Как обозначается прямая. вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b

Страница 1 из 3

§1. Контрольные вопросы
Вопрос 1. Приведите примеры геометрических фигур.
Ответ. Примеры геометрических фигур: треугольник, квадрат, окружность.

Вопрос 2. Назовите основные геометрические фигуры на плоскости.
Ответ. Основными геометрическими фигурами на плоскости являются точка и прямая.

Вопрос 3. Как обозначаются точки и прямые?
Ответ. Точки обозначаются прописными латинскими буквами: A, B, C, D, … . Прямые обозначаются строчными латинскими буквами: a, b, c, d, … .
Прямую можно обозначать двумя точками, лежащими на ней. Например, прямую a на рисунке 4 можно обозначить AC, а прямую b можно обозначить BC.

Вопрос 4. Сформулируйте основные свойства принадлежности точек и прямых.
Ответ. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
Через любые две точки можно провести прямую, и только одну.
Вопрос 5. Объясните, что такое отрезок с концами в данных точках.
Ответ. Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными её точками. Эти точки называются концами отрезка. Отрезок обозначается указанием его концов. Когда говорят или пишут: "отрезок AB", то подразумевают отрезок с концами в точках A и B.

Вопрос 6. Сформулируйте основное свойство расположения точек на прямой.
Ответ. Из трёх точек на прямой одна и только одна лежит между двумя другими.
Вопрос 7. Сформулируйте основные свойства измерения отрезков.
Ответ. Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Вопрос 8. Что называется расстоянием между двумя данными точками?
Ответ. Длину отрезка AB называют расстоянием между точками A и B.
Вопрос 9. Какими свойствами обладает разбиение плоскости на две полуплоскости?
Ответ. Разбиение плоскости на две полуплоскости обладает следующим свойством. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.

Несмотря на то что геометрия относится к числу точных наук, ученые не могут однозначно дать определение термину «прямая». В самом общем виде можно дать такое определение: «Прямая — это линия, путь вдоль которой равен расстоянию между двумя точками».

Что такое прямая в математике? Определение прямой в математике: прямая не имеет концов и может продолжаться в обе стороны до бесконечности.

К основным понятиям геометрии относятся точка, прямая и плоскость, они даются без определения, но определения других геометрических фигур даются через эти понятия. Плоскость, как и прямая, - это первичное понятие, не имеющее определения. Это утверждение устанавливается следующей аксиомой: если две точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости. А само утверждение, которое доказывается, называется теоремой. Формулировка теоремы обычно состоит из двух частей.

Задача: где прямая, луч, отрезок, кривая? Вершины ломаной(похожи на вершины гор) - это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная. Задача: какая ломанная длиннее, а у какой больше вершин? Смежные стороны многоугольника - это смежные звенья ломанной. Вершины многоугольника - это вершины ломанной. Соседние вершины - это точки концов одной стороны многоугольника.

На уроках математики можно услышать следующее объяснение: математический отрезок имеет длину и концы. Отрезок в математике — это совокупность всех точек, лежащих на прямой между концами отрезка.

В дальнейшем будут определения для разных фигур кроме двух — точка и прямая. Значит иногда обозначить прямую можем и двумя большими латинскими буквами, например, прямая\(AB\), так как никакая другая прямая через эти две точки не может быть проведена. Символически записываем отрезок \(AB\).

Что такое точка в математике?

Теорема:Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. С. Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику. С. Вписанный угол, опирающийся на полуокружность, — прямой. Здесь собраны основные определения, теоремы, свойства фигур на плоскости.

Вектор с координатами точки называется нормальным вектором, он перпендикулярен прямой.

При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенно определяется аксиомами геометрии.

4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны. Лучом называют часть прямой линии, ограниченную с одной стороны. Отрезок, как и прямая линия, обозначается или одной буквой, или двумя. В последнем случае эти буквы указывают концы отрезка.

В геометрии основными геометрическими фигурами являются точка и прямая. Для обозначения точек принято использовать прописные латинские буквы: A, B, C, D, E, F … . Для обозначения прямых используют строчные латинские буквы: a, b, c, d, e, f … . На рисунке ниже представлена прямая а, и несколько точек A, B, C, D.

Для изображения на рисунке прямой мы пользуемся линейкой, но мы изображаем не всю прямую, а только лишь её кусок. Так как прямая в нашем представлении простирается до бесконечности в обе стороны, то прямая есть бесконечна.

На рисунке представленном выше мы видим, что точки А и С расположены на прямой а . В таких случаях говорят, что точки А и С принадлежат прямой а. Либо говорят, что прямая проходит через точки А и С. При записи принадлежность точки к прямой обозначают специальным значком. А тот факт, что точка не принадлежит прямой, отмечают таким же значком, только зачеркнутым.

В нашем случае точки B и D не принадлежат прямой а.

Как уже отмечалось выше, на рисунке точки А и С принадлежат прямой а. Часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными точками называется отрезком . Другими словами, отрезком называется часть прямой, ограниченная двумя точками.

В нашем случае мы имеем отрезок АB . Точки А и B называются концами отрезка. Для того, чтобы обозначить отрезок указывают его концы, в нашем случае АB. Одним из основных свойств принадлежности точек и прямых является следующее свойство : через любые две точки можно провести прямую, и притом только одну.

Если две прямые имеют общую точку, то говорят, что эти две прямые пересекаются. На рисунке прямые a и b пересекаются в точке A. Прямые а и с не пересекаются.

Любые две прямые имеют только одну общую точку либо не имеют общих точек. Если предположить обратное, что две прямые имеют две общих точки, тогда через них проходили бы две прямые. А это невозможно, так как через две точки можно провести лишь одну прямую.

Основными геометрическими фигурами на плоскости являются точка и прямая. Точки принято обозначать прописными латинскими буквами:
А, В, С, D, ... .

Прямые обозначаются строчными латинскими буквами:
а, b, с, d
На рисунке 3 вы видите точку А и прямую а.
бесконечна. На рисунке мы изображаем только часть прямой, но представляем ее себе неограниченно продолженной в обе стороны.



Посмотрите на рисунок 4. Вы видите прямые а, b и точки А, В, С. Точки А к С лежат на прямой a. Можно сказать также, что точки А и С принадлежат прямой a или что прямая a проходит через точки А и С.

Точка В лежит на прямой b. Она не лежит на прямой a. Точка С лежит и на прямой a, и на прямой b. Прямые а и b пересекаются в точке С. Точка С является точкой пересечения прямых a и b.
На рисунке 5 вы видите, как с помощью линейки строится прямая, проходящая через две заданные точки A и В.

Основными свойствами принадлежности точек и прямых на плоскости мы будем называть следующие свойства:

I. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

Прямую можно обозначать двумя точками, лежащими на ней. Например, прямую о на рисунке 4 можно обозначить АС, а прямую b можно обозначить ВС.

Задача (3)". Могут ли две прямые иметь две точки пересечения? Объясните ответ.

Решение. Если бы две прямые имели две точки пересечения, то через эти точки проходили бы две прямые. А это невозможно, так как через две точки можно провести только одну прямую. Значит, две прямые не могут иметь две точки пересечения.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений