The sine of the angle is 40 degrees. Sine, cosine, tangent: what is it? How to find sine, cosine and tangent? Trigonometric calculator online - examples

Table of values ​​of trigonometric functions

Note. This table of trigonometric function values ​​uses the √ sign to represent the square root. To indicate a fraction, use the symbol "/".

see also useful materials:

For determining the value of a trigonometric function, find it at the intersection of the line indicating the trigonometric function. For example, sine 30 degrees - we look for the column with the heading sin (sine) and find the intersection of this table column with the row “30 degrees”, at their intersection we read the result - one half. Similarly we find cosine 60 degrees, sine 60 degrees (once again, at the intersection of the sin column and the 60 degree line we find the value sin 60 = √3/2), etc. The values ​​of sines, cosines and tangents of other “popular” angles are found in the same way.

Sine pi, cosine pi, tangent pi and other angles in radians

The table below of cosines, sines and tangents is also suitable for finding the value of trigonometric functions whose argument is given in radians. To do this, use the second column of angle values. Thanks to this, you can convert the value of popular angles from degrees to radians. For example, let's find the angle of 60 degrees in the first line and read its value in radians under it. 60 degrees is equal to π/3 radians.

The number pi unambiguously expresses the dependence of the circumference on the degree measure of the angle. Thus, pi radians are equal to 180 degrees.

Any number expressed in terms of pi (radians) can be easily converted to degrees by replacing pi (π) with 180.

Examples:
1. Sine pi.
sin π = sin 180 = 0
thus, the sine of pi is the same as the sine of 180 degrees and it is equal to zero.

2. Cosine pi.
cos π = cos 180 = -1
thus, the cosine of pi is the same as the cosine of 180 degrees and it is equal to minus one.

3. Tangent pi
tg π = tg 180 = 0
thus, tangent pi is the same as tangent 180 degrees and it is equal to zero.

Table of sine, cosine, tangent values ​​for angles 0 - 360 degrees (common values)

angle α value
(degrees)

angle α value
in radians

(via pi)

sin
(sinus)
cos
(cosine)
tg
(tangent)
ctg
(cotangent)
sec
(secant)
cosec
(cosecant)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

If in the table of values ​​of trigonometric functions a dash is indicated instead of the function value (tangent (tg) 90 degrees, cotangent (ctg) 180 degrees), then for a given value of the degree measure of the angle the function does not have a specific value. If there is no dash, the cell is empty, which means we have not yet entered the required value. We are interested in what queries users come to us for and supplement the table with new values, despite the fact that current data on the values ​​of cosines, sines and tangents of the most common angle values ​​is quite sufficient to solve most problems.

Table of values ​​of trigonometric functions sin, cos, tg for the most popular angles
0, 15, 30, 45, 60, 90 ... 360 degrees
(numeric values ​​“as per Bradis tables”)

angle α value (degrees) angle α value in radians sin (sine) cos (cosine) tg (tangent) ctg (cotangent)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Tables of values ​​of sines (sin), cosines (cos), tangents (tg), cotangents (ctg) are a powerful and useful tool that helps solve many problems, both theoretical and applied. In this article we will provide a table of basic trigonometric functions (sines, cosines, tangents and cotangents) for angles of 0, 30, 45, 60, 90, ..., 360 degrees (0, π 6, π 3, π 2,... . , 2 π radians). Separate Bradis tables for sines and cosines, tangents, and cotangents will also be shown, with an explanation of how to use them to find the values ​​of basic trigonometric functions.

Table of basic trigonometric functions for angles 0, 30, 45, 60, 90, ..., 360 degrees

Based on the definitions of sine, cosine, tangent and cotangent, you can find the values ​​of these functions for angles of 0 and 90 degrees

sin 0 = 0, cos 0 = 1, t g 0 = 0, zero cotangent is not defined,

sin 90° = 1, cos 90° = 0, c t g 90° = 0, tangent of ninety degrees is not defined.

The values ​​of sines, cosines, tangents and cotangents in the geometry course are defined as the ratio of the sides of a right triangle, the angles of which are 30, 60 and 90 degrees, and also 45, 45 and 90 degrees.

Defining trigonometric functions for an acute angle in a right triangle

Sinus- the ratio of the opposite side to the hypotenuse.

Cosine- the ratio of the adjacent leg to the hypotenuse.

Tangent- the ratio of the opposite side to the adjacent side.

Cotangent- the ratio of the adjacent side to the opposite side.

In accordance with the definitions, the values ​​of the functions are found:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1, sin 60° = 3 2, cos 45° = 1 2, tg 45° = 3, c tg 45° = 3 3.

Let's put these values ​​in a table and call it a table of the basic values ​​of sine, cosine, tangent and cotangent.

Table of basic values ​​of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90
sin α 0 1 2 2 2 3 2 1
cos α 1 3 2 2 2 1 2 0
t g α 0 3 3 1 3 indefined
c t g α indefined 3 1 3 3 0
α, r a d i a n 0 π 6 π 4 π 3 π 2

One of the important properties of trigonometric functions is periodicity. Based on this property, this table can be expanded using reduction formulas. Below we present an extended table of the values ​​of the main trigonometric functions for angles 0, 30, 60, ... , 120, 135, 150, 180, ... , 360 degrees (0, π 6, π 3, π 2, ... , 2 π radians).

Table of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
sin α 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
cos α 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
t g α 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g α - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α, r a d i a n 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π 7 π 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 π 6

The periodicity of sine, cosine, tangent and cotangent allows you to expand this table to arbitrarily large angle values. The values ​​collected in the table are used most often when solving problems, so it is recommended to memorize them.

How to use the table of basic values ​​of trigonometric functions

The principle of using the table of values ​​of sines, cosines, tangents and cotangents is clear on an intuitive level. The intersection of a row and a column gives the value of the function for a particular angle.

Example. How to use the table of sines, cosines, tangents and cotangents

We need to find out what sin 7 π 6 is equal to

We find a column in the table whose last cell value is 7 π 6 radians - the same as 210 degrees. Then we select the term of the table in which the values ​​of sines are presented. At the intersection of the row and column we find the desired value:

sin 7 π 6 = - 1 2

Bradis tables

The Bradis table allows you to calculate the value of sine, cosine, tangent or cotangent with an accuracy of 4 decimal places without the use of computer technology. This is a kind of replacement for an engineering calculator.

Reference

Vladimir Modestovich Bradis (1890 - 1975) - Soviet mathematician-teacher, since 1954 corresponding member of the Academy of Pedagogical Sciences of the USSR. Tables of four-digit logarithms and natural trigonometric quantities developed by Bradis were first published in 1921.

First, we present the Bradis table for sines and cosines. It allows you to quite accurately calculate the approximate values ​​of these functions for angles containing an integer number of degrees and minutes. The leftmost column of the table represents degrees, and the top row represents minutes. Note that all angle values ​​of the Bradis table are multiples of six minutes.

Bradis table for sines and cosines

sin 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" cos 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
sin 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" cos 1" 2" 3"

To find the values ​​of sines and cosines of angles not presented in the table, it is necessary to use corrections.

Now we present the Bradis table for tangents and cotangents. It contains values ​​of tangents of angles from 0 to 76 degrees, and cotangents of angles from 14 to 90 degrees.

Bradis table for tangent and cotangent

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

How to use Bradis tables

Consider the Bradis table for sines and cosines. Everything related to sinuses is at the top and to the left. If we need cosines, look at the right side at the bottom of the table.

To find the values ​​of the sine of an angle, you need to find the intersection of the row containing the required number of degrees in the leftmost cell and the column containing the required number of minutes in the top cell.

If the exact angle value is not in the Bradis table, we resort to corrections. Corrections for one, two and three minutes are given in the rightmost columns of the table. To find the value of the sine of an angle that is not in the table, we find the value closest to it. After this, we add or subtract the correction corresponding to the difference between the angles.

If we are looking for the sine of an angle that is greater than 90 degrees, we first need to use the reduction formulas, and only then the Bradis table.

Example. How to use the Bradis table

Let's say we need to find the sine of the angle 17 ° 44 ". Using the table, we find what the sine of 17 ° 42 " is equal to and add a correction of two minutes to its value:

17°44" - 17°42" = 2" (necessary correction) sin 17°44" = 0. 3040 + 0 . 0006 = 0 . 3046

The principle of working with cosines, tangents and cotangents is similar. However, it is important to remember the sign of the amendments.

Important!

When calculating the values ​​of sines, the correction has a positive sign, and when calculating cosines, the correction must be taken with a negative sign.

