ацетилхолином. Созданный шведами пластиковый нейрон вполне может повторять эти действия и передавать сигналы другим клеткам. В эксперименте это были клетки нейробластомы SH-SY5Y, активацию которых отслеживали по характерным увеличениям концентрации ионов при связывании ацетилхолиновых рецепторов.

Рисунок 4. Схема преобразования химического сигнала в электрический и обратно в искусственном полимерном нейроне идентична схеме работы живого нейрона. Биосенсор (представлен зеленым ) реагирует на повышение концентрации одного нейромедиатора (оранжевые точки ), что генерирует поток электронов, возбуждающий органический электрохимический насос (представлен синим ), выделяющий другой нейромедиатор (синие точки ).

От электронных роз до самой зеленой энергии

Исследования на мышах, крысах и других лабораторных зверях нужно согласовывать с комиссиями по этике, а потому самые смелые эксперименты в органической биоэлектронике легче ставить на растениях. Так, в конце 2015 года все та же шведская группа сделала первую розу-киборга . Правда, ничего зрелищного она пока не умеет - ни раскрываться по нажатию кнопки на пульте управления, ни менять свой цвет в зависимости от влажности среды, ни захватывать мир, но кое-что интересное у исследователей все-таки получилось.

В первом эксперименте срезанную розу ставили в воду с растворенным электропроводящим полимером, который поднимался по черенку и формировал в розе проводящий канал. Дальше ученые подводили к концам канала электрические контакты и вводили в черенок управляющий электрод - золотую проволоку, покрытую проводящим полимером. Так внутри розы собирался своеобразный органический транзистор. При этом к одному каналу можно было подвести сразу несколько управляющих электродов и сделать простейшую логическую схему, по которой ток течет только при подаче определенных управляющих напряжений на обе золотые проволоки.

Во втором опыте в листья розы при помощи шприца накачивали водный раствор уже другого электропроводящего полимера, который умеет менять цвет при подаче внешнего напряжения. К листу подводили электроды, включали ток и - вуаля: прожилки листочка обретали синевато-зеленый оттенок. Это закачанный в них полимер превращался из бесцветного в голубой (видео 2). При этом, когда напряжение снимали, лист снова становился здорового зеленого цвета.

Так ученые показали, что с помощью несложной техники внутри растений можно создать простые электронные схемы. В перспективе это позволит управлять их физиологией и, например, добиваться повышения урожайности без генных модификаций или даже делать крошечные электростанции на энергии фотосинтеза. Конечно, пока это звучит слишком дорого, но зато когда-нибудь технологии органической биоэлектроники позволят точечно контролировать каждое растение, а не сразу всю популяцию.

Биоэлектронное будущее

Первые эксперименты показали, что устройства органической биоэлектроники вполне могут принимать, передавать и обрабатывать биоэлектрические сигналы. Что дальше? Сейчас полимерные материалы научились делать биосовместимыми и биодеградируемыми, а потому чипами на их основе можно буквально напичкать любой живой организм . Останется только научить их беспроводной передаче информации, и внутри человеческого тела можно будет создать локальную сеть сенсоров, постоянно следящих за различными медицинскими показателями вроде уровня глюкозы, сердечного ритма и электрической активности избранных нейронов, а потом передающими свои сигналы имплантированным медицинским роботам на основе тех же ионных насосов, чтобы они начинали бороться с проблемой.

Если же мысль стать таким киборгом вам совсем не по душе, можно будет просто проглотить таблетку со встроенной гибкой микросхемой - по кислотности, температуре и концентрации разных веществ она точно вычислит, где выпустить лекарство, и, сделав доброе дело, просто переварится у нас внутри как какой-нибудь кусочек сахара.

