Тригонометрическая окружность. Исчерпывающее руководство (2019)

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Видеоурок «Определение синуса и косинуса на единичной окружности» представляет наглядный материал для урока по соответствующей теме. В ходе урока рассматриваются понятия синуса и косинуса для чисел, соответствующих точкам единичной окружности, описывается множество примеров, формирующих умение решать задания, где используется данная интерпретация понятий. Удобное и понятное иллюстрирований решений, подробно описанный ход рассуждений помогают быстрее достичь целей обучения, повысить эффективность урока.

Видеоурок начинается с представления темы. В начале демонстрации дается определение синуса и косинуса числа. На экране демонстрируется единичная окружность с центром в начале координат, отмечаются точки пересечения единичной окружности с осями координат А, В, С, D. В рамке выделено определение, в котором указано, что если точке М, принадлежащей единичной окружности, соответствует некоторое число t, то абсцисса этой точки является косинусом числа t и обозначается cos t, ордината точки является синусом и обозначается sin t. Озвучивание определения сопровождается изображением на единичной окружности точки М, указанием ее абсциссы и ординаты. Представляется краткая запись с помощью обозначений, что для М(t)=M(x;y), х= cos t, у= sin t. Указываются ограничения, накладываемые на значение косинуса и синуса числа. Согласно рассмотренным данным, -1<=cos t<=1 и -1<= sin t<=1.

Также по рисунку легко отследить, как изменяется знак функции в зависимости от того, в какой четверти располагается точка. На экране составляется таблица, в которой для каждой функции указывается ее знак в зависимости от четверти. Знак cos t - плюс в первой и четвертой четвертях и минус во второй и третьей четвертях. Знак sin t - плюс в первой и второй четвертях, минус в третьей и четвертой четвертях.

Ученикам напоминается уравнение единичной окружности х 2 +у 2 =1. Отмечается, что после подстановки вместо координат соответствующих функций, получим cos 2 t+ sin 2 t=1 - основное тригонометрическое тождество. Пользуясь способом нахождения sin t и cos t с помощью единичной окружности, заполняется таблица основных значений синуса и косинуса для чисел от 0 до 2π с шагом π/4 и для чисел от π/6 до 11π/6 с шагом π/6. На экране демонстрируются эти таблицы. С помощью их и рисунка учитель может проверить, как усвоен материал и насколько ученикам понятно происхождение значений sin t и cos t.

Рассматривается пример, в котором вычисляется sin t и cos t для t=41π/4. Решение иллюстрируется рисунком, на котором изображена единичная окружность с центром в начале координат. На ней отмечается точка 41π/4. Замечено, что данная точка совпадает с положением точки π/4. Это доказывается с помощью представления данной дроби в виде смешанной 41π/4=π/4+2π·5. Пользуясь таблицей значений косинуса, получаем значения cos π/4=√2/2 и sinπ/4=√2/2. Из полученных сведений следует, что cos 41π/4=√2/2 и sin 41π/4=√2/2.

В втором примере необходимо вычислить sin t и cos t для t=-25π/3. На экране изображается единичная окружность с отмеченной на ней точкой t=-25π/3. Сначала для решения задания число -25π/3 представляется в виде смешанной дроби, чтобы обнаружить, какому табличному значению будет соответствовать его sin t и cos t. После преобразования получаем -25π/3=-π/3+2π·(-4). Очевидно, t=-25π/3 совпадет на окружности с точкой -π/3 или 5π/3. Из таблицы выбираем соответствующие значения синуса и косинуса cos 5π/3=1/2 и sin 5π/3=-√3/2. Эти значения будут верными и для рассматриваемого числа cos (-25π/3)=1/2 и sin (-25π/3)=-√3/2. Задача решена.

Аналогично решается и пример 3, в котором необходимо вычислить sin t и cos t для t=37π. Чтобы решить пример, число 37π раскладывается, вычленяя π и 2π. В таком представлении получается 37π=π+2π·18. На единичной окружности, которая изображена рядом с решением, отмечается данная точка на пересечении отрицательной части оси ординат и единичной окружности - точка π. Очевидно, что значения синуса и косинуса числа совпадут с табличными значениями π. Из таблицы находим значения sin π=-1 и cos π=0. Соответственно, эти же значения являются искомыми, то есть sin 37π=-1 и cos 37π=0.

В примере 4 требуется вычислить sin t и cos t при t=-12π. Представляем число в виде -12π=0+2π·(-6). Соответственно, точка -12π совпадает с точкой 0. Значения косинуса и синуса этой точки sin 0=1 и cos 0=0. Эти значения и являются искомыми sin (-12π)=1 и cos (-12π)=0.