If you notice an error in the text, please highlight it and press Ctrl+Enter

As you can see, this circle is constructed in the Cartesian coordinate system. The radius of the circle is equal to one, while the center of the circle lies at the origin of coordinates, the initial position of the radius vector is fixed along the positive direction of the axis (in our example, this is the radius).

Each point on the circle corresponds to two numbers: the axis coordinate and the axis coordinate. What are these coordinate numbers? And in general, what do they have to do with the topic at hand? To do this, we need to remember about the considered right triangle. In the figure above, you can see two whole right triangles. Consider a triangle. It is rectangular because it is perpendicular to the axis.

What is the triangle equal to? That's right. In addition, we know that is the radius of the unit circle, which means . Let's substitute this value into our formula for cosine. Here's what happens:

What is the triangle equal to? Well, of course, ! Substitute the radius value into this formula and get:

So, can you tell what coordinates a point belonging to a circle has? Well, no way? What if you realize that and are just numbers? Which coordinate does it correspond to? Well, of course, the coordinates! And what coordinate does it correspond to? That's right, coordinates! Thus, period.

What then are and equal to? That's right, let's use the corresponding definitions of tangent and cotangent and get that, a.

What if the angle is larger? For example, like in this picture:

What has changed in this example? Let's figure it out. To do this, let's turn again to a right triangle. Consider a right triangle: angle (as adjacent to an angle). What are the values ​​of sine, cosine, tangent and cotangent for an angle? That's right, we adhere to the corresponding definitions of trigonometric functions:

Well, as you can see, the value of the sine of the angle still corresponds to the coordinate; the value of the cosine of the angle - the coordinate; and the values ​​of tangent and cotangent to the corresponding ratios. Thus, these relations apply to any rotation of the radius vector.

It has already been mentioned that the initial position of the radius vector is along the positive direction of the axis. So far we have rotated this vector counterclockwise, but what happens if we rotate it clockwise? Nothing extraordinary, you will also get an angle of a certain value, but only it will be negative. Thus, when rotating the radius vector counterclockwise, we get positive angles, and when rotating clockwise - negative.

So, we know that a whole revolution of the radius vector around a circle is or. Is it possible to rotate the radius vector to or to? Well, of course you can! In the first case, therefore, the radius vector will make one full revolution and stop at position or.

In the second case, that is, the radius vector will make three full revolutions and stop at position or.

Thus, from the above examples we can conclude that angles that differ by or (where is any integer) correspond to the same position of the radius vector.

The figure below shows an angle. The same image corresponds to the corner, etc. This list can be continued indefinitely. All these angles can be written by the general formula or (where is any integer)

Now, knowing the definitions of the basic trigonometric functions and using the unit circle, try to answer what the values ​​are:

Here's a unit circle to help you:

Having difficulties? Then let's figure it out. So we know that:

From here, we determine the coordinates of the points corresponding to certain angle measures. Well, let's start in order: the angle at corresponds to a point with coordinates, therefore:

Does not exist;

Further, adhering to the same logic, we find out that the corners in correspond to points with coordinates, respectively. Knowing this, it is easy to determine the values ​​of trigonometric functions at the corresponding points. Try it yourself first, and then check the answers.

Answers:

Does not exist

Does not exist

Does not exist

Does not exist

Thus, we can make the following table:

There is no need to remember all these values. It is enough to remember the correspondence between the coordinates of points on the unit circle and the values ​​of trigonometric functions:

But the values ​​of the trigonometric functions of angles in and, given in the table below, must be remembered:

Don't be scared, now we'll show you one example quite simple to remember the corresponding values:

To use this method, it is vital to remember the values ​​of the sine for all three measures of angle (), as well as the value of the tangent of the angle. Knowing these values, it is quite simple to restore the entire table - the cosine values ​​are transferred in accordance with the arrows, that is:

Knowing this, you can restore the values ​​for. The numerator " " will match and the denominator " " will match. Cotangent values ​​are transferred in accordance with the arrows indicated in the figure. If you understand this and remember the diagram with the arrows, then it will be enough to remember all the values ​​​​from the table.

Coordinates of a point on a circle

Is it possible to find a point (its coordinates) on a circle, knowing the coordinates of the center of the circle, its radius and angle of rotation?

Well, of course you can! Let's get it out general formula for finding the coordinates of a point.

For example, here is a circle in front of us:

We are given that the point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of a point obtained by rotating the point by degrees.