Введение

В 1965 году, на заре компьютерной эры, директор отдела исследовательской компании Fairchild Semiconductors Гордон Мур предсказал, что количество транзисторов на микросхеме будет ежегодно удваиваться. Прошло уже 35 лет, а "закон Мура" по-прежнему действует. Правда, со временем практика микроэлектронного производства внесла в него небольшую поправку: сегодня считается, что удвоение числа транзисторов происходит каждые 18 месяцев. Такое замедление роста вызвано усложнением архитектуры микросхем. И все же, для кремниевой технологии предсказание Мура не может выполняться вечно.

Но есть и другое, принципиальное ограничение на "закон Мура". Возрастание плотности размещения элементов на микросхеме достигается за счет уменьшения их размеров. Уже сегодня расстояние между элементами процессора может составлять 0,13х10 -6 метра (так называемая 0,13-микронная технология). Когда размеры транзисторов и расстояния между ними достигнут нескольких десятков нанометров, вступят в силу так называемые размерные эффекты - физические явления, полностью нарушающие работу традиционных кремниевых устройств. Кроме того, с уменьшением толщины диэлектрика в полевых транзисторах растет вероятность прохождения электронов через него, что также препятствует нормальной работе приборов.

Еще один путь повышения производительности - применение вместо кремния других полупроводников, например арсенида галлия (GaAs). За счет более высокой подвижности электронов в этом материале можно увеличить быстродействие устройств еще на порядок. Однако технологии на основе арсенида галлия намного сложнее кремниевых. Поэтому, хотя за последние два десятка лет в исследование GaAs вложены немалые средства, интегральные схемы на его основе используются в основном в военной области. Здесь их дороговизна компенсируется низким энергопотреблением, высоким быстродействием и радиационной устойчивостью. Однако и при разработке устройств на GaAs остаются в силе ограничения, обусловленные как фундаментальными физическими принципами, так и технологией изготовления.

Вот почему сегодня специалисты в разных областях науки и техники ищут альтернативные пути дальнейшего развития микроэлектроники. Один из путей решения проблемы предлагает молекулярная электроника.

МОЛЕКУЛЯРНАЯ ЭЛЕКТРОНИКА -ТЕХНОЛОГИЯ БУДУЩЕГО.

Возможность использования молекулярных материалов и отдельных молекул как активных элементов электроники уже давно привлекает внимание исследователей различных областей науки. Однако только в последнее время, когда стали практически ощутимы границы потенциальных возможностей полупроводниковой технологии, интерес к молекулярной идеологии построения базовых элементов электроники перешел в русло активных и целенаправленных исследований, которые стали сегодня одним из важнейших и многообещающих научно-технических направлений электроники.

Дальнейшие перспективы развития электроники связываются с созданием устройств, использующих квантовые явления, в которых счет уже идет на единицы электронов. В последнее время широко ведутся теоретические и экспериментальные исследования искусственно создаваемых низкоразмерных структур; квантовых слоев, проволок и точек. Ожидается, что специфические квантовые явления, наблюдающиеся в этих системах, могут лечь в основу создания принципиально нового типа электронных приборов.

Переход на квантовый уровень, несомненно, является новым, важным этапом в развитии электроники, т.к. позволяет перейти на работу практически с единичными электронами и создать элементы памяти, в которых один электрон может соответствовать одному биту информации. Однако создание искусственных квантовых структур представляет сложнейшую технологическую задачу. В последнее время стало очевидным, что реализация таких структур сопряжена с большими технологическими сложностями даже при создании единичных элементов, и непреодолимые трудности возникают при создании чипов с многомиллионными элементами. Выходом из создавшегося положения, по мнению многих исследователей, является переход к новой технологии -молекулярной электронике.

Принципиальная возможность использования отдельных молекул как активных элементов микроэлектроники была высказана Фейнманом еще в 1957 году. Позднее он показал, что квантомеханические законы не являются препятствием в создании электронных устройств атомарного размера, пока плотность записи информации не превышает 1 бит/атом. Однако, только с появлением работ Картера и Авирама стали говорить о молекулярной электронике, как о новой междисциплинарной области, включающей физику, химию, микроэлектронику и компьютерную науку, и ставившую своей целью перевод микроэлектроники на новую элементную базу -молекулярные электронные устройства.

