Мировой рынок теллура. Знаешь как

Теллур - неметалл, который обладает металлическим блеском. Цвет его серебристо-белый. Этот элемент является очень редким и рассеянным. Его открыл горный инспектор Франц Йозеф Мюллер в1782 году. Извлекают теллур из полиметаллической руды. Содержится данное вещество в виду соединений в гидротермальных месторождениях золота и другие .

Таллий - хрупкий материал, который в процессе нагрева приобретает пластические свойства. Значение плотности данного неметалла - 6,25 г/см3. Теллий начинает плавиться при достижении температуры значения 450 °C, а кипеть при 990 °С. Материал обладает свойствами диамагнетика и при 18 °С значение удельной магнитной восприимчивости составляет -0,31.10-6.

Теллур является полупроводником р-типа, когда условия окружающей среды нормальные или же при нагреве материала до кипения. Когда неметалл охлаждать, при переходе около -100 °С он изменяет свое свойства и обретает проводимость n-типа. Запрещенная зона по ширине составляет 0,34 эв. Температура перехода снижается в зависимости от чистоты вещества.

Таллий используется как легирующая добавка при производстве свинца. Она способствует улучшению прочности и химической стойкости. Свинцово-теллуровый сплав используют в кабельном и химическом производстве. Легируют теллуром, также, медь и сталь. Это позволяет улучшить их механическую обработку.

Теллур применяют и в стекольном производстве. Стекло, благодаря такой примеси, обретает коричневый окрас, и коэффициент лучепреломления его увеличивается. В промышленности по производству резины теллур применяется для проведения процесса по вулканизации каучука.

Значительному спросу на теллур способствуют его полупроводниковые свойства. Он считается, как типичным, так и технологичным полупроводником. Это вещество используется в микроэлектронике. Из него получают тонкую пленку, которая способна плавится при более низких температурах, по сравнению с множеством металлов.

В чистом виде теллур, в виде полупроводника, применяется редко из-за его ограниченного запаса в недрах Земли. В большинстве случаев его используют при изготовлении транзисторов и приборов, которые предназначены для измерения интенсивности гамма-излучений.

Чаще всего в промышленности используется не чистый неметалл, а его соединения с металлами, которые называют теллуридами. С их применением производят важные части термоэлектрогенераторов.

Продажа цветных металлов в Москве - .


Теллур в полупроводниковой технике применяется для приготовления термоэлементов в виде сплавов Bi-Sb-Te (р-тип), Bi-Se-Te и Pb-Se-Te (n-тип), а также Pb-Te, в котором в зависимости от легирующих компонентов или содержания в нем сверхстехиометрического количества свинца или теллура изменяется тип проводимости.
Особенно нежелательны в теллуре примеси свинца и олова, так как они сильно снижают эффективность отрицательной ветви на основе Bi-Se-Te. В сплаве Pb-Te и Pb-Se (отрицательная ветвь) должны отсутствовать примеси меди и серебра.
Теллур высокой чистоты получают очисткой технического теллура. Технический теллур содержит 95-99% Te и примеси ТеОг, селена, серы, натрия, меди, серебра, свинца, железа, магния, алюминия, кремния, сурьмы, висмута и других элементов, которые находятся в связанном состоянии в виде окислов, теллуридов, сульфидов, хлоридов.
Наибольшее влияние на электрические свойства теллура оказывают примеси элементов V и VII групп, которые, по-видимому, замещают атомы теллура в кристаллической решетке, подобно германию и кремнию, электрические свойства которых изменяются под влиянием элементов III и V групп.
Глубокая очистка теллура может осуществляться химическими и физическими методами.
Химические методы очистки
Химические методы основаны на переосаждении или перекристаллизации теллура и его соединений. Известны следующие химические методы очистки теллура:
а) фракционированное восстановление теллура из кислого раствора сернистым газом;
б) переосаждение двуокиси теллура из кислого или щелочного раствора;
в) перекристаллизация основного нитрата теллура, теллуровой кислоты и других соединений;
г) ионный обмен.
Фракционное восстановление теллура из кислого раствора
Через солянокислый раствор теллура пропускают сернистый газ при различных pH. При этом в зависимости от концентрации соляной кислоты сернистым газом будет восстанавливаться селен или теллур, что связано с различной величиной окислительно-восстановительных потенциалов восстановления Se4+ и Te4+ и кислотности среды.
Теллур восстанавливается полностью при концентрации HCl ниже 1% и в пределах 11-21%. При концентрации HCl 28% восстановления теллура не происходит.
Селен же восстанавливается полностью начиная с концентрации 11%, поэтому из солянокислых растворов при концентрации более 28% вначале с помощью SO2 восстанавливают селен. Осадок селена отделяют от раствора, который затем разбавляют вдвое водой, и, насыщая его SO2, восстанавливают теллур. Примеси тяжелых металлов остаются в растворе, но некоторая часть их соосаждается с теллуром; это - медь, AgCl, PbCl2, висмут и сурьма. При повторном осаждении теллура понижается содержание примесей тяжелых металлов.
Переосаждение TеО2 из кислого или щелочного раствора. Двуокись теллура обладает амфотерными свойствами и весьма малой растворимостью при pH=1:9 в отличие от двуокиси селена, хорошо растворимой при любом значении pH. Следовательно, отделить примесь селена от теллура путем переосаждения TeO2 нетрудно. Для очистки TeO2 от примесей, главным образом от железа и тяжелых металлов, ее растворяют в NaOH:

