Термин акустика. Теория звука и акустики понятным языком

Хотя там уже добыты первые 100 кг драгметалла. Согласно расчетам, его цена должна быть значительно ниже мировой

О возможности добычи в Украине золота говорилось так много, а дело так долго оставалось на мертвой точке, что многими эта идея стала восприниматься чуть ли не как несбыточная мечта. Нужны были миллионы долларов, но ни один частный инвестор не рискнул вложить ни копейки даже в самое перспективное Мужиевское месторождение. И вдруг за этот рудник взялись столь активно, что от начала работ до получения первого золота прошло всего лишь 10 месяцев.

Недавно Государственная сокровищница обогатилась первым слитком украинского золота, а к концу октября сюда поступит крупная партия «банковского» драгметалла. И что же -- наши ювелирные предприятия откажутся от покупки золота за рубежом, а цены на него в стране снизятся?

Ювелирные заводы на украинское золото пока не зарятся

Хотя Мужиевский рудник заработал еще весной, а первое золото выплавлено 28 сентября (слиток весил более 5,7 кг), говорить о реальной цене украинского золота пока никто не решается.

Его цену мы узнаем только через пару месяцев, когда полностью учтем все затраты, -- заявил председатель правления Государственной акционерной компании «Украинские полиметаллы» Александр Притыка. -- Пока известна расчетная цифра -- 7 долларов за грамм, что ниже мировой цены, составляющей 9,2 доллара.

Если дело пойдет, как запланировано, то украинское золото должно быть дешевле импортного более чем на 20%. Но пусть даже на десять или пять -- все равно это существенно и важно. Однако киевские ювелиры, например, пока относятся к этому без особого оптимизма:

Мы и раньше могли бы покупать золото у родной Государственной сокровищницы, но она накручивает сверх цены, установленной Нацбанком Украины, 15--20% за хранение, -- говорит председатель правления АО «Украинские ювелиры» Леонид Симчук. -- И получается, что приобретать золото на Лондонской бирже выгоднее! Сейчас, кстати, цены выросли, и мы уже платим за грамм золота 10 долларов.

Как заявил г-н Притыка, золото с Мужиевского месторождения будет поступать прежде всего в сокровищницу. Она полученный металл (так называемый сплав Доре, содержащий 80% золота) будет доводить до банковского стандарта -- с содержанием золота в слитках не менее 99,99%. Но возможны и другие варианты.

«Если Нацбанк не будет возражать, Львовская ювелирная фабрика, например, сможет покупать золото непосредственно на руднике и самостоятельно доводить его до нужных стандартов», -- сообщил первый заместитель министра промышленной политики Украины Сергей Грищенко. Так что казначейские наценки вполне можно обойти. Другое дело, что ювелирные фабрики, как правило, покупают чистое золото, а затем добавляют в него серебро. Сплав же Доре грязен: в нем содержится масса посторонних металлов.

Крупинки драгметалла можно рассмотреть разве что в микроскоп

У украинского золота есть все шансы оказаться недорогим. Его содержание в руде Мужиевского месторождения -- около 7--8 граммов в тонне, а это немало, -- говорит председатель Госкомитета по вопросам геологии и использования недр Сергей Гошовский. -- Наши узбекские коллеги не отказывались от добычи при содержании драгметалла 2,5 г на тонну, созданное недавно узбекско-американское предприятие ведет добычу руды, в тонне которой лишь чуть больше грамма золота. Правда, там его добывают открытым способом, а у нас -- в шахте.

За несколько десятилетий разведки на Мужиевском руднике самородков обнаружить не удалось. А найденные крупинки золота столь малы, что их можно рассмотреть разве что в микроскоп при 20--30-кратном увеличении. Поэтому, кстати, самодеятельным старателям здесь делать нечего. Не добыть им золота и из руды -- она такая прочная, что измельчить ее без профессионального оборудования невозможно даже теоретически.

Для добычи золота построили фабрику, которой в ближайшее время следует переработать свыше десяти с половиной тысяч тонн уже добытой руды. В ней содержится около 100 килограммов драгметалла -- примерно на миллион долларов. Золотоносной руды на месторождении хватит минимум на десять лет. Кроме этого геологи называют еще десяток практически беспроигрышных месторождений. Всего перспективных мест добычи золота обнаружено в Украине двести тридцать шесть. Все они пока не тронуты. Возможно, наша страна когда-нибудь превратится в экспортера золота…

Но темпы освоения других месторождений во многом зависят от результатов работы Мужиевского. Даже с этим рудником, самым перспективным, не рискнул связываться ни один инвестор. Рудник был запущен только благодаря напористости энтузиастов. Государственная компания «Украинские полиметаллы» была создана летом минувшего года. Ей удалось все же выбить из казны средства на освоение месторождения. Работы начались прошлой осенью, и вот меньше чем за год получено первое золото. При этом широко использовалась отечественная техника, что позволило снизить стоимость, например, строительства фабрики с 15 до 4,5 млн. долларов.

Специалисты считают, что следующим после Мужиевского может стать разработка Майского рудника в Одесской области.

Звук как явление физическое представляет собой колебательные движения материальных тел — твердых, газообразных или жидких. Возникновение слуховых ощущений человека связано, как правило, именно с колебаниями воздуха. Вот поэтому в безвоздушной среде передача звука становится невозможной.

Колебания воздуха, воспринимаемые органом слуха человека как звук, в естественных условиях имеют очень широкий диапазон величин давления, в связи с этим принято пользоваться логарифмической шкалой, выражая уровень интенсивности в белах (Б) или децибелах (дБ). Децибел — единица уровня интенсивности, равная десятикратному десятичному логарифму отношения интенсивности одного звука к некоторой другой интенсивности звука, условно принятой за уровень отсчета и близкой к пороговой.

Встречающиеся в природе звуки характеризуются примерно следующим соотношением:

Колебания, имеющие интенсивности, выходящие за пределы данного диапазона, как звук уже не воспринимаются, то есть они или совсем не слышны и не вызывают практически никаких ощущений, или воспринимаются тактильными и болевыми рецепторами и дают ощущения давления или боли, вытесняющие слуховые ощущения.

Звук как колебательный процесс характеризуется также частотой, которая по существу представляет собой описание изменений звукового давления во времени. Если эти изменения имеют правильный синусоидальный характер, то говорят о чистом тоне. В реальных условиях к такому чистому основному тону, как правило, примешивается еще некоторое количество добавочных тонов, которые придают звуку его часто неповторимую индивидуальность. Звук считается чистым, если добавочные тоны по своей акустической энергии не превышают 10 процентов. В жизни нам нередко приходится сталкиваться с естественными чистыми звуками. Это звуки, издаваемые птицами и зверями, это и звуки, получающиеся при произнесении нами гласных.

Звуки, в которых нельзя выделить основного тона и в которых соответственно колебания звукового давления описываются более сложной, чем синусоидальная, зависимостью, обозначают как шумы. И если акустическая энергия распределена равномерно по всему спектру, то говорят о «белом» шуме.

Орган слуха человека воспринимает колебания воздуха (при достаточном уровне интенсивности) в диапазоне от 16 герц до 20 килогерц, и соответственно эти частоты в физике и технике обозначают как звуковые, а менее 16 герц — как инфразвук и более 20 килогерц — как ультразвук. Человек инфра- и ультразвуковые колебания не слышит, сколь бы большой интенсивности они ни были. Но это совсем не означает, что такие виды энергии вообще на человека не действуют. Они представляют собой типичный пример раздражителей, которые мы с вами обозначили ранее как «внерецепторные», то есть которые не вызывают специфических ощущений. Человек же начинает ощущать их опосредованно в результате взаимодействия, и нередко неблагоприятного, с тканями нашего тела.

Звук как колебательный процесс характеризуется также длиной волны, которая количественно при неизменной частоте может меняться в зависимости от скорости распространения звука. Эта скорость в воздухе при температуре 0 градусов по шкале Цельсия и нормальном атмосферном давлении составляет 332 метра в секунду, возрастая при повышении давления и температуры воздуха.

В более плотной среде скорость распространения звука значительно выше, составляя при этом: в граните — 6000 метров в секунду, в стекле — 5500 метров в секунду, в алюминии — 5140 метров в секунду, в железе и стали — 5000 метров в секунду, в твердых породах дерева (в продольном направлении) — 4000 метров в секунду, в меди — 3560 метров в секунду и в воде (при температуре 19 градусов по шкале Цельсия) — 1461 метр в секунду. Таким образом, звуковые колебания одной и той же частоты в разных средах имеют различную длину волны. Это оказывается небезразличным для нашего слуха и обусловливает некоторые особенности слухового восприятия при пребывании человека под водой. А теперь рассмотрим механизм восприятия звука.

Исакович М. А. Общая акустика. Учеб. пособие. 1973 год. 502 стр. djvu. 4.3 Мб.
Книга представляет собой введение в теорию упругих волн. В ней излагаются общие закономерности поведения упругих волн в различных акустических ситуациях, устанавливаются точки зрения, позволяющие единообразно рассматривать разнородные акустические явления, выясняются внутренние связи между явлениями. Главное внимание уделено подробному выяснению физической сущности разбираемых вопросов, без привлечения сложного математического аппарата. В книгу включен ряд вопросов, представленных до сих пор только в специальной научной литературе. Основное содержание книги относится к изучению плоских и сферических упругих волн разных типов, как основных видов волн, встречающихся в большинстве теоретических и прикладных задач. Большое число детально рассмотренных задач позволяет также использовать книгу как справочное пособие. В основу книги положен курс общей акустики, читаемый автором в Московском физико-техническом институте.

Скачать

Красильников В.А. Введение в акустику 1992 год. 152 стр. PDF. 3.3 Мб.
В учебном пособии даются основные сведения по акустике. Кратко излагается история развития акустики и ее место среди других наук. Приводятся данные о звуковом поле и величинах его характеризующих. Рассмотрены задачи об отражении и преломлении волн на плоской границе раздела, об акустических волноводах, геометрической акустике, акустике движущейся среды, представлений об излучении звука, интенсиметрии, рассеянии звука и его поглощении. Приводятся основные сведения по акустике твердого тела, нелинейной акустике, физиологической акустике и электроакустике. Для студентов младших курсов физических факультетов университетов специализирующихся по акустике.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Лепендин Л.Ф. Акустика. 1978 год. 448 стр. djvu.10.6 Мб.
В учебном пособии изложены основные вопросы курса акустики, включенные в программу для студентов высших технических учебных заведения.
Пособие состоит из двух частей. В первой исследована теория колебаний механических систем с сосредоточенными и распределенными параметрами; колебания с одной и двумя степенями свободы; методы электромеханических аналогий. Рассмотрены также упругие волны в газах и жидкостях, законы отражения и преломления плоских волн через границу раздела двух сред, а также законы прохождения и отражения звука от границ и плоских пластин. Вторая часть книги посвящена теории рассеяния. Изложены вопросы волноводного распространения звука, основы акустики помещений.
Книга снабжена приложениями, имеющими вспомогательное значение.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Ф. М О Р 3. КОЛЕБАНИЯ И ЗВУК. 497 стр. djvu, 20.6 Мб.
Книга «Колебания и звук» написана физиком-теоретиком Ф. Морзом, известным своими работами в области квантовой механики. Многие вопросы теории колебаний и звука автору удалось изложить совершенно по-новому, используя методы современной математической техники, что придаёт книге значительный интерес. В книге, кроме общего материала, входящего обычно в учебники, изложены результаты оригинальных работ автора по архитектурной акустике, частично опубликованных на русском языке, по распространению звука в каналах с поглощающими стенками, по излучению и рассеянию звука и др.
Книга рассчитана на студентов старших куртов, аспирантов и научных работников, специализирующихся в области акустики и теории колебаний.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Лорд Рэлей. Теория звука. В 2-х томах. 1955 год. djvu.
Том 1. 504 стр. 7.3 Мб. Том 2. 475 стр. 6.5 Мб. Классика.
В акустике Рэлей исследовал колебания струн, стержней, пластинок и др. В 1873 он сформулировал ряд фундаментальных теорем линейной теории колебаний, позволяющих делать качественные заключения о собственных частотах колебательных систем, и разработал количественный метод возмущений для нахождения собственных частот колебательной системы, мало отличающейся от простой системы с известными собственными частотами.
Рэлей впервые указал на специфичность нелинейных систем, способных совершать незатухающие колебания без периодического воздействия извне, и на особый характер этих колебаний (названных впоследствии автоколебаниями).
Он объяснил различие групповой и фазовой скоростей и получил формулу для групповой скорости (формула Рэлея).
Он рассмотрел также задачу сложения многих колебаний со случайными фазами и получил функцию распределения для результирующей амплитуды - так называемое распределение Рэлея. Метод, разработанный при этом Рэлеем, надолго определил дальнейшее развитие теории случайных процессов.
В теории упругих волн Рэлей рассмотрел вопросы дифракции, рассеяния и поглощения волн, давление звука, исследовал волны конечной амплитуды и особый вид поверхностных волн (волны Рэлея). Работы Рэлея по теории колебаний систематизированы им в фундаментальном труде "Теория звука".

В целом акустика является наукой о звуках. Звуки во все времена играли особую роль в жизни любого человека, так как они позволяют людям ориентироваться в пространстве, общаться, смотреть фильмы и слушать любимую музыку.

Рисунок 1. Разновидности акустики.. Автор24 - интернет-биржа студенческих работ

Использование акустики востребовано абсолютно всеми областями, начиная от строительства, заканчивая медициной. Данный научный раздел изучает колебания звуковых волн, принципы их формирования и распределения.

Определение 1

Акустика – обширная область физики, которая исследует упругие колебания и волны от самых низких частот до предельно высоких.

Человек начинает слышать звук при постоянных колебаниях, производимых с определенной частотой. Одно из основных определений акустики – это звуковая волна, которая представляет собой вибрации, давление которых непосредственно зависит от источника. Например, сигнал автомобильного клаксона осуществляется с более высоким колебанием, чем человеческий шепот. Сила звука всегда определяется в децибелах.

Современная акустика охватывает достаточно широкий круг вопросов, в ней выделяют ряд таких важных подразделов:

  • физическая акустика - изучает особенности распространения упругих волн в различных пространствах;
  • физиологическая акустика - описывает устройство и работу звукообразующих и звуковоспринимающих органов у человека и животных.

В более узком смысле слова под акустикой следует понимать учение о звуке, то есть об упругих вибрациях в газах, твердых телах и жидкостях, воспринимаемых человеческим ухом. Звуковая волна способна отражаться от поверхностей, рассеиваться в них или поглощаться. Параметр отражения силы звука определяется тем, какие акустические характеристики она имеет и что было пройдено звуковой волной.

Природа звука и его физические характеристики

Рисунок 2. Физические характеристики звука. Автор24 - интернет-биржа студенческих работ

Звуковые волны и колебания - частный случай механических изменений. Однако в связи с важностью акустических определений для правильной оценки слуховых ощущений, а также из-за медицинского приложения целесообразно будет некоторые вопросы разобрать более детально.

На сегодняшний день принято различать следующие звуки:

  • тоны, или музыкальные звуки;
  • шумы;
  • звуковые удары.

Тоном представляет собой периодический процесс звука. Если этот процесс вполне гармонический, то тон называется чистым или полным, а соответствующая звуковая плоская волна описывается соответствующим уравнением. Ключевой физической характеристикой такого вида звука является частота. Ангармоническому колебанию соответствует сложный тон. Простой тон формирует, например, камертон, а вот сложный тон возможно услышать благодаря музыкальным инструментам.

Наименьшая частота разложения сложного тона на более простые структурные единицы соответствует основному тону, остальные обертоны в этом случае имеют частоты, равные $2νο$, $3νο$ и так далее.

Определение 2

Набор колебаний с указанием их конкретной интенсивности (амплитуды А) называется в физике акустическим спектром.

Спектр сложного тона всегда линейчатый. Таким образом, акустический спектр - одна из важнейших физических характеристик музыкальных звуков, так как она способна отличаться сложной неповторяющейся временной зависимостью.

К шуму исследователи относят звуки от вибрации автомобилей, аплодисменты, шорох, пламя горелки, скрип, согласные звуки речи и так далее. Этот звуковой вид можно рассматривать как сочетание хаотично изменяющихся сложных тонов

Определение 3

Звуковой удар - это кратковременное равномерное звуковое воздействие в виде взрыва или хлопка.

Не следует путать звуковой удар с ударной волной, частота которой значительно выше.

Волновая природа звука

Рисунок 3. Волновая природа звука. Автор24 - интернет-биржа студенческих работ

Чтобы лучше определить систему появления звуковой волны, необходимо представить находящийся в трубе классический динамик, который до краев наполнен воздухом. Если это устройство совершит внезапное движение вперёд, то находящийся в непосредственной близости воздух на какое-то мгновение сжимается. После этого воздушная прослойка расширится, толкая собой сжатую область воздуха вдоль по трубе.

Вот такое волновое движение и станет впоследствии звуком, когда доберется до слухового органа и "взбудоражит" барабанную перепонку. При возникновении звуковой волны в газе формируется избыточное внутреннее давление, ненужная плотность и происходит трансформация частиц с постоянной скоростью. При изучении звука и его особенностей важно помнить то обстоятельство, что материальное вещество не перемещается пропорционально звуковой волне, а появляется только временное возмущение действующих воздушных масс.

Замечание 1

Если частицы вибрируют вдоль направления распределения волны, то волновой звук называется продольным, если же они колеблются прямо перпендикулярно направлению волнового распространения, то волна называется поперечной.

Обычно звуковые тоны в жидкостях и газах – продольные, в твердых же физических телах возможно формирование волн обоих типов. Поперечные волны в материальных телах возникают посредством сопротивления к изменению изначальной формы. Ключевая разница между указанными двумя типами волн состоит в том, что поперечная волна оснащена свойством поляризации, а продольная – нет.