As can be seen from the figure, the coordinate of the point corresponds to the length of the segment. The length of the segment corresponds to the coordinate of the center of the circle, that is, it is equal. The length of a segment can be expressed using the definition of cosine:

Then we have that for the point coordinate.

Using the same logic, we find the y coordinate value for the point. Thus,

So, in general, the coordinates of points are determined by the formulas:

Coordinates of the center of the circle,

Circle radius,

The rotation angle of the vector radius.

As you can see, for the unit circle we are considering, these formulas are significantly reduced, since the coordinates of the center are equal to zero and the radius is equal to one:

Well, let's try out these formulas by practicing finding points on a circle?

1. Find the coordinates of a point on the unit circle obtained by rotating the point on.

2. Find the coordinates of a point on the unit circle obtained by rotating the point on.

3. Find the coordinates of a point on the unit circle obtained by rotating the point on.

4. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

5. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

Having trouble finding the coordinates of a point on a circle?

Solve these five examples (or get good at solving them) and you will learn to find them!

1.

You can notice that. But we know what corresponds to a full revolution of the starting point. Thus, the desired point will be in the same position as when turning to. Knowing this, we find the required coordinates of the point:

2. The unit circle is centered at a point, which means we can use simplified formulas:

You can notice that. We know what corresponds to two full revolutions of the starting point. Thus, the desired point will be in the same position as when turning to. Knowing this, we find the required coordinates of the point:

Sine and cosine are table values. We recall their meanings and get:

Thus, the desired point has coordinates.

3. The unit circle is centered at a point, which means we can use simplified formulas:

You can notice that. Let's depict the example in question in the figure:

The radius makes angles equal to and with the axis. Knowing that the table values ​​of cosine and sine are equal, and having determined that the cosine here takes a negative value and the sine takes a positive value, we have:

Such examples are discussed in more detail when studying the formulas for reducing trigonometric functions in the topic.

Thus, the desired point has coordinates.

4.

Angle of rotation of the radius of the vector (by condition)

To determine the corresponding signs of sine and cosine, we construct a unit circle and angle:

As you can see, the value, that is, is positive, and the value, that is, is negative. Knowing the tabular values ​​of the corresponding trigonometric functions, we obtain that:

Let's substitute the obtained values ​​into our formula and find the coordinates:

Thus, the desired point has coordinates.

5. To solve this problem, we use formulas in general form, where

Coordinates of the center of the circle (in our example,

Circle radius (by condition)

Angle of rotation of the radius of the vector (by condition).

Let's substitute all the values ​​into the formula and get:

and - table values. Let’s remember and substitute them into the formula:

Thus, the desired point has coordinates.

SUMMARY AND BASIC FORMULAS

The sine of an angle is the ratio of the opposite (far) leg to the hypotenuse.

The cosine of an angle is the ratio of the adjacent (close) leg to the hypotenuse.

The tangent of an angle is the ratio of the opposite (far) side to the adjacent (close) side.

The cotangent of an angle is the ratio of the adjacent (close) side to the opposite (far) side.

Find angle by sine

So, we have the opportunity to calculate the sine of any angle from 0 to 90° e in two decimal places. There is no need for a ready-made table; for approximate calculations we can always compile it ourselves if we wish.

But to solve trigonometric problems, you need to be able to do the opposite - calculate angles from a given sine. This is also easy. Suppose you need to find an angle whose sine is equal to 0.38. Since this sine is less than 0.5, the desired angle is less than 30°. But it is greater than 15°, since sin 15°, we know, is equal to 0.26. To find this angle, which lies between 15 and 30°, we proceed as explained earlier:

So, the desired angle is approximately 22.5°. Another example: find an angle whose sine is 0.62.

The desired angle is approximately 38.6°.

Finally, the third example: find an angle whose sine is 0.91.

Since this sine lies between 0.71 and 1, the desired angle lies between 45° and 90°. On: fig. 91 Sun is the sine of angle L if VA= 1. Knowing sun, easy to find the sine of an angle IN:

Now let's find the angle IN, whose sine is 0.42; after this it will be easy to find angle A equal to 90° - IN.

Since 0.42 lies between 0.26 and 0.5, then the angle IN lies between 15° and 30°, It is defined as follows:

And, therefore, angle A = 90° - B = 90° - 25° = 65°.

We are now fully equipped to approximately solve trigonometric problems, since we can find sines from angles and angles from sines with an accuracy sufficient for field purposes.