В пятом примере нужно решить уравнение sin t=√3/2. В решении уравнения используется понятие синуса числа. Так как он представляет ординату точки М(t), то необходимо отыскать точку с ординатой √3/2. На рисунке, сопровождающем решение, видно, что ординате √3/2 соответствуют две точки - первая π/3 и вторая 2π/3. Учитывая периодичность функции, отмечаем, что t=π/3+2πk и t= 2π/3+2πk для целого k.

В примере 6 решается уравнение с косинусом - cos t=-1/2. В поиске решений уравнения находим на единичной окружности точки с абсциссой 2π/3. На экране демонстрируется рисунок, на котором отмечается абсцисса -1/2. Ей соответствуют две точки на окружности - 2π/3 и -2π/3. Учитывая периодичность функций, найденное решение записывается в виде t=2π/3+2πk и t=-2π/3+2πk, где k- целое число.

В примере 7 решается уравнение sin t-1=0. Чтобы найти решение, уравнение преобразуется к виду sin t=1. Синусу 1 соответствует число π/2. Учитывая периодичность функции, найденное решение записывается в виде t=π/2+2πk, где k - целое. Аналогично в примере 8 решается уравнение cos t+1=0. Преобразуем уравнение к виду cos t=-1. Точка, абсцисса которой равна -1, соответствует числу π. Эта точка отмечена на единичной окружности, изображенной рядом с текстовым решением. Соответственно, решением данного уравнения является число t=π+2πk, где k - целое число. Не более сложным является решение уравнения cos t+1=1 в примере 9. Преобразовав уравнение, получаем cos t=0. На единичной окружности, изображенной рядом с решением, отмечаем точки -π/2 и -3π/2, в которых косинус принимает значение 0. Очевидно, решением данного уравнение будет ряд значений t=π/2+πk, где k - целое число.

В примере 10 сравниваются значения sin 2 и cos 3. Чтобы решение было наглядным, демонстрируется рисунок, где отмечены точки 2 и 3. Зная, что π/2≈1,57, оцениваем удаленность точек от нее. На рисунке отмечается, что точка 2 удалена от π/2 на 0,43, в то время как 3 удалена на 1,43, поэтому точка 2 имеет большую абсциссу, чем точка 3. Это значит, что sin 2>cos 3.

Пример 11 описывает вычисление выражения sin 5π/4. Так как 5π/4 - это π/4+π, то, используя формулы приведения, выражение можно преобразовать в вид - sin π/4. Из таблицы выбираем его значение - sin π/4=-√2/2. Аналогично в примере 12 находится значение выражения cos7π/6. Преобразуя его к виду cos(π/6+π), получаем выражение - cos π/6. Табличное значение - cos π/6=-√3/2. Это значение и будет решением.

Далее предлагается запомнить важные равенства, которые помогают в решении задач - это sin(-t)= -sin t и cos (-t)=cos t. Фактически данное выражение отображает четность косинуса и нечетность синуса. На изображении единичной окружности рядом с равенствами можно увидеть, как на координатной плоскости работают данные равенства. Также представляются два равенства, отображающие периодичность функций, важные для решения задач sin(t+2πk)= sin t и cos (t+2πk)=cos t. Демонстрируются равенства, отображающие симметричное расположение точек на единичной окружности sin(t+π)= -sin t и cos (t+π)=-cos t. Рядом с равенствами строится изоражение, на котором отображается расположение этих точек на единичной окружности. И последние представленные равенства sin(t+π/2)= cos t и cos (t+π/2)=- sin t.

Видеоурок «Определение синуса и косинуса на единичной окружности» рекомендуется применять на традиционном школьном уроке математик для повышения его эффективности, обеспечения наглядности объяснения учителя. С этой же целью материал может использоваться в ходе дистанционного обучения. Пособие также может быть полезно для формирования соответствующих навыков решения заданий у учеников при самостоятельном освоении материала.

ТЕКСТОВАЯ РАСШИФРОВКА:

«Определение синуса и косинуса на единичной окружности».

Дадим определение синуса и косинуса числа

ОПРЕДЕЛЕНИЕ: если точка М числовой единичной окружности соответствует числу t(тэ), то абсциссу точки М называют косинусом числа t(тэ) и обозначают cost, а ординату точки М называют синусом числа t(тэ) и обозначают sint(рис).