Основные направления современной акустики

Многочисленные и многолетние научные труды по изучению природы шума и вопросам шумоизоляции были опубликованы некоторое время спустя после их проведения. Первые работы в этой сфере касались только звуков, которые производятся авиационной техникой и наземным транспортом. Но постепенно границы звуковых исследований значительно расширились. В настоящее время большинство промышленно-развитых государств имеют свои научно-исследовательские университеты, занимающиеся созданием новых устройств и разработкой решения данных проблем.

Ученые выделяют такие основные разделы акустики:

  • общая;
  • архитектурная;
  • геометрическая;
  • строительная;
  • музыкальная;
  • психологическая;
  • биологическая;
  • электрическая и авиационная;
  • медицинская;
  • квантовая.

Акустика изучает такие физические явления, как формирование, распространение, ощущение звуковых волн и различные эффекты, напрямую производимые звуком на органы слуха. Как и все прочие научные отрасли, акустика обладает собственным понятийным аппаратом. Вместе с тем она также считается междисциплинарным разделом, то есть имеет тесные взаимосвязи с другими сферами знаний.

Наиболее отчётливо и понятно прослеживается взаимодействие акустики с архитектурой, механикой, теорией музыки, электроникой и математикой. Основные формулы акустики непосредственно касаются характеристик распространения звуковых волн в условиях упругой постоянной среды: уравнения стоячей и плоской волн, формулы точного расчёта скорости волн.

Вы можете приобрести самую дорогую в мире систему, но если вы расположите её в небольшой кубической комнате – стоимость уже не будет иметь значения. Определение правильного места для ваших АС – единственный наиболее важный фактор в получении хорошего звука в вашей комнате. Очень точное расположение АС может открыть перед вами новое звуковое измерение. Любые АС не существуют сами по себе. Они суть неизбежный компромисс с комнатой прослушивания. Не бывает просто хороших АС – бывают подходящие. При большом желании и небольшом везении ваша комната может стать для Вас счастливейшим местом. Будем исходить из того, что вся мебель и обстановка в комнате существовала до приобретения АС или аппаратуры, которые должны интегрироваться в вашу комнату не нарушая сложившуюся в ней динамику. Цель хорошей комнаты прослушивания: минимизировать окраску, которая является самой сильной в басовом регионе между 20 и 200 Hz. В более высоких частотах комната так же имеет влияние, но резонансы являются намного менее проблематичными, так как намного легче добиться поглощения высокочастотных резонансов. Любая комната будет резонировать во многих частотах.

Точность и высота резонансного пика зависят от поглощающих свойств комнаты. Комната с большим количеством мягкой мебели, с коврами на полу и драпами будет акустически относительно “мертвой”. Пики и провалы в ответе частоты в таких помещениях имеют неравномерность 5-10 db. Комната с голыми стенами и полом будет очень “живая”, и пики и провалы изменяются 10-20 dB или больше. Общее правило таково: в акустически хорошей и правильной комнате можно располагать АС достаточно близко к отражающим поверхностям с минимальными отрицательными последствиями. В акустически плохих комнатах главная стратегия состоит в том, что бы разместить АС максимально далеко от границ комнаты и самого слушателя насколько это возможно.

Если мы чувствуем ряд глубоких провалов или пиков в частоте, значит это результат отражений. Сокращение уровня отражений выравнивает фактическую кривую ответа частоты Самое важное – минимизировать ранние отражения (меньше 20ms) в максимально возможной степени.. Их сокращение улучшает качество звука и стереообраз. Как улучшить акустику комнаты, чтобы эта кривая пригладилась? Это может быть сделано с помощью поглощающих материалов, закрывающих твердые поверхности около АС. Лучшая, наиболее полезная среда для прослушивания, – полное совмещение принципов “живой” и “мертвой” акустики комнаты. Я лично предпочитаю слегка заглушенную (dead) комнату в отличие от живой, звонкой (live). Как это можно определить без специальных приборов? Хлопните в ладоши. Покажется вам, что затухание звука естественно, или слишком долго гаснет (live), или наоборот слишком быстро затухает (dead)? Лучшее решение состоит в том, что бы обеспечить комнату разумным балансом дисперсии и поглощения. Комната с голыми стенами будет иметь сильное эхо, которое ухудшает ясность. Картины на стенах, книжные полки, драпировка, напольные покрытия обеспечат звуковое поглощение и рассеют вредные отражения. Неприкрытые окна, голые полы и стены не желательны.

АС должны располагаться в акустически мертвой зоне, занимающей примерно 1/3 пространства комнаты. Затем идет очень живая зона комнаты, в которой должны находиться предметы рассеивающие, но не поглощающие звук. Чем ближе поглощающая поверхность (ковер) к АС, тем лучше. Различные типы ковров и сама подкладка (основа) ковра больше всего влияют на верхнюю середину и в/частоты. Чем толще и больше ковер, или ковровое покрытие, тем больше они будут “впитывать” эти частоты. Ковры и шторы уменьшают реверберации в комнате, и, как следствие, передачу звуковой энергии стенам. Ковровые покрытия почти не влияют на низкие частоты, но средние частоты могут переглушить. Я предпочитаю не толстый ковер от стены к стене. Это резонно хотя бы потому, что основная масса производителей АС решающие прослушивания своих изделий проводят в комнатах с полностью заглушенным полом.

Многие специалисты считают, что основа ковра/покрытия должна быть из естественных волокон, а не из резины или вспененного каучука, т.к. они поглощают частоты выборочно – некоторые частоты значительно приглушаются, а другие не приглушаются совсем. Самое важное – минимизировать ранние отражения. Их сокращение улучшает качество звука и стереообраз. Все проектировщики студий звукозаписи стараются уменьшить именно ранние отражения в максимально возможной степени. Как расположить АС в комнате надлежащим образом? Вы должны преследовать 2 основных цели: плоская частотная характеристика и хороший трехмерный образ. Даже при том, что у вас хорошие АС, влияние комнаты очень важный фактор. Во многих случаях важнее обратить внимание на акустику комнаты, чем потратить в 2 раза больше денег на новые АС.