But is sine alone enough for this? Don't we need the rest of the trigonometric functions - cosine, tangent, etc.? Now we will show with a number of examples that for our simplified trigonometry we can completely get by with just the sine.

Examples:

\(\sin(⁡30^°)=\)\(\frac(1)(2)\)
\(\sin⁡\)\(\frac(π)(3)\) \(=\)\(\frac(\sqrt(3))(2)\)
\(\sin⁡2=0.909…\)

Argument and meaning

Sine of an acute angle

Sine of an acute angle can be determined using a right triangle - it is equal to the ratio of the opposite side to the hypotenuse.

Example :

1) Let an angle be given and you need to determine the sine of this angle.


2) Let us complete any right triangle on this angle.

3) Having measured the required sides, we can calculate \(sinA\).

Sine of a number


The number circle allows you to determine the sine of any number, but usually you find the sine of numbers somehow related to: \(\frac(π)(2)\) , \(\frac(3π)(4)\) , \(-2π\ ).

For example, for the number \(\frac(π)(6)\) - the sine will be equal to \(0.5\). And for the number \(-\)\(\frac(3π)(4)\) it will be equal to \(-\)\(\frac(\sqrt(2))(2)\) (approximately \(-0 ,71\)).


For sine for other numbers often encountered in practice, see.

The sine value always lies in the range from \(-1\) to \(1\). Moreover, it can be calculated for absolutely any angle and number.

Sine of any angle

Thanks to the unit circle, it is possible to determine trigonometric functions not only of an acute angle, but also of an obtuse, negative, and even greater than \(360°\) (full revolution). How to do this is easier to see once than to hear \(100\) times, so look at the picture.


Now an explanation: let us need to define \(sin∠KOA\) with the degree measure in \(150°\). Combining the point ABOUT with the center of the circle, and the side OK– with the \(x\) axis. After this, set aside \(150°\) counterclockwise. Then the ordinate of the point A will show us \(\sin⁡∠KOA\).

If we are interested in an angle with a degree measure, for example, in \(-60°\) (angle KOV), we do the same, but we set \(60°\) clockwise.


And finally, the angle is greater than \(360°\) (angle CBS) - everything is similar to the stupid one, only after going clockwise a full turn, we go to the second circle and “get the lack of degrees”. Specifically, in our case, the angle \(405°\) is plotted as \(360° + 45°\).

It’s easy to guess that to plot an angle, for example, in \(960°\), you need to make two turns (\(360°+360°+240°\)), and for an angle in \(2640°\) - whole seven.

As you could replace, both the sine of a number and the sine of an arbitrary angle are defined almost identically. Only the way the point is found on the circle changes.

Relation to other trigonometric functions:

Function \(y=\sin⁡x\)

If we plot the angles in radians along the \(x\) axis, and the sine values ​​corresponding to these angles along the \(y\) axis, we get the following graph:

This graph is called a sine wave and has the following properties:

The domain of definition is any value of x: \(D(\sin⁡x)=R\)
- range of values ​​– from \(-1\) to \(1\) inclusive: \(E(\sin⁡x)=[-1;1]\)
- odd: \(\sin⁡(-x)=-\sin⁡x\)
- periodic with period \(2π\): \(\sin⁡(x+2π)=\sin⁡x\)
- points of intersection with coordinate axes:
abscissa axis: \((πn;0)\), where \(n ϵ Z\)
Y axis: \((0;0)\)
- intervals of constancy of sign:
the function is positive on the intervals: \((2πn;π+2πn)\), where \(n ϵ Z\)
the function is negative on the intervals: \((π+2πn;2π+2πn)\), where \(n ϵ Z\)
- intervals of increase and decrease:
the function increases on the intervals: \((-\)\(\frac(π)(2)\) \(+2πn;\) \(\frac(π)(2)\) \(+2πn)\), where \(n ϵ Z\)
the function decreases on the intervals: \((\)\(\frac(π)(2)\) \(+2πn;\)\(\frac(3π)(2)\) \(+2πn)\), where \(n ϵ Z\)
- maximums and minimums of the function:
the function has a maximum value \(y=1\) at points \(x=\)\(\frac(π)(2)\) \(+2πn\), where \(n ϵ Z\)
the function has a minimum value \(y=-1\) at points \(x=-\)\(\frac(π)(2)\) \(+2πn\), where \(n ϵ Z\).