Здесь определенно напрашивается аналогия с историей развития устройств точного времени, которые прошли путь от механических хронометров, использующих различного типа маятники, через кварцевые часы, основанные на твердотельных резонансах, и, наконец, сегодня наиболее точные часы используют внутримолекулярные эффекты в молекулах аммиака и т.д. Подобным образом развивается и электроника, прошедшая путь от механических электромагнитных реле и электровакуумных ламп к твердотельным транзисторам и микросхемам, а сегодня она подошла к порогу, за которым лежит область молекулярной технологии.

Не случайно, что основное внимание было сосредоточено на молекулярных системах. Во-первых, молекула представляет собой идеальную квантовую структуру, состоящую из отдельных атомов, движение электронов по которой задается квантово-химическими законами и является естественным пределом миниатюризации. Другой, не менее важной особенностью молекулярной технологии, является то, что создание подобных квантовых структур в значительной мере облегчено тем, что в основе их создания лежит принцип самосборки. Способность атомов и молекул при определенных условиях самопроизвольно соединяться в наперед заданные молекулярные образования является средством организации микроскопических квантовых структур; оперирование с молекулами предопределяет и путь их создания. Именно синтез молекулярной системы является первым актом самосборки соответствующих устройств. Этим достигается идентичность собранных ансамблей и, соответственно, идентичность размеров элементов и, тем самым, надежность и эффективность протекания квантовых процессов, функционирования молекулярных устройств.

С самого начала развития молекулярного подхода в микроэлектронике открытым оставался вопрос о физических принципах функционирования молекулярных электронных устройств. Поэтому основные усилия были сосредоточены на их поиске, при этом основное внимание уделялось одиночным молекулам или молекулярным ансамблям. Несмотря на большое количество работ в этом направлении, практическая реализация молекулярных устройств далека до завершения. Одной из причин этого является то, что особенно в начальный период становления молекулярной электроники сильный акцент был сделан на работе отдельных молекул, поиске и создании бистабильных молекул, имитирующих триггерные свойства. Конечно, этот подход весьма притягателен с точки зрения миниатюризации, но он оставляет мало шансов на то, что молекулярные электронные устройства могут быть созданы в ближайшее время.

Развитие нового подхода в микроэлектронике требует решения ряда проблем в трех основных направлениях: разработка физических принципов функционирования электронных устройств; синтез новых молекул, способных хранить, передавать и преобразовывать информацию; разработка методов организации молекул в супрамолекулярный ансамбль или молекулярное электронное устройство.

В настоящее время ведется интенсивный поиск концепций развития молекулярной электроники и физических принципов функционирования, и разрабатываются основы построения базовых элементов. Молекулярная электроника становится новой междисциплинарной областью науки, объединяющей физику твердого тела, молекулярную физику, органическую и неорганическую химии и ставящей своей целью перевод электронных устройств на новую элементную базу. Для решения поставленных задач и концентрации усилий исследователей, работающих в различных областях знаний, во всех индустриально развитых странах создаются Центры молекулярной электроники, объединенные лаборатории, проводятся международные конференции и семинары.

Сейчас, да видимо, и в ближайшее время, трудно говорить о создании молекулярных электронных устройств, работающих на основе функционирования одиночных молекул, но можно реально говорить об использовании молекулярных систем, в которых внутримолекулярные эффекты имеют макроскопическое проявление. Такие материалы можно назвать "интеллигентными материалами". Этап создания "интеллигентных материалов", т.е. этап функциональной молекулярной электроники, естественный и необходимый период в развитии электроники, является определенной стадией в переходе от полупроводниковой технологии к молекулярной. Но возможно, что этот период будет более продолжительным, чем сейчас нам кажется. Представляется более реалистичным, особенно на первых этапах развития молекулярной электроники, использовать макроскопические свойства молекулярных систем, которые обуславливались бы структурными реорганизациями, происходящими на уровне отдельных молекулярных ансамблей. Физический принцип функционирования подобных электронных устройств должен снять размерностные ограничения, по крайней мере, до размеров больших молекулярных образований. С точки зрения электроники и потенциальной возможности стыковки молекулярных устройств с их полупроводниковыми собратьями, было бы предпочтительно иметь дело с молекулярными системами, изменяющими свою электронную проводимость при внешних воздействиях, в первую очередь под воздействием электрического поля.