Симметрия

Окружающая среда сзади и по бокам АС должна быть симметрична. В меньшей степени важна окружающая среда непосредственно рядом со слушателем. Относительно симметрии передних и задних стен имеется много сторонников различных мер. Большинство (но не все) соглашаются, что стена позади слушателя должна быть с хорошими отражающими свойствами.

Профессионалы считают, что вся область вокруг АС должна быть заглушена, чтобы максимально уменьшить отражения. Еще один момент: желательно заглушить боковые стены лишь непосредственно перед АС, чтобы минимизировать близкие отражения боковой стены. Для лучшего воспроизведения трехмерной звуковой картинки комната должна иметь хорошую симметрию между и вокруг АС. Это означает, что если АС расставлены не симметрично, ранние отражения от задней стены у первой АС будут отличаться от отражений второй АС, и критические части стереосигнала будут повреждены. Обязательно чтобы расстояние от вас до обеих АС была максимально идентичным. В хороших системах отклонение в несколько см. будет отчетливо слышно. Обычно считается что АС и слушатель должны образовывать равносторонний треугольник, но это не абсолютное правило. Некоторые производители дают свои рекомендации по расстановке своих АС. Помните, что любая рекомендация – только старт, начало для эксперимента, поэкспериментировав как следует, вы добьетесь желаемых результатов.

Направленный звук от АС прежде всего ответственен за imaging (образность звуковой картинки), в то время как отраженный звук больше всего влияет на изменение тонального баланса АС – в смысле плотности звука, или его истощения и т.д. Любая отражающая поверхность – стена, пол, мебель, создает отражения. Исходя из этого и надо располагать АС. Самое важное максимально уменьшить естественные отражения. Ранние отражения достигают слушателя почти одновременно с прямым звуком, деградируя сигнал. Например АС с широкими передними панелями – планары и др., менее критичны к близлежащим боковым стенам и поверхностям, но очень критичны к близости к задней стене. В общем, чем дальше от отражающих поверхностей и чем дальше от задних стен – тем большей будет глубина soundstage и будет больше “воздуха” .

Расположение слушателя

Слушатель должен сидеть точно посередине между АС, расстояние до слушателя, чуть больше чем расстояние между АС. Если вы не соблюдете это правило, вы никогда не услышите хорошей звуковой картинки. В комнате с пропорциональными размерами лучшее расположение слушателя 30-90 см от задней стены. Если вы сидите прямо у стены, вы должны немного заглушить место на стене непосредственно позади вашей головы. Ваш мозг не сможет обработать эти отражения, но поверьте мне, в данном случае они могут сильно повлиять на звук.

Помните одну вещь – близость головы к тыловой стене имеет два положительных эффекта. Во-первых, вблизи у стен самое высокое звуковое давление, а скорость звуковых волн самая минимальная. Расположение в зоне максимального давления дает лучшее восприятие глубокого баса. Во-вторых, отраженные звуковые волны короче чем окружность головы, так что мозг не может измерить задержку времени между ушами. Когда мозг не может определить отражения – он игнорирует их.

Это простой пример того, как мозг игнорирует нежелательную или несущественную информацию и подтверждение эффекта Хааса – если информация от АС придет первой, то любые искажения и отражения (даже неприятные) придут позже и на значительно меньшей громкости – и наш мозг проигнорирует их.

Часто слушатель сидит слишком далеко от АС. Чем дальше вы сидите, тем больше свободное пространство комнаты воздействует на звук, особенно это относится к средним и высоким частотам, но близко – тоже плохо – звук не успеет оформиться в картинку. Большое значение имеет высота АС. Лучше всего, когда ВЧ динамик расположен чуть выше уха (но не всегда) – экспериментируйте, выше или ниже сидеть. Развал схождение – этим методом достигается сосредоточение звукового образа (imaging) и регулировка тонального баланса, а так же оптимизация средних и высоких частот с помощью регулировки их направленности. Легче всего это делать вдвоём. Сначала направьте АС так, чтобы они смотрели на точку немного позади головы слушателя – сохраняя одинаковое расстояние от уха до твиттера каждой АС. Поставьте музыку с вокалом или скрипкой. Один человек должен наблюдать за фокусом. Другой должен вращать АС вокруг внутреннего перед-него шипа. Слушатель должен обнаружить какое расположение АС наилучшее. Когда это сделано, установите вторую АС идентично первой. Одни АС работают лучше завернутыми внутрь, другие иначе, но лучше всего не большой поворот внутрь или вообще не трогать. Следуйте за рекомендациями изготовителя.

Самое главное – правильно заполнить центральные образы без привнесения в жертву ширины soundstage. Наклон АС так же важный фактор – вперед назад, внутрь и т.д. – тоже влияет на звук. Многие производители делают отрицательный наклон передних панелей своих АС для достижения должной образности и когерентности звучания динамиков.

Высота прослушивания

В двухполосных АС ваши уши должны находиться на условной линии между ВЧ и вуфером, в 3 полосных – на линии между ВЧ и СЧ динамиком. Имейте в виду, что лучшее местоположение для создания просторного soundstage, не может быть идеальное местоположение для баса. Мы должны найти такой компромисс, при котором эти характеристики максимальны в нашем представлении. На личный вкус можно иногда пожертвовать одним ради другого. Развязка от пола самый важный момент при установке АС. Только после решения этого вопроса вы сможете услышать ваши АС такими, какие они и есть на самом деле. АС больше всего подвержены резонансам, поэтому больше всего нуждаются в жесткой фиксации. Самое главное, что дает жесткая установка колонок, – это четкая фокусировка, ясность, детальность, слитность, хорошо артикулированный бас. Звук станет плотнее и четче, особенно на большой громкости. Чем дороже ваша система, тем больше требований к установке АС. Слишком низкое расположение колонок сужает динамический диапазон. Улучшение акустических характеристик вашей комнаты может полностью изменить ваше мнение относительно качества вашей системы. Какие характеристики комнаты влияют на звучание. Весь звук в границах вашей комнаты будет зависеть от комбинации трёх акустических характеристик: отражения, рассеивание, поглощение. Хорошая комната прослушивания будет иметь пропорциональное количество этих характеристик. Чем меньше расстояние между стенами, где расположены АС и слушатель, тем более звонкое звучание, чем больше расстояние между этими стенами, тем глубже бас. Отражения: вся или большинство звуковой энергии состоит из отражений, происходящих в комнате по правилу: угол падения равен углу отражения. Твердые плоские и гладкие поверхности – голые стены, стекло, голые твёрдые поверхности мебели – отражают звуковую энергию.