Значит, если М(t) = М (x ,y)(эм от тэ равно эм с координатами икс и игрек), то x = cost, y= sint (икс равен косинус тэ, игрек равен синус тэ).Следовательно, -1≤ cost ≤ 1, -1≤ sint ≤1(косинус тэ больше либо равно минус один, но меньше либо равно один; синус тэ больше либо равно минус один, но меньше либо равно один).Зная, что каждая точка числовой окружности имеет в системе xOy свои координаты, можно составить таблицу значении синуса и косинуса по четвертям окружности, где значение косинуса положительно в первой и четвертой четвертях и, соответственно, отрицательно во второй и третьей четвертях.

Значение синуса положительно в первой и второй четвертях и, соответственно, отрицательно в третьей и четвертой четвертях. (показать на чертеже)

Так как уравнение числовой окружности имеет вид х 2 + у 2 = 1(икс квадрат плюс игрек квадрат равно одному), то получаем равенство:

(косинус квадрат тэ плюс синус квадрат тэ равно единице).

Опираясь на таблицы, которые мы составляли при определении координат точек числовой окружности, составим таблицы для координат точек числовой окружности для значений cost и sint .

Рассмотрим примеры.

ПРИМЕР 1. Вычислить cos t и sin t, если t = (тэ равно сорок один пи на четыре).

Решение. Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙π = (10 +) ∙π = + 2π ∙ 5(сорок один пи на четыре равно сумме пи на четыре и произведения два пи на пять). А для точки t = по таблице значение косинусов 1 имеем cos = и sin =. Следовательно,

ПРИМЕР 2. Вычислить cos t и sin t, если t = (тэ равно минус двадцать пять пи на три).

РЕШЕНИЕ: Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙ π = - (8 +)∙π = + 2π ∙ (- 4) (минус двадцать пять пи на три равно сумме минус пи на три и произведению двух пи на минус четыре). А числу соответствует на числовой окружности та же точка, что и числу. А для точки t = по таблице 2 имеем cos = и sin = .Следовательно, cos () = и sin () =.

ПРИМЕР 3. Вычислить cos t и sin t, если t = 37π; (тэ равно тридцать семь пи).

РЕШЕНИЕ: 37π = 36π + π = π + 2π ∙ 18.Значит, числу 37π соответствует та же точка числовой окружности, что и числу π. А для точки t = π по таблице 1 имеем cos π = -1, sin π=0.Значит, cos37π = -1, sin37π=0.

ПРИМЕР 4. Вычислить cos t и sin t, если t = -12π (равно минус двенадцать пи).

РЕШЕНИЕ: - 12π = 0 + 2π ∙ (- 6), то есть числу - 12π соответствует та же точка числовой окружности, что и числу ноль. А для точки t = 0 по таблице 1 имеем cos 0 = 1, sin 0 =0.Значит, cos(-12π) =1, sin(-12π) =0.

ПРИМЕР 5. Решить уравнение sin t = .

Решение. Учитывая, что sin t - это ордината точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с ординатой и запишем каким числам t они соответствуют. Одна точка соответствует числу, а значит, и любому числу вида + 2πk. Вторая точка соответствует числу, а значит, и любому числу вида + 2πk. Ответ: t = + 2πk,где kϵZ (ка принадлежит зэт),t = + 2πk,где kϵZ (ка принадлежит зэт).

ПРИМЕР 6. Решить уравнение cos t = .

Решение. Учитывая, что cos t - это абсцисса точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с абсциссой и запишем каким числам t они соответствуют. Одна точка соответствует числу,а значит и любому числу вида + 2πk. А вторая точка соответствует числу или, а значит, и любому числу вида + 2πk или + 2πk.

Ответ: t = + 2πk, t=+ 2πk (или ± + 2πk(плюс минус два пи на три плюс два пи ка) , где kϵZ (ка принадлежит зэт).

ПРИМЕР 7.Решить уравнение cos t = .

Решение. Аналогично предыдущему примеру, на числовой окружности нужно найти точки c абсциссой и записать, каким числам t они соответствуют.

По рисунку видно, что абсциссу имеют две точки Е и S, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу вернемся позже.

ПРИМЕР 8.Решить уравнение sin t = - 0,3.

Решение. На числовой окружности найдем точки с ординатой - 0,3 и запишем, каким числам t они соответствуют.

Ординату - 0,3 имеют две точки P и H, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу так же вернемся позже.

ПРИМЕР 9.Решить уравнение sin t -1 =0

Решение. Перенесем минус единицу в правую часть уравнения, получим синус тэ равно одному (sin t =1). На числовой окружности нам нужно найти точку, у которой ордината равна один. Эта точка соответствует числу, а значит всем числам вида + 2πk(пи на два плюс два пи ка).

Ответ: t = + 2πk, kϵZ(ка принадлежит зэт).