Идеи молекулярной электроники не сводятся к простой замене полупроводникового транзистора на молекулярный, хотя будет решаться и эта частная задача. Главной целью все же является создание сложных молекулярных систем, реализующих одновременно несколько различных эффектов, выполняющих сложную задачу. К задачам этого типа естественно в первую очередь отнести задачу создания универсального элемента памяти, как наиболее важной части любого информационно-вычислительного устройства. Представляется весьма очевидным, что потенциальные возможности молекулярной электроники будут раскрыты в большей мере при создании нейронных сетей, состоящих из нейронов и связывающих их электроактивных синапсов. Создание средствами молекулярной электроники искусственных нейронов, различного типа сенсоров, включенных в единую сеть, откроет путь к реализации всех потенциальных возможностей, заложенных в нейрокомпьютерной идеологии, позволит создать принципиально новый тип информационно-вычислительных систем и подойти вплотную к решению проблемы создания искусственного интеллекта.

Бактериородопсин: структура и функции.

Молекулярная электроника определяется как кодирование (запись), обработка и распознавание (считывание) информации на молекулярном и макромолекулярном уровне. Основное преимущество молекулярного приближения заключается в возможности молекулярного дизайна и производства приборов "снизу вверх", т.е. атом за атомом или фрагмент за фрагментом, - параметры приборов определяются органическим синтезом и методами генной инженерии. Двумя общепризнанными достоинствами молекулярной электроники являются значительное уменьшение размеров устройств и времени срабатывания (gate propagation delays) логических элементов.

Биоэлектроника, являющая разделом молекулярной электроники, исследует возможность применения биополимеров в качестве управляемых светом или электрическими импульсами модулей компьютерных и оптических систем. Основное требование к вероятным кандидатам среди большого семейства биополимеров состоит в том, что они должны обратимо изменять свою структуру в ответ на некое физическое воздействие и генерировать, по крайней мере, два дискретных состояния, отличающихся легко измеряемыми физическими характеристиками (например, спектральными параметрами).

Значительный интерес в связи с этим представляют белки, основная функция которых связана с трансформацией энергии света в химическую в различных фотосинтетических системах. Наиболее вероятным кандидатом среди них является светозависимый протонный насос - бактериородопсин (БР) из галофильного микроорганизма Halobacterium salinarum (ранее Halobacterium halobium ), открытыйв 1971году.

Бактериородопсин - ретиналь-содержащий генератор протонного транспорта представляет собой трансмембранный белок в 248 аминокислот с молекулярным весом 26 кДа, пронизывающий мембрану в виде семи a -спиралей; N- и C-концы полипептидной цепи находятся по разные стороны цитоплазматической мембраны: N-конец обращен наружу, а C-конец - внутрь клетки (рис.1, 2).

Рис.1. Модель БР в элементах вторичной структуры. Выделены аминокислоты,
участвующие в протонном транспорте: кружками остатки аспарагиновой кислоты,
квадратом остаток аргинина. С Lys-216 (К-216) образуется основание Шиффа (SB).
Стрелкой показано направление протонного транспорта.

Хромофор БР - протонированный альдимин ретиналя с a -аминогруппой остатка Lys-216 размещен в гидрофобной части молекулы. После поглощения кванта света в ходе фотоцикла происходит изомеризация ретиналя из all -E в 13Z-форму. Белковое микроокружение хромофора может рассматриваться как рецептор с субстратной специфичностью для all -E /13Z-ретиналя, который катализирует эту изомеризацию при комнатной температуре. Кроме того, часть аминокислот ответственна за подавление изомеризаций, отличных от all -E /13Z, например от all -E- к 7Z-, 9Z-, 11Z-ретиналю. Остальная часть полипептидной цепи обеспечивает канал протонного транспорта или экранирует фотохромную внутреннюю группу от влияний внешней среды.