Рассеивание

Все или большинство звуковых волн, отраженных обратно в комнату, находятся там уже в беспорядочном состоянии – беспорядочно рассеянная звуковая масса. Твердые, неплоские, шероховатые, ребристые поверхности, цилиндрической и округлой формы предметы – рассеивают звук. Поглощение в противоположность отражениям, большинство звуковой энергии впитывается. Мягкие пористые поверхности ковры, половые покрытия, мягкая мебель, драпировки из толстой ткани и т.д. – поглощают.

Качество низких частот в вашей комнате в большей степени зависит от самой комнаты. Поскольку длина волны басовых частот очень большая, большая часть обстановки, оформление стен и пола делают очень немного для изменения басовых частот в комбинации room/speakers. Поэтому оптимизация низких частот является вопросом выбора комнаты прослушивания с оптимальными размерами (соотношениями) и расположения в этой комнате АС. Низкочастотная энергия распространяется сферически во всех направлениях одинаково. Когда низкочастотная звуковая волна ударяется о преграду (стена), басовая энергия – большей частью – отражается обратно в комнату, отражаясь от каждой преграды – пол, стены, потолок. Вуфер должен находиться на неравном расстоянии от трех ближайших боковых плоскостей комнаты. Всё это существенно, т.к. ближайшая к АС отражающая плоскость усиливает некоторые басовые частоты.

Если отражающие плоскости находятся от АС на равном расстоянии, некоторые басовые частоты будут усилены очень сильно. Т.е. если ваша АС стоит на одинаковом расстоянии от задней стены, боковой стены и стенки шкафа или комода, то вы получите тройное усиление каких-то одних групп басовых частот, что приведет к очень слышимому гулу на этих частотах. Если двери находятся в углах комнаты, бас может просто напросто “вытекать” через них. При серьезном прослушивании надо двери закрывать. Дело обстоит не так для средних и высоких частот, где энергия направлена более сосредоточенным и управляемым образом, конусообразно, по рупорному принципу. Низкочастотные отражения, резонансы можно достаточно просто регулировать, манипулируя расстановкой АС, варьируя расстояниями от колонки до ближайшей стены.

Чем сильнее будут отличаться друг от друга все три эти параметра (расстояния), тем меньше будет “унисон” , соответственно меньше будут нежелательные резонансы. Стоячие волны- это низкочастотные отражения (резонансы) между двумя параллельными стенами, основные враги хорошего звука. Они окрашивают звучание в вашей комнате, подчеркивая некоторые музыкальные ноты и создают грубое и неестественное распределение акустической энергии в пределах комнаты. Распространение стоячих волн – собственность физических характеристик комнаты и не имеет никакого отношения к аппаратуре. В прямоугольных комнатах стоячие волны возникают во всех трёх направлениях одновременно, оказывая очень сложно распределённое давление в пределах комнаты Стоячие волны – причины заметных окрашиваний выше приблизительно 300 Гц. Однако изолированные или случайные стоячие волны могут быть заметны и ниже этой частоты. Стоячие волны являются по существу осколками каких-либо частот сбившихся в кучу, в каких- либо местах в комнате. Равномерно распределённые окрашивания почти не проблематичны по сравнению со стоячими волнами. Понимание того, чем являются стоячие волны и как они работают будет полезно для лучшей оптимизации вашей комнаты и ваших АС.

Определение осевой постоянной стоячей волны между двумя параллельными стенами может быть легко рассчитана следующим уравнением: (1) Fo = 1130 / 2L или (2) Fo = 565 / L (где константа 1130 – скорость света в футах в секунду, L – расстояние между стенами в футах пример: вычисление фундаментальных стоячих волн в трех основных направлениях для комнаты размером 4,8 (ш) * 7,8 (д) * 2,4 (в) между коротких стен Fo w = 565/16 = 35 Гц между длинных стен Fo l = 565/26 = 22 Гц между полом и потолком Fo h = 565/ 8 = 70 Гц .

Обратите внимание, что в этом примере высота стены в 2 раза меньше длины короткой стены Foh = 2Fow = 70 Гц . Эта комната имела бы значительную окраску на 70 Гц, 140 Гц, 210 Гц и далее кратно 70. Худшее возможное тональное распределение происходит, когда измерения комнаты равны во всех трех направлениях, т.е. когда комната – идеальный куб. В такой комнате гармоники всех резонансных частот будут равны между собой, а резонансы низких частот будут чрезвычайно грубы и окрашены. Наилучшее возможное тональное распределение будет в комнате, размеры которой не связаны одним целым (кратным) числом. L24*W24*H8 -плохой пример – все разекры кратны 8 L26*W15*H8 – хороший пример. Самое гладкое басовое расширение будет получено, если частоты отраженной энергии будут распределяться равномерно и не будут смешиваться в кучу.

Определение баса в комнате. Число 550 – половина скорости звука в секунду над уровнем моря. Деля это число на какую-либо басовую частоту, скажем 20 Гц, мы получим наименьшее расстояние между стенами, при которой эта частота будет поддержана комнатой. Если разделить это число на басовую частоту 20 герц, мы получим 27,5 футов – такое минимальное расстояние должно быть между стен вашей комнаты для того, чтобы поддержать эту частоту. Если расстояние между противоположными стенами, где расположены слушатель и АС, составляет 12,8 фута, значит 550/12,8 = 43 Гц – нормально для британской АС среднего размера, но позорно для АС типа Infinity Bass Tower.