TеО2 + 2NаОН = Nа2ТеО3 + H2O


и при определенном pH проводят осаждение гидроокисей или теллуритов того или иного состава.
В работе показано, что при осаждении TeO2 при рН = 3/4 соосаждение примесей меди и свинца велико, вследствие чего рекомендуется проводить осаждение теллуридов этих металлов при pH = 10, а затем, после удаления осадка, содержащего эти примеси, осаждать TeO2.
Двукратным переосаждением TeO2 можно снизить содержание селена с 0,5 до 2*10в-4 %. На этом методе основана технологическая схема очистки теллура до чистоты 99,99%.
Перекристаллизацияосновного нитрата теллура. Малая растворимость TeO2 в HNO3 позволяет значительно отделить в виде растворимых нитратов примеси меди, магния, алюминия, свинца, сурьмы, висмута. При растворении теллура в HNO3 и продолжительном упаривании раствора при 60-85° С примеси переходят в хорошо растворимые нитраты, а труднорастворимый основной нитрат теллура Te2O3(OH)NO3 выделяется из раствора, переводится нагреванием в TeO2, растворяется в химически чистой HCl и восстанавливается из раствора химически чистым SO2.
Выход теллура 50% и тяжелые условия труда (упаривание больших объемов HNO3) ограничивают применение этого метода.
Более эффективна перекристаллизация теллуровой кислоты, однако окисление теллура до шестивалентного, проводимое обычно хромовым ангидридом, приводит к загрязнению теллуровой кислоты хромом, что в свою очередь требует повторных перекристаллизаций для удаления примеси хрома.
Из других соединений теллура, пригодных для перекристаллизации, следует упомянуть комплексный бромид калия и теллура и дифенил-дибромид теллура.
Теллур может быть очищен от примеси селена и серы сплавлением с цианистым калием. При этом селен и сера образуют тио- и селеноцианаты, растворимые в воде; образующийся при сплавлении теллурид калия в водном растворе легко окисляется до элементарного теллура. Высокая токсичность KCN не позволяет широко использовать этот метод.
Ионный обмен. В пятидесятых годах был осуществлен целый ряд работ для разделения селена, теллура и некоторых других металлов с помощью ионообменных смол. Так, в работе Виале описана методика для удаления следов селена из теллуровой кислоты с использованием ацетатной формы смолы Амберлита IRA-400, которая практически не сорбирует H2TeO3.
Данные методы дают очень глубокую очистку компонентов, в частности теллура от селена, но обладают малой производительностью и применимы к очень небольшим количествам разделяемых смесей.
Существует и еще ряд работ по экстракционному разделению Se4+ и Te4+ трибутилфосфатом, керосином и изопропиловым спиртом, но отсутствие данных о степени разделения компонентов не позволяет судить о чистоте получаемых веществ.
Соловушков и другие получили теллур (общее содержание определяемых примесей без селена, серы и кислорода 0,007%) окислением технического теллура (98,5%) азотной кислотой, растворением полученной TeO2 в щелочи или в HCl и восстановлением теллура электролизом или сернистым газом. При осаждении теллура из раствора происходит дополнительная очистка его от примесей.
Электролитическое выделение теллура из щелочного раствора проводили при следующих условиях: исходный электролит содержал 75-80 г/л Te и 125-140 г/л NaOH; катодная плотность тока 60 а/м2, температура электролита комнатная. Металл выделялся на катоде в виде очень плотных пленок, которые сползали при небольшом прогибании катодов.
Катодный теллур отмывали от электролита водой, затем HCIконц, снова водой до полного удаления ионов хлора и, наконец, спиртом для ускорения процесса сушки. Преимущество этого метода состоит в получении компактного металла, не требующего переплавки, в противоположность методу осаждения теллура сернистым газом.
Физические методы очистки
К физическим методам очистки теллура относятся:
а) дистилляция в токе водорода или инертного газа;
б) сублимация или дистилляция в вакууме;
в) ректификация металлического теллура;
г) дистилляция соединений теллура;