Взаимная топография образованных полипептидной цепью БР элементов вторичной структуры после поглощения молекулой хромофора кванта света изменяется, в результате чего формируется канал трансмембранного переноса протонов из цитоплазмы во внешнюю среду. Однако молекулярный механизм светозависимого транспорта до сих пор неизвестен.

Рис.2. Схематическая модель трехмерной (пространственной) структуры БР Семь a -спиралей формируют хромофорную полость и трансмембранный канал переноса протона.

БР содержится в клеточной мембране H. salinarum - галофильной архебактерии, которая живет и размножается в соленых болотах и озерах, где концентрация NaCl может превышать 4 М, что в 6 раз выше, чем в морской воде (~ 0,6 М). Этот уникальный белок во многом подобен зрительному белку родопсину, хотя их физиологические функции различны. В то время как зрительный родопсин действует как первичный фоторецептор, который обеспечивает темное зрение большинства позвоночных животных, физиологическая роль БР заключается в том, чтобы давать возможность галобактериям действовать как факультативным анаэробам в случае, когда парциальное давление кислорода в окружающей среде мало. Белок функционирует как светозависимый протонный насос, который обеспечивает образование электрохимического градиента протонов на поверхности мембраны клетки, который, в свою очередь, служит для аккумулирования энергии. Первичная работа, производимая градиентом, заключается в синтезе АТФ через анаэробное (фотосинтетическое) фосфорицирование и, в этом случае, представляет собой классический пример хемиосмотической гипотезы Митчелла об окислительном фосфорицировании. Когда освещение отсутствует, а парциальное давление кислорода высоко, бактерии возвращаются к аэробному окислительному фосфорицированию.
Клетки H. salinarum содержат также два так называемых сенсорных родопсина (СР I и СР II), которые обеспечивают положительный и отрицательный фототаксис. Различные длины волн считываются СР I и СР II как детекторными молекулами, что вызывает каскад сигналов, управляющих жгутиковым двигателем бактерии. При помощи такого элементарного процесса светового восприятия микроорганизмы самостоятельно перемещаются в свет подходящего спектрального состава. Кроме того, в клетках имеется галородопсин (ГР), представляющий собой светозависимый насос ионов Cl – . Его основная функция - транспорт в клетку ионов хлора, которые постоянно теряются бактерией, перемещаясь в направлении изнутри наружу под действием электрического поля, создаваемого БР. Механизм действия ГР неясен. Предполагается, что Cl – связывается с положительно заряженным четвертичным азотом протонированного Шиффова основания, а изомеризация ретиналя из all -E в 13Z-форму вызывает перемещение этого азота с прикрепленным к нему ионом Cl – от входного к выходному Cl – – проводящему пути.

Рис.3. Участок пурпурной мембраны (вид сверху).

БР локализован в участках клеточных мембран H. salinarum в виде пурпурных мембран (ПМ), образующих двумерные кристаллы с гексагональной решеткой. Эти участки содержат сам белок, некоторые липиды, каротиноиды и воду (рис.3). Обычно они имеют овальную или круглую форму со средним диаметром около 0,5 мкм и содержат около 25 % липидов и 75 % белка. ПМ устойчивы к солнечному свету, воздействию кислорода, температуре более чем 80ºC (в воде) и до 140ºC (сухие), рН от 0 до 12, высокой ионной силе (3 М NaCl), действию большинства протеаз, чувствительны к смесям полярных органических растворителей с водой, но устойчивы к неполярным растворителям типа гексана. Большое практическое значение имеет существующая возможность встраивания ПМ в полимерные матрицы без потери фотохимических свойств.

Индуцированный светом протонный транспорт сопровождается рядом циклических спектральных изменений БР, совокупность которых называется фотоциклом (рис.4). Тридцать лет исследований привели к довольно детальному пониманию фотоцикла, однако подробности протонного транспорта все еще изучаются.

Фотохимический цикл БР состоит из отдельных интермедиатов, которые могут быть идентифицированы как максимумами поглощения, так и кинетикой образования и распада. На рис.4 показана упрощенная модель фотоцикла БР.

Рис.4. Фотоцикл БР.

Фотохимические и тепловые стадии показаны как толстые и тонкие стрелки соответственно. Вертикальные символы указывают на all -E-конформацию ретиналя (интермедиаты B и О ), наклонные символы - на 13Z-конформацию. В темноте БР превращается в 1:1 смесь D и B , эта смесь называется темноадаптированным БР. При освещении БР происходит световая адаптация, т.е. переход в основное состояние B . Оттуда начинается фотоцикл, который приводит к транспорту протона через мембрану. В течение перехода L к М , длящегося примерно 40 мксек, Шиффово основание депротонируется и Asp85 становится протонированным. Оттуда протон идет к внешней стороне внеклеточной части протонного канала. В течение перехода М к N альдимин репротонируется. В качестве донора протонов выступает остаток Asp96. Asp96 репротонируется через цитоплазматический протонный полуканал. В то время как все преобразования между интермедиатами обратимы, переход от M I к M II , как полагают, является основным необратимым шагом в фотоцикле. В течение этого перехода азот Шиффова основания становится недоступным для внеклеточной части протонного канала, а только для цитоплазматического полуканала, что связано с конформационными изменениями белковой молекулы.

Физико-химические свойства интермедиатов характеризуются длиной волны их максимумов поглощения и величиной специфического молярного коэффициента экстинкции. Протонирование SB и конфигурация ретинилиденового остатка воздействует на величины максимумов поглощения. В течение фотоцикла БР происходит несколько зависящих от температуры конформационных изменений в белке, таким образом, формирование большинства интермедиатов может быть подавлено охлаждением.

Кроме основного фотоцикла имеется два состояния, которые могут быть вызваны искусственно. В интермедиатах P и Q конформация ретиналя 9Z. Это достигается после фотохимического возбуждения all -E-ретиналя, когда в то же самое время Asp85 протонирован. Это может быть достигнуто в диком типе БР при низком значении pH или деионизацией (формирование так называемых голубых мембран), однако такие препараты нестабильны. Альтернативным подходом является замена Asp85 аминокислотой, имеющей другое значение pKa, которая остается незаряженной при интересующих значениях pH или полное удаление карбоксильной группы методами сайт-направленного мутагенеза. Стабильность таких мутантных голубых мембран выше.

Уникальные свойства бактериородопсина обеспечивают широкий диапазон технических приложений, в которых он может использоваться, однако коммерчески осуществимы на сегодняшний день только оптические, поскольку их интеграция в современные технические системы наиболее проста.

Оптические приложения основаны на применении пленок БР - полимерных матриц различного состава с включенными в них молекулами белка. Впервые в мире такие пленки на основе дикого типа БР были получены и исследованы в нашей стране в рамках проекта "Родопсин"; в 80-х годах была продемонстрирована эффективность и перспективность применения таких материалов, названных "Биохром", в качестве фотохромных материалов и среды для голографической записи.

Весьма интересной является возможность варьирования фотохимических свойств пленок БР:
а) заменой природного хромофора на модифицированный;
б) химическими (физико-химическими) воздействиями;
в) точечными заменами определенных аминокислотных остатков методами генетической инженерии.

Такие модифицированные материалы могут обладать ценными пецифическими свойствами, что предопределит их использование как элементной базы биокомпьютера.

Мыслящая молекула

В последние годы ученые многих стран вернулись к старой и простой идее "химического" компьютера, в котором вычисления производятся отдельными молекулами. За последний год исследователям сразу из нескольких лабораторий удалось получить в этой области блестящие результаты, обещающие радикально изменить ситуацию.

Большого успеха достигли учёные в работе с молекулами псевдоротоксана (они показаны на рис.1).