Предположим вы хотите иметь бас ниже 35 Гц – 550/35= 15,7 футов – минимальное расстояние между стен, чтобы поддержать частоту 35 Гц. Но это число – 15,7 – почти двойная высота стандартной комнаты – и это плохие вести. Комната будет иметь одни и те же стоячие волны в двух направлениях.Но не расстраивайтесь, мало вероятно, чтобы эти размеры были строго кратны двум. Звуковая сцена и звуковая картинка зависят от расположения АС, их ориентации и акустики комнаты. Оптимизация расположения АС – трудная задача. Поскольку расположение АС одинаково важно и для soundstage и для хорошего воспроизведения баса, вы должны найти между этими характеристиками компромисс – намного лучше немного пожертвовать уменьшением баса для получения хороших staging/imaging. Глубина сцены лучше всего, когда АС расположены на некоторой дистанции от фронтальной стены – это понизит эффект от ранних её отражений, улучшит сфокусированность образов, позволит колонкам “дышать”. В системах высшего разрешения, точно расположенных в акустическом пространстве, звуковая сцена может простираться далеко за пределы комнаты прослушивания: тыл сцены не упирается в заднюю стену, а естественным образом простирается вглубь. Ширина сцены на окончательную ширину будет воздействовать расстояние между АС и развал –схождения колонок. Но помните, что на большинстве записей эта звуковая характеристика плохо записана.

Определение расстояние между АС

Поставьте запись с хорошей фокусировкой центрального образа – например вокал. Расположите АС примерно на 1.8 – 2 метра друг от друга, и чтобы они были направлены в точку немного позади вашей головы. Слушайте, достаточно ли звук сфокусирован. Раздвиньте АС дальше – сантиметров на 30 и слушайте снова и т.д.. Когда центр начнет тончать и расплываться и становиться разбросанным, знайте, что дальше раздвигать АС нельзя. Вы теперь знаете, насколько широко можно расставить АС не потеряв soundstage и плотность центрального образ (фокус). Фокус в значительной степени, но не полностью, связан с передачей АС высоких частот. Наше ухо использует их для очертания предмета. Поэкспериментируйте с развал – схождением.

ВЧ распространяются очень направленно. Счастливый побочный эффект от узкой направленности ещё и в том, что уменьшаются побочные отражения от близлежащих поверхностей, минимизируя эхо отраженных частот, которые влияют на звуковую картинку.

Регулировка баланса

Если баланс системы отрегулирован так, что звук распространяется неровно по всему фронту и он плохо сфокусирован, значит причина может быть в том, что одна АС ближе к вам, чем другая. Например, если ведущий вокал, который должен звучать по центру приходит к вам справа, правый спикер должен быть отодвинут назад или левый выдвинут вперёд. Обычно даже 2-3 см разницы в расстоянии до вас уже отчетливо слышны.

Перемещения АС

Все боковые перемещения АС влияют больше на мidbass а перемещение “вперёд – назад” влияют больше на глубину баса.

Плотность звукового образа- одна из необычных и музыкально очень красивых характеристик – способность сконцентрировать не только энергию ВЧ, но так же и богатство музыкальной энергии сосредоточенной в СЧ и верхнем басу. Из-за широкой характеристики рассеивания этих частот, плотность образа в этой части не зависит от того, какие края у АС – острые или скругленные. Узкий корпус с сильно скругленными краями позволяет снизить отражения от передней панели, но появляются проблемы возникновения внутри ящика стоячих волн. Узкий корпус способствует хорошему воспроизведению СЧ, т.к. чем уже корпус, тем более звучание становится всенаправленным. Если АС с широкой диаграммой направленности (узкий корпус) расположить в звонкой комнате, то тембр её звучания будет сильно искажен. Узкий корпус и небольшие динамики приводят к нехватке телесности и образности. Такие АС надо размещать подальше от отражающих поверхностей. Счастливый побочный эффект от узкой направленности ВЧ – уменьшаются побочные отражения от близких поверхностей, минимизируя первичные отражения, которые влияют на звуковую картинку.

Широкие передние панели и неглубокие корпуса – залог наиболее правильных характеристик направленности и сбалансированности н/ч диапазона в условиях реального помещения прослушивания.

По Питеру Квортрупу

Если АС имеют узкую направленность (широкий корпус), а акустика комнаты глуховата – вы услышите собственно звучание АС.

Исследования фирмы Bryston по акустическому оформлению и расположению АС

Резонансные характеристики комнаты зависят от ее конфигурации (пропорций) и оформления. Квадратная комната с голыми стенами имела бы самую плохую возможную акустику для аудио системы. В квадратных комнатах возникают стоячие волны сразу в трех направлениях, они ослабляют и изменяют одни частоты и укрепляют другие, усиливая резонансные пики в очень узком диапазоне. Эти пики очень сильно изменяют звук. Голые стены имеют проблемы с ранними отражениями (High Q) – они не дают звуку раскрыться, делая его звонким, сужая динамический диапазон и сильно влияя на тональный баланс. В концертном зале мы имеем три основных эффекта, влияющие на то, какую информацию получит наш мозг относительно акустических качеств этой окружающей среды:

  1. Первая звуковая прямая волна, прибывающая к нам от инструментов.
  2. Вторая звуковая волна отраженная от ближайших стен.
  3. Отраженная энергия, которая является случайными призвуками от всех находящихся внутри предметов и не имеет никакого направления.

Прямой звук сообщает мозгу откуда доносится звук. Ранние отражения, если они доходят до нас в пределах 10-20 мл/секунд, будут искажать звуковую картинку, тональность и т.д. Поздние отражения (ambience), наоборот будут добавлять ощущение просторности, пространственности, воздушности окружающей среды. В хорошем концертном зале прямой звук доходит до слушателя на 20-30 мл/сек. раньше, чем первичные отражения. А вторичные отражения приходят позже на целых 100 мл/сек. Очевидно, что в своей комнате прослушива-ния мы должны стремиться получит подобные результаты.

Надо заметить, что поп и рок музыка обычно записывается в акустически мертвой среде студии в “ближнем поле”, которое имеет тенденцию предотвращать первичные отражения и High Q звонкость. (поэтому наверное студийные мониторы часто звучат в комнатах звонко и резко, т.к. в студиях они прослушиваются в ближнем поле и в очень заглушенной среде, где эта звонкость и резкость не проявляется, но все детали записи слышны отчетливо).

Так вот, если ваша акустика комнаты будет близка к концертному залу, рок музыка будет звучать превосходно. Как же достичь подобных результатов в обычной комнате 12*18*9 футов (почти стандартная российская комната, надо сказать, В.М.)? Вы должны разместить ваши АС так, что бы сначала прямой звук достиг ваших ушей, используя при этом абсорбенты (поглотители) в местах первых отражений от боковых стен. А вот позади вас должно быть больше пространства для создания большего звукового поля. Сядьте в кресло. Попросите кого либо подвигать зеркало вдоль боковой стены. Когда вы увидите отражение АС в зеркале – это первая точка, откуда последуют ранние отражения. Звук отражается как и свет – угол падения…. В этом месте и надо разместить поглотитель. Сядьте на расстоянии 20-30 см. от задней стены. Не помещайте никаких поглощающих материалов позади головы. Там могут быть только рассеивающие звук материалы, распределяя случайную ненаправленую звуковую энергию, которая добавляет ощущение простора в комнате, потому что это случайная энергия (поздние отражения) прибывает намного позже, чем прямой звук. Помещайте в углы комнаты поглощающие материалы.

Другие меры – мягкие кресла, цветы, статуи и т.д. Они также будут рассеивать или поглощать вторичные отражения. Очевидно, что эти предметы не будут так же эффективны, как спец изделия, но это – шаг в правильном направлении. Гланая цель, которую вы должны запомнить: ранние отражения и недостаток поздних случайных отражений мозг использует, чтобы определить тот факт, что вы находитесь в маленьком помещении. Поэтому сокращая эффект ранних отражений, сокращая эффект от воздействия стоячих волн и звонкости, вам будет все больше казаться, что вы находитесь в зале вместе с исполнителями.

Эта информация основана на научном исследовании и наблюдениях, а так же на опыте некоторых наиболее успешных дилеров. Решения, представленные здесь. нацелены на ограничение вмешательства вашей комнаты на звук. Мы поможем разместить ваши АС через примененние психоакустики и физики. Этот метод может давать превосходные результаты через экспериментирование, без использования специальной обработки комнаты. Каким образом мы распологаем звуковые события в пространстве? Наш мозг определяет задержку времени возникновения звука между двумя нашими ушами. Если не имеется никакой задержки, значит звук исходит из точки, расположенной непосредственно перед нами. Если звуковая волна достигает сначала правого уха, значит звук находится справа и т.д. Эта пространственная информация – звуковые переходные процессы – мгновенно определяется мозгом. Определяя задержку между правым и левым ухом, наш мозг с необыкновенной точностью определяет, насколько правее или левее, или насколько ближе или дальше, находится от нас источник звука. Именно по задержке звука между нашими ушами мозг определяет важнейшую звуковую характеристику – тональность. Это недавно было доказано в научных исследованиях. И как полагают, является критической частью нашего исторического выживания. Иначе говоря, мы сначала определяем источник звука – например потенциальная опасность – а затем пробуем иденфицировать то, что явилось источником звука.

Первый шаг к получению хорошей stereo soundstage – вы должны устранить ранние отражения от основных переходных процессов в максимально возможной степени. Или, практически, вы должны добиться, чтобы звук от спикеров достигал ваших ушей раньше, чем любые отражения от этого звука. Согласно psychoacoustic явлению, названному эффектом Haas. мозг отдаст приоритет первой звуковой волне не искаженной отражениями.

Определение наилучшего расположения АС учитывая размеры комнаты

Этот метод фирма Audio Physic назвала картографией комнаты. Принцип этой техники основан на волновом явлении (феномене). Точно измерьте комнату и нарисуйте её план. Разделите комнату на равные части. Два способа – четное и нечетное количество зон. При разделении плана комнаты на четное количество зон. Размещая АС и/или свой стул даже не в точку пересечения, а в одну из разделённых частей – вы получите естественное укрепление баса от взаимодействия с комнатой. В точках пересечения басовые частоты будут усилены. Метод настройки баса и midbass предполагает похожий принцип – уменьшение, а не усиление низких частот. Это происходит в случае разделения комнаты на нечетное количество зон. Чтобы сделать это, Вы перемещаете АС в нечетные части плана комнаты. Важно помнить, что комната может быть разделена на гораздо большее количество частей чем 3 или 4. В четных разделах бас укрепляется, в нечетных – ослабляется. Другой пример (фирма Bryston) – если вы размещаете АС с превосходной характеристикой ответа частоты в углы комнаты, вы получаете подъем частоты на басах около -6 db. Этот подъем явная аномалия, но то же самое происходит в других местах комнаты, только в меньшей степени. Мы произвели исследования и обнаружили, что увеличение или уменьшение происходит в определенных узлах (точках) комнаты. В нечетных узлах возбуждение имеет минимальное значение и наоборот. Например ваша комната имеет размер 14*18 футов (фут = 0,3 м). Возьмите любой размер – длину или ширину – и разделите на нечетное количество частей, скажем 18 делим на 3,5,7.. вы получите значения = 6, 3.6, 2.57 – три возможных положения (позиции) при размещении у длинной стены. Делим 14 на три части – получаем значения = 4.67, 2.8, 2. – возможные местоположения у короткой стены. Теперь разместите АС в точке пятого значения в длину и седьмого в ширину комнаты. Пятое значение длины у нас = 3.6 футам, седьмое значение ширины = 2 футам. АС надо разместить в точке пересечения, там возбуждения низких частот будут минимальны. Помните: надо проверить все варианты для получения оптимальных результатов. Важная деталь – точка пересечения должна проходить не через переднюю или заднюю панель АС, а через магнит вуфера. Если это правило соблюдается, вы ощутите явный результат. Экспериментирование – ключ к успеху. В процессе этого вы обнаружите многие вещи, работающие не так, и сможете минимизировать эти недостатки. Самое важное – стоячие волны и ранние отражения – их надо минимизировать в максимально возможной степени.