д) зонная плавка и направленная кристаллизация.
Эти методы достаточно просты в аппаратурном оформлении и поэтому получили наибольшее распространение.
Дистилляция в токе водорода применяется в лабораторной практике, а в токе гелия, аргона и азота - в промышленности за рубежом. Чистота получаемого этими методами теллура 99,99%. Трехкратной перегонкой технического теллура (95%) получен металл чистотой 99,99%, а пятикратная перегонка в токе водорода при 700° С дает теллур, соизмеримый по чистоте с теллуром после зонной плавки. При дистилляции примеси хлоридов конденсируются в более холодных участках зоны, и их содержание уменьшается в чистом продукте в 300-400 раз.
Применение вакуума позволяет значительно снизить температуру возгонки, а следовательно, иметь более благоприятное распределение примесей, избежать окисления и загрязнения металла.
Большинство исследований проведено при вакууме 1*10в-2-1*10в-3 мм рт. ст. и температуре дистилляции от 500 до 600° С в приборе, представляющем собой запаянную с одного конца кварцевую трубу, помещенную в вакуумную камеру. В трубу вставляется кварцевая лодочка с металлом и нагревается до заданной температуры. Пары теллура конденсируются на холодных стенках кварцевой трубы.
Технический теллур подвергали дистилляции в порошкообразном, брикетированном и предварительно переплавленном состоянии. При дистилляции переплавленного теллура увеличиваются скорость процесса и полезная емкость аппаратуры. Кроме того, в результате плавки снижается содержание в теллуре сурьмы, свинца, железа, кремния, алюминия и магния, которые, по-видимому, находятся в окисленной форме и переходят в съемы. Содержание серебра и меди при переплавке не изменяется.
При дистилляции характер распределения примесей следующий: железо, алюминий, кремний - в остатке, основная часть натрия и магния переходит в возгоны. В значительных количествах в возгоны переходят также серебро, медь и свинец.
Разработка режима дистилляции фактически сводилась к нахождению оптимальных условий максимальной очистки теллура от серебра, меди и свинца, так как именно эти элементы являются наиболее вредно влияющими на термоэлектрические свойства теллура и теллуридов.
Недостатками процессов возгонки и дистилляции являются периодичность и связанная с ней возможность загрязнения чистого продукта во время ручной разгрузки аппарата. Несколько усовершенствованным является прибор, запатентованный Cyгa Йосио.
Кудрявцевым А.А. сделана попытка перейти от дистилляции к непрерывному процессу ректификации металлических селена и теллура. В ряде работ говорится о принципиальной возможности ректификационного разделения селена и теллура на двух колонках и что этим методом получен металлический теллур чистотой 99,998%. К недостатку этого метода следует отнести плохой тепло- и массообмен в колонке вследствие неполного смачивания жидким теллуром кварца.
Примером дистилляции соединений служит разгонка TeCl4 (температура кипения 390° С) и SeCl4 (температура кипения 192° С). Недостатки этого метода - склонность TeCl4 к гидролизу и летучесть многих хлоридов тяжелых металлов.
Для очистки теллура от селена можно воспользоваться также большой разницей давлений насыщенных паров TeO2 и SeO2, однако из-за высокой токсичности этих соединений ограничивается применение этого метода, как и метода разделения селена и теллура в виде гидридов. Этот способ, помимо токсичности, характеризуется малым выходом готового продукта (24%).
Зонная плавка теллура, как правило, используется для более глубокой очистки предварительно дистиллированного или химически обработанного металла. Зонной плавкой и направленной кристаллизацией удаляются медь, серебро, свинец и железо. Однако этот метод малоэффективен для очистки теллура от селена и магния. После 12 проходов зоны получен теллур с концентрацией носителей 3*10в-14 см-3. Шварценау после 9 проходов зоны получил Te с концентрацией носителей 4*10в15 см-3 на 50%-ной длине слитка, что соответствует чистоте порядка 99,9999% Te.