Им удалось насадить такую молекулу, имеющую форму кольца, на ось – линейную молекулу. Для того чтобы кольцо не соскакивало с оси, к ее концам присоединяются крупные молекулярные фрагменты, играющие роль "гаек" (в этом качестве использовались разнообразные донорные группы). При реакции с кислотой (Н+) или основанием (В) кольцо может скользить от одного конца оси к другому, "переключая" химическое состояние. Забавно, что в принципе на молекулярном уровне воссоздается механическое устройство, весьма похожее на соединение стержней и колесиков в первых, самых примитивных, вычислительных устройствах ХVII века (впрочем, при желании в этой молекулярной структуре можно углядеть и простейшие канцелярские счеты, с одной костяшкой на каждом прутике).

Эта изящная химическая молекула переключатель была изучена еще в начале 90-х годов, однако для практической реализации идеи требовалось еще придумать методы объединения и управления массивами этих минимикродиодиков. Создав моно слой одинаково ориентированных молекул такого типа на поверхности металла (эту очень сложную задачу удалось решить, используя новейшие нанотехнологические методы самосборки), ученые осадили на него тончайший слой золота и уже создали на этой основе примитивные прототипы логических вентилей.

Через несколько месяцев после этого объединенная группа Марка Рида и Джеймса Тура (из универси тетов Йеля и Райса) продемонстрировала общественности еще один класс молекул-переключателей. Результаты были настолько впечатляющими, что журнал "Scientific American" (июнь, 2000) даже вынес на обложку анонс "Рождение молекулярной электроники"(хочется добавить – наконец-то!). Как написал со сдержанной гордостью один из авторов: "Мы создали молекулу с переменной электропроводностью, которая может накапливать электроны по нашей команде, то есть работать как запоминающее устройство".

Прежде всего, Джеймс Тур по специальной методике синтезировал молекулярную цепочку из звеньев бензол-1,4-дитиолата длиной 14 нанометров. В нее были введены группы, которые захватывают электроны, если молекула находится "под напряжением". Сложнейшая проблема, с которой также удалось справиться, заключалась в том, что переключение должно быть обратимым химическим процессом. Для работы молекулы в качестве запоминающего элемента ее необходимо научить не просто захватывать электроны, а удерживать их только в течение заданного времени. Собственно говоря, именно в этом и состоит главное достижение Рида и Тура с коллегами.
Электрохимический (в самом строгом и буквальном смысле этого термина!) переключатель показан на рис. 2 (левая часть). Он представляет собой цепочку из трех бензольных колец, к центральному из которых с противоположных сторон присоединены группы NО 2 , и NН 2 , (на рисунке выделены цветом). Такая асимметричная молекулярная конфигурация создает электронное облако сложной формы, в результате чего возникает удивительно красивый и принципиально важный для решения поставленной задачи физический эффект – при наложении поля молекула закручивается, ее сопротивление меняется, и она начинает пропускать ток (правая часть рисунка). При снятии поля молекула раскручивается в обратную сторону и возвращается в исходное состояние. Переключатель, созданный по этому принципу, представляет собой линейную цепочку из примерно 1000 молекул нитроаминобензолтиола, расположенную между двумя металлическими контактами. Более того, замеры с использованием туннельного микроскопирования (фрагмент молекулярной цепочки был впаян между сверхтонкими иглообразными золотыми электродами; геометрия эксперимента показана на рис. 3) позволили получить рабочие параметры переключателя, которые с полным правом можно назвать молекулярной вольт-амперной характеристикой и молекулярной проводимостью (рис.4). Кривая проводимости (которая, кстати, оказалась весьма близка к расчетной) имеет четко выраженный "провал". Это позволяет переводить участки молекулы из проводящего состояния в непроводящее, и наоборот, простым изменением приложенного напряжения. Формально и фактически получен (химик, конечно, предпочтет термин "синтезирован") молекулярный триод. Действительно, это можно считать первым этапом создания молекулярной электроники.

Заключение

Хотя теоретические основы молетроники уже достаточно хорошо разработаны и созданы прототипы практически всех элементов логических схем, однако на пути реального построения молекулярного компьютера встают значительные сложности. Внешне очевидная возможность использования отдельных молекул в качестве логических элементов электронных устройств оказывается весьма проблематичной из-за специфических свойств молекулярных систем и требований, предъявляемых к логическим элементам.

В первую очередь логический элемент должен обладать высокой надежностью срабатывания при подаче управляющего воздействия. Если рассматривать оптическую связь между элементами, то в системе одна молекула - один фотон надежность переключения будет невелика из-за относительно малой вероятности перехода молекулы в возбужденное состояние. Можно пытаться преодолеть эту трудность, используя одновременно большое число квантов. Но это противоречит другому важному требованию: КПД преобразования сигнала отдельным элементом должен быть близок к единице, то есть средняя мощность реакции должна быть соизмерима со средней мощностью воздействия. В противном случае при объединении элементов в цепь вероятность их срабатывания будет уменьшаться по мере удаления от начала цепи. Кроме того, элемент должен однозначно переключаться в требуемое состояние и находиться в нем достаточно долго - до следующего воздействия. Для сравнительно простых молекул это требование, как правило, не выполняется: если переходом в возбужденное состояние можно управлять, то обратный переход может происходить спонтанно.

Однако не все так плохо. Использование больших органических молекул или их комплексов позволяет, в принципе, обойти перечисленные трудности. Например, в некоторых белках КПД электронно-оптического преобразования близок к единице. К тому же, для больших биоорганических молекул время жизни возбужденного состояния достигает десятков секунд.

Но даже в том случае, если отдельный молекулярный вычислительный элемент и не будет обладать надежностью своих кремниевых предшественников, эффективной работы будущего компьютера можно достичь, комбинируя принципы молетроники и параллельных вычислений, применяемых в суперкомпьютерах. Для этого надо заставить несколько одинаковых молекулярных логических элементов работать параллельно. Тогда неправильное срабатывание одного из них не приведет к заметному сбою в вычислениях. Современный суперкомпьютер, работающий по принципу массивного параллелелизма и имеющий многие сотни процессоров, может сохранять высокую производительность даже в том случае, если 75% из них выйдет из строя. Практически все живые системы используют принцип параллелизма. Поэтому несовершенство организмов на уровне отдельных клеток или генов не мешает им эффективно функционировать.

Сегодня в мире существует уже более десятка научно-технологических центров, занимающихся разработкой устройств молекулярной электроники. Ежегодные конференции собирают сотни специалистов в этой области.

Большой интерес к молетронике вызван не только перспективами построения компьютера, но и широкими возможностями развития новых технологий. Благодаря высокой чувствительности молекулярных электронных устройств к свету их можно использовать для создания эффективных преобразователей солнечной энергии, моделирования процесса фотосинтеза, разработки нового класса приемников изображения, принцип действия которых будет напоминать работу человеческого глаза. Молекулярные устройства можно использовать также в качестве селективных сенсоров, реагирующих только на определенный тип молекул. Такие сенсоры необходимы в экологии, промышленности, медицине. Сенсор из органических молекул значительно легче вживлять в организм человека с целью контроля за его состоянием.

Для решения стоящих перед молекулярной электроникой проблем нужны усилия широкого круга ученых, работающих в области академических знаний от коллоидной химии и биологии до теоретической физики, а также в области высоких технологий. Кроме того, требуются значительные финансовые вложения.

Необходима также подготовка новых высококвалифицированных кадров для работы в этой сложной области, лежащей на стыке наук. Но, судя по всему, лет через 10-15 она будет играть заметную роль в науке и технике.

Список используемого материала

По материалам сети Internet , статьи:

1. Гончарова Е., бакалавр биотехнологии;

2. Зайцев В., Шишлова А., физический факультет, МГУ им. М. В. Ломоносова;

3. Кригер Ю., д. ф-м. н.