Физические свойства
Теллур существует в двух модификациях - кристаллической и аморфной.
Кристаллический теллур получается охлаждением паров теллура, а аморфный - при восстановлении теллуровой кислоты сернистым газом или другим подобным реагентом:


Аморфный теллур - это тонкий черный порошок, который при нагревании переходит в металлический теллур. Плотность аморфного теллура 5,85-5,1 г/см3.
Для кристаллического теллура известны две полиморфные разновидности: α-Te и β-Те. Переход α→β происходит при 354° С. Кристаллический теллур имеет бело-серебряный цвет. Плотность его 6,25 г/см2. Твердость кристаллического теллура 2,3; при обыкновенной температуре он хрупок, легко разбивается в порошок, а при более высокой температуре становится настолько пластичным, что может быть подвергнут прессованию.
Температура плавления теллура 438-452° С, а температура кипения 1390° С. Теллур характеризуется высокой упругостью пара, которая в зависимости от температуры выражается следующими цифрами:

Теллур имеет полупроводниковый характер проводимости. Электросопротивление поликристаллического теллура при 0° C составляет 0,102 ом*см. С повышением температуры удельное электрическое сопротивление теллура уменьшается:

В противоположность селену электросопротивление теллура мало чувствительно к освещению. Однако при низких температурах влияние освещения все же сказывается; так, при -180° С электросопротивление теллура под влиянием освещения снижается на 70%.
Химические свойства
По своим химическим свойствам теллур похож на селен, но имеет более резко выраженный металлический характер. При комнатной температуре компактный теллур устойчив к воздуху и кислороду, при нагревании же окисляется и горит синим пламенем с зеленой каймой, образуя TeO2.
В дисперсном состоянии и в присутствии влаги теллур окисляется при обыкновенной температуре. Теллур при комнатной температуре реагирует с галогенами и образует химически более прочные галогениды (TeCl4; TeBr4), чем селен.
С водородом теллур непосредственно в обычных условиях не соединяется, но при нагревании образует H2Te. При нагревании со многими металлами теллур образует теллуриды: K2Te, Ag2Te, MgTe, Al2Te и др.
Металлический теллур реагирует с водой при 100-160° С, а свежеосажденный (аморфный теллур) - при комнатной температуре:

Te + 2Н2О → TeO2 + 2Н2.


Теллур не растворяется в CS2; в разбавленной HCl растворяется очень медленно. В концентрированной и разбавленной HNO3 теллур окисляется с образованием H2TeO3:

3Те + 4HNО3 + H2O = 3Н2ТеО3 + 4NO.


Теллуристая кислота легко разлагается сернистым газом с выделением теллура:

H2TeO3 + 2SО2 + H2O → Te + 2H2SО4.


Эта реакция используется при получении чистого теллура.
Теллур является почти постоянным спутником тяжелых цветных металлов в сульфидах (железный и медный колчедан, свинцовый блеск), но встречается и в виде минералов сильванита, калаверита (Au, Ag)Te2 и др.
Основным источником получения промышленного теллура служат отходы переработки сульфидных руд меди и свинца - пыли, в которых теллур присутствует в виде TeO2, получаемые при обжиге сульфидных руд; а также анодный шлам, получаемый при электролитическом рафинировании меди и свинца.

Вряд ли кто-либо поверит рассказу о капитане дальнего плавания, который, кроме того, профессиональный цирковой борец, известный металлург и врач-консультант хирургической клиники. В мире же химических элементов подобное разнообразие профессий - явление весьма распространенное, и к ним неприменимо выражение Козьмы Пруткова: «Специалист подобен флюсу: полнота его односторонняя». Вспомним (еще до разговора о главном объекте нашего рассказа) железо в машинах и железо в крови, железо - концентратор магнитного поля и железо - составную часть охры... Правда, на «профессиональную выучку» элементов порой уходило намного больше времени, чем на подготовку йога средней квалификации. Так и элемент № 52, о котором предстоит нам рассказать, долгие годы применяли лишь для того, чтобы продемонстрировать, каков он в действительности, этот элемент, названный в честь нашей планеты: «теллур» - от tellus, что по-латыни значит «Земля».
Открыт этот элемент почти два века назад. В 1782 г. горный инспектор Франц Йозеф Мюллер (впоследствии барон фон Рейхенштейн) исследовал золотоносную руду, найденную в Семигорье, на территории тогдашней Австро-Венгрии. Расшифровать состав руды оказалось настолько сложно, что ее назвали Aurum problematicum - «золото сомнительное». Именно из этого «золота» Мюллер выделил новый металл, но полной уверенности в том, что он действительно новый, не было. (Впоследствии оказалось, что Мюллер ошибался в другом: открытый им элемент был новым, но к числу металлов отнести его можно лишь с большой натяжкой.)


Чтобы рассеять сомнения, Мюллер обратился за помощью к видному специалисту, шведскому минералогу и химику-аналитику Бергману.
К сожалению, ученый умер, не успев закончить анализ присланного вещества - в те годы аналитические методы были уже достаточно точными, но анализ занимал очень много времени.
Элемент, открытый Мюллером, пытались изучать и другие ученые, однако лишь через 16 лет после его открытия Мартин Генрих Клапрот - один из крупнейших химиков того времени - неопровержимо доказал, что этот элемент на самом деле новый, и предложил для него название «теллур».
Как и всегда, вслед за открытием элемента начались поиски его применений. Видимо, исходя из старого, еще времен иатрохимии принципа - мир это аптека, француз Фурнье пробовал лечить теллуром некоторые тяжелые заболевания, в частности проказу. Но без успеха - лишь спустя много лет теллур смог оказать медикам некоторые «мелкие услуги». Точнее, не сам теллур, а соли теллуристой кислоты К 2 Те0 3 и Na 2 Te0 3 , которые стали использовать в микробиологии как красители, придающие определенную окраску изучаемым бактериям. Так, с помощью соединений теллура надежно выделяют из массы бактерий дифтерийную палочку. Если не в лечении, так хоть в диагностике элемент № 52 оказался полезен врачам.
Но иногда этот элемент, а в еще большей мере некоторые его соединения прибавляют врачам хлопот. Теллур Достаточно токсичен. В нашей стране предельно допустимой концентрацией теллура в воздухе считается 0,01 мг/м3. Из соединений теллура самое опасное - теллуроводород H 2 Те, бесцветный ядовитый газ с неприятным запахом. Последнее вполне естественно: теллур - аналог серы, значит, Н 2 Те должен быть подобен сероводороду. Он раздражает бронхи, вредно влияет на нервную систему.
Эти неприятные свойства не помешали теллуру выйти в технику, приобрести множество «профессий».
Металлурги интересуются теллуром потому, что уже небольшие его добавки к свинцу сильно повышают прочность и химическую стойкость этого важного металла. Свинец, легированный теллуром, применяют в кабельной и химической промышленности. Так, срок службы аппаратов сернокислотного производства, покрытых изнутри свинцово-теллуровым сплавом (до 0,5% Те), вдвое больше, чем у таких же аппаратов, облицованных просто свинцом. Присадка теллура к меди и стали облегчает их механическую обработку.
В стекольном производстве теллуром пользуются, чтобы придать стеклу коричневую окраску и больший коэффициент лучепреломления. В резиновой промышленности его, как аналог серы, иногда применяют для вулканизации каучуков.

Теллур - полупроводник

Однако не эти отрасли были виновниками скачка в ценах и спросе на элемент № 52. Произошел этот скачок в начале 60-х годов нашего века. Теллур - типичный полупроводник, и полупроводник технологичный. В отличие от германия и кремния, он сравнительно легко плавится (температура плавления 449,8° С) и испаряется (закипает при температуре чуть ниже 1000° С). Из него, следовательно, легко получать тонкие полупроводниковые пленки, которыми особенно интересуется современная микроэлектроника.
Однако чистый теллур как полупроводник применяют ограниченно - для изготовления полевых транзисторов некоторых типов и в приборах, которыми меряют интенсивность гамма-излучения. Да еще примесь теллура умышленно вводят в арсенид галлия (третий по значению после кремния и германия полупроводник), чтобы создать в нем проводимость электронного типа.
Намного обширнее область применения некоторых теллуридов - соединений теллура с металлами. Теллуриды висмута Bi 2 Te 3 и сурьмы Sb 2 Te 3 стали самыми важными материалами для термоэлектрических генераторов. Чтобы объяснить, почему это произошло, сделаем небольшое отступление в область физики и истории.
Еще полтора века назад (в 1821 г.) немецкий физик Зеебек обнаружил, что в замкнутой электрической цепи, состоящей из разных материалов, контакты между которыми находятся при разной температуре, создается электродвижущая сила (ее называют термо-ЭДС). Через 12 лет швейцарец Пельтье обнаружил эффект, обратный эффекту Зеебека: когда электрический ток течет по цепи, составленной из разных материалов, в местах контактов, кроме обычной джоулевой теплоты, выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла.


Примерно 100 лет эти открытия оставались «вещью в себе», любопытными фактами, не более. И не будет преувеличением утверждать, что новая жизнь обоих этих эффектов началась после того, как академик А. Ф. Иоффе с сотрудниками разработал теорию применения полупроводниковых материалов для изготовления термоэлементов. А вскоре эта теория воплотилась в реальные термоэлектрогенераторы и термоэлектрохолодильники различного назначения.
В частности, термоэлектрогенераторы, в которых использованы теллуриды висмута, свинца и сурьмы, дают энергию искусственным спутникам Земли, навигационно - метеорологическим установкам, устройствам катодной защиты магистральных трубопроводов. Те же материалы помогают поддержать нужную температуру во многих электронных и микроэлектронных устройствах.
В последние годы большой интерес вызывает еще одно химическое соединение теллура, обладающее полупроводниковыми свойствами,- теллурид кадмия CdTe. Этот материал используют для изготовления солнечных батарей, лазеров, фотосопротнвлений, счетчиков радиоактивных излучений. Теллурид кадмия знаменит и тем, что это один из немногих полупроводников, в которых заметно проявляется эффект Гана.
Суть последнего заключается в том, что уже само введение маленькой пластинки соответствующего полупроводника в достаточно сильное электрическое поле приводит к генерации высокочастотного радиоизлучения. Эффект Гана уже нашел применение в радиолокационной технике.
Заключая, можно сказать, что количественно главная «профессия» теллура - легирование свинца и других металлов. Качественно же главное, безусловно, это работа теллура и теллуридов как полупроводников.

Полезная примесь

В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре - 0,03%, селена всего - 10-5 %, теллура же еще на порядок меньше - 10~6%. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы - как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом , серебром , медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.
В России известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.


Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера вьпадает осадок - шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.
Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но - в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты - селенистую Н 2 SeОз и теллуристую Н 2 ТеОз. Если через этот раствор пропустить сернистый газ S0 2 , произойдут реакции
H 2 Se0 3 + 2S0 2 + Н 2 0 → Se ↓ + 2H 2 S0 4 .
H2Te03 + 2S02 + Н20 → Те ↓ + 2H 2 S0 4 .
Теллур и селен выпадают одновременно, чтo весьма не-желательно - они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.
Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.

Теллур вреден

Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об эле-менте № 52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней - именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.


И сам теллур и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементарным теллуром - тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.
При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой , а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика - это надежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.

Элемент № 52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки - сосредоточенного внимания.
ВНЕШНИЙ ВИД ТЕЛЛУРА. Кристаллический теллур больше всего похож на сурьму. Цвет его - серебристо-белый. Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.
ДВУХЦВЕТНЫЙ АНГИДРИД. Как и положено аналогу серы, теллур проявляет валентности 2-, 4+ и 6+ и значительно реже 2+. Моноокись теллура ТеО может существовать лишь в газообразном виде и легко окисляется до Те0 2 . Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733° С; оно имеет полимерное строение.
В воде двуокись теллура почти не растворяется - в раствор переходит лишь одна часть Те0 2 на 1,5 млн. частей воды и образуется раствор слабой теллуристой кислоты Н 2 Те0 3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты

H 6 TeO 6 . Эту формулу (а не Н 2 ТеО 4 ей присвоили после того, как были получены соли состава Ag 6 Te0 6 и Hg 3 Te0 6 , хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид ТеОз в воде практически не растворяется. Это вещество существует в двух модификациях - желтого и серого цвета: α-ТеОз и β-ТеОз. Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют "кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.

ВТОРОЕ ИСКЛЮЧЕНИЕ. При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура - 127,61, а иода - 126,91 Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в пра
вильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.
Кстати, об изотонах. Сейчас известно 22 изотопа элемента № 52. Восемь из них - с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 - стабильны. Последние два изотопа - самые распространенные: 31,79 и 34,48% соответственно.

МИНЕРАЛЫ ТЕЛЛУРА. Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента № 52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe 2 и креннерит (Au, Ag) Те2, входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют - весь промышленный теллур является попутным продуктом переработки руд других металлов.

Вряд ли кто-либо поверит рассказу о капитане дальнего плавания, который, кроме того, профессиональный цирковой борец, известный металлург и врач-консультант хирургической клиники. В мире же химических элементов подобное разнообразие профессий – явление весьма распространенное, и к ним неприменимо выражение Козьмы Пруткова: «Специалист подобен флюсу: полнота его односторонняя». Вспомним (еще до разговора о главном объекте нашего рассказа) железо в машинах и железо в крови, железо – концентратор магнитного поля и железо – составную часть охры... Правда, на «профессиональную выучку» элементов порой уходило намного больше времени, чем на подготовку йога средней квалификации. Так и элемент №52, о котором предстоит нам рассказать, долгие годы применяли лишь для того, чтобы продемонстрировать, каков он в действительности, этот элемент, названный в честь нашей планеты: «теллур» – от tellus, что по-латыни значит «Земля».

Открыт этот элемент почти два века назад. В 1782 г. горный инспектор Франц Иозеф Мюллер (впоследствии барон фон Рейхенштейн) исследовал золотоносную руду, найденную в Семигорье, на территории тогдашней Австро-Венгрии. Расшифровать состав руды оказалось настолько сложно, что ее назвали Aurum problematicum – «золото сомнительное». Именно из этого «золота» Мюллер выделил новый металл, но полной уверенности в том, что он действительно новый, не было. (Впоследствии оказалось, что Мюллер ошибался в другом: открытый им элемент был новым, но к числу металлов отнести его можно лишь с большой натяжкой.)

Чтобы рассеять сомнения, Мюллер обратился за помощью к видному специалисту, шведскому минералогу и химику-аналитику Бергману.

К сожалению, ученый умер, не успев закончить анализ присланного вещества – в те годы аналитические методы были уже достаточно точными, но анализ занимал очень много времени.

Элемент, открытый Мюллером, пытались изучать и другие ученые, однако лишь через 16 лет после его открытия Мартин Генрих Клапрот – один из крупнейших химиков того времени – неопровержимо доказал, что этот элемент на самом деле новый, и предложил для него название «теллур».

Как и всегда, вслед за открытием элемента начались поиски его применений. Видимо, исходя из старого, еще времен иатрохимии принципа – мир это аптека, француз Фурнье пробовал лечить теллуром некоторые тяжелые заболевания, в частности проказу. Но без успеха – лишь спустя много лет теллур смог оказать медикам некоторые «мелкие услуги». Точнее, не сам теллур, а соли теллуристой кислоты К 2 TeO 3 и Na 2 TeO 3 , которые стали использовать в микробиологии как красители, придающие определенную окраску изучаемым бактериям. Так, с помощью соединений теллура надежно выделяют из массы бактерий дифтерийную палочку. Если не в лечении, так хоть в диагностике элемент №52 оказался полезен врачам.

Но иногда этот элемент, а в еще большей мере некоторые его соединения прибавляют врачам хлопот. Теллур достаточно токсичен. В нашей стране предельно допустимой концентрацией теллура в воздухе считается 0,01 мг/м 3 . Из соединений теллура самое опасное – теллуроводород Н 2 Te, бесцветный ядовитый газ с неприятным запахом. Последнее вполне естественно: теллур – аналог серы, значит, Н 2 Te должен быть подобен сероводороду. Он раздражает бронхи, вредно влияет на нервную систему.

Эти неприятные свойства не помешали теллуру выйти в технику, приобрести множество «профессий».

Металлурги интересуются теллуром потому, что уже небольшие его добавки к свинцу сильно повышают прочность и химическую стойкость этого важного металла. Свинец, легированный теллуром, применяют в кабельной и химической промышленности. Так, срок службы аппаратов сернокислотного производства, покрытых изнутри свинцово-теллуровым сплавом (до 0,5% Te), вдвое больше, чем у таких же аппаратов, облицованных просто свинцом. Присадка теллура к меди и стали облегчает их механическую обработку.

В стекольном производстве теллуром пользуются, чтобы придать стеклу коричневую окраску и больший коэффициент лучепреломления. В резиновой промышленности его, как аналог серы, иногда применяют для вулканизации каучуков.

Теллур – полупроводник

Однако не эти отрасли были виновниками скачка в ценах и спросе на элемент №52. Произошел этот скачок в начале 60-х годов нашего века. Теллур – типичный полупроводник, и полупроводник технологичный. В отличие от германия и кремния, он сравнительно легко плавится (температура плавления 449,8°C) и испаряется (закипает при температуре чуть ниже 1000°C). Из него, следовательно, легко получать тонкие полупроводниковые пленки, которыми особенно интересуется современная микроэлектроника.

Однако чистый теллур как полупроводник применяют ограниченно – для изготовления полевых транзисторов некоторых типов и в приборах, которыми меряют интенсивность гамма-излучения. Да еще примесь теллура умышленно вводят в арсенид галлия (третий по значению после кремния и германия полупроводник), чтобы создать в нем проводимость электронного типа*.

* О двух типах проводимости, присущих полупроводникам, подробно рассказано в статье «Германий» .

Намного обширнее область применения некоторых теллуридов – соединений теллура с металлами. Теллуриды висмута Bi 2 Te 3 и сурьмы Sb 2 Te 3 стали самыми важными материалами для термоэлектрических генераторов. Чтобы объяснить, почему это произошло, сделаем небольшое отступление в область физики и истории.

Еще полтора века назад (в 1821 г.) немецкий физик Зеебек обнаружил, что в замкнутой электрической цепи, состоящей из разных материалов, контакты между которыми находятся при разной температуре, создается электродвижущая сила (ее называют термо-ЭДС). Через 12 лет швейцарец Пельтье обнаружил эффект, обратный эффекту Зеебека: когда электрический ток течет по цепи, составленной из разных материалов, в местах контактов, кроме обычной джоулевой теплоты, выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла.

Примерно 100 лет эти открытия оставались «вещью в себе», любопытными фактами, не более. И не будет преувеличением утверждать, что новая жизнь обоих этих эффектов началась после того, как Герой Социалистического Труда академик А.Ф. Иоффе с сотрудниками разработал теорию применения полупроводниковых материалов для изготовления термоэлементов. А вскоре эта теория воплотилась в реальные термоэлектрогенераторы и термоэлектрохолодильники различного назначения.

В частности, термоэлектрогенераторы, в которых использованы теллуриды висмута, свинца и сурьмы, дают энергию искусственным спутникам Земли, навигационно-метеорологическим установкам, устройствам катодной защиты магистральных трубопроводов. Те же материалы помогают поддержать нужную температуру во многих электронных и микроэлектронных устройствах.

В последние годы большой интерес вызывает еще одно химическое соединение теллура, обладающее полупроводниковыми свойствами, – теллурид кадмия CdTe. Этот материал используют для изготовления солнечных батарей, лазеров, фотосопротивлений, счетчиков радиоактивных излучений. Теллурид кадмия знаменит и тем, что это один из немногих полупроводников, в которых заметно проявляется эффект Гана.

Суть последнего заключается в том, что уже само введение маленькой пластинки соответствующего полупроводника в достаточно сильное электрическое поле приводит к генерации высокочастотного радиоизлучения. Эффект Гана уже нашел применение в радиолокационной технике.

Заключая, можно сказать, что количественно главная «профессия» теллура – легирование свинца и других металлов. Качественно же главное, безусловно, это работа теллура и теллуридов как полупроводников.

Полезная примесь

В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре – 0,03%, селена всего – 10 –5 %, теллура же еще на порядок меньше – 10 –6 %. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы – как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом, серебром, медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.

В СССР известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.

Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера выпадает осадок – шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.

Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но – в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты – селенистую H 2 SeO 3 и теллуристую H 2 TeO 3 . Если через этот раствор пропустить сернистый газ SO 2 , произойдут реакции:

H 2 SeO 3 + 2SO 2 + H 2 O → Se ↓ + 2H 2 SO 4 ,

H 2 TeO 3 + 2SO 2 + H 2 O → Te ↓ + 2H 2 SO 4 .

Теллур и селен выпадают одновременно, что весьма нежелательно – они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.

Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.

Теллур вреден

Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об элементе №52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней – именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.

И сам теллур и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементарным теллуром – тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.

При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой, а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика – это падежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.

Элемент №52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки – сосредоточенного внимания.

Внешний вид теллура

Кристаллический теллур больше всего похож на сурьму. Цвет его – серебристо-белый. Кристаллы – гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.

Двухцветный ангидрид

Как и положено аналогу серы, теллур проявляет валентности 2–, 4+ и 6+ и значительно реже 2+. Моноокись теллура TeO может существовать лишь в газообразном виде и легко окисляется до TeO 2 . Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733°C; оно имеет полимерное строение, молекулы которого построены так:

В воде двуокись теллура почти не растворяется – в раствор переходит лишь одна часть TeO 2 на 1,5 млн частей воды и образуется раствор слабой теллуристой кислоты H 2 TeO 3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты H 6 TeO 6 . Эту формулу (а не H 2 TeO 4) ей присвоили после того, как были получены соли состава Ag 6 TeO 6 и Hg 3 TeO 6 , хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид TeO 3 в воде практически не растворяется. Это вещество существует в двух модификациях – желтого и серого цвета: α-TeO 3 и β-TeO 3 . Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.

Второе исключение

При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура – 127,61, а иода – 126,91. Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в правильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.

Кстати, об изотопах. Сейчас известно 22 изотопа элемента №52. Восемь из них – с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 – стабильны. Последние два изотопа – самые распространенные: 31,79 и 34,48% соответственно.

Минералы теллура

Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента №52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe 2 и креннерит (Au, Ag) Te 2 , входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют – весь промышленный теллур является попутным продуктом переработки руд других металлов.