ПРИМЕР 10.Решить уравнение cos t + 1 = 0.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно минус один(cos t = - 1).Абсциссу минус один имеет точка числовой окружности, которая соответствует числу π, а это значит, и все числам вида π+2πk. Ответ: t = π+ 2πk, kϵZ.

ПРИМЕР 11. Решить уравнение cos t + 1 = 1.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно нулю(cos t = 0).Абсциссу ноль имеют точки В и D (рис 1), которые соответствуют числам, и т. д. Эти числа можно записать так + πk. Ответ: t = + πk, kϵZ.

ПРИМЕР 12. Какое из двух чисел больше, cos 2 или cos 3? (косинус двух или косинус трех)

Решение. Переформулируем вопрос по-другому: на числовой окружности отмечены точки 2 и 3. У какой из них абсцисса больше?

На числовой окружности отметим точки 2 и 3. Вспомним, что.Значит, точка 2 удалена от по окружности примерно на 0,43(нуль целых сорок три сотых) (2 -≈ 2 - 1,57 = 0,43), а точка 3 на 1,43 (одну целую сорок три сотых). Следовательно, точка 2 находится ближе к точке, чем точка 3, поэтому у нее абсцисса больше (мы учли, что абсциссы обе отрицательные).

Ответ: cos 2 > cos 3.

ПРИМЕР 13. Вычислить sin (синус пять пи на четыре)

Решение. sin(+ π) = - sin = (синус пять пи на четыре равно сумме пи на четыре и пи равно минус синус пи на четыре равно минус корень из двух на два).

ПРИМЕР 14. Вычислить cos (косинус семь пи на шесть).

cos(+ π) = - cos =. (представили семь пи на шесть как сумму пи на шесть и пи и применили третье равенство).

Для синуса и косинуса получим некоторые важные формулы.

1. Для любого значения t справедливы равенства

sin (-t) = -sin t

cos (-t) = cos t

Синус от минус тэ равно минус синус тэ

Косинус от мину тэ равно косинусу тэ.

По рисунку видно, что у точек Е и L, симметричных относительно оси абсцисс, одна и та же абсцисса, это значит

cos(-t) = cost, но равны по модулю и противоположные по знаку ординаты (это значит sin(- t) = - sint.

2. Для любого значения t справедливы равенства

sin (t+2πk) = sin t

cos (t+2πk) = cos t

Синус от тэ плюс два пи ка равно синусу тэ

Косинус от тэ плюс два пи ка равно косинусу тэ

Это верно, так как числам t и t+2πk соответствует одна и та же точка.

3. Для любого значения t справедливы равенства

sin (t+π) = -sin t

cos (t+π) = -cos t

Синус от тэ плюс пи равно минус синусу тэ

косинус от тэ плюс пи равно минус косинусу тэ

Пусть числу t соответствует точка E числовой окружности, тогда числу t+π соответствует точка L, которая симметрична точке E относительно начала координат. По рисунку видно, что у этих точек абсциссы и ординаты равны по модулю и противоположны по знаку. Это значит,

cos(t +π)= - cost;

sin(t +π)= - sint.

4. Для любого значения t справедливы равенства

sin (t+) = cos t

cos (t+) = -sin t

Синус тэ плюс пи на два равно косинусу тэ

Косинус тэ плюс пи на два равно минус синусу тэ.

Числовая окружность - это единичная окружность, точки которой соответствуют определенным действительным числам.

Единичной окружностью называют окружность радиуса 1.

Общий вид числовой окружности.

1) Ее радиус принимается за единицу измерения.

2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти. Их соответственно называют первой, второй, третьей и четвертой четвертью.

3) Горизонтальный диаметр обозначают AC, причем А - это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B - это крайняя верхняя точка.
Соответственно:

первая четверть - это дуга AB

вторая четверть - дуга BC

третья четверть - дуга CD

четвертая четверть - дуга DA

4) Начальная точка числовой окружности - точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки.

Отсчет от точки А против часовой стрелки называется положительным направлением .

Отсчет от точки А по часовой стрелке называется отрицательным направлением .

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0).

Горизонтальный диаметр соответствует оси x , вертикальный - оси y .

Начальная точка А числовой окружнос ти находится на оси x и имеет координаты (1; 0).


Имена и местонахождение основных точек числовой окружности:

Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности.

Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2π) против часовой стрелки.

1) Начнем с крайних точек на осях координат.

Начальная точка - это 2π (крайняя правая точка на оси х , равная 1).

Как вы знаете, 2π - это длина окружности. Значит, половина окружности - это 1π или π. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х , равная -1, называется π.

Крайняя верхняя точка на оси у , равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность - это π, то половина полуокружности - это π/2.

Одновременно π/2 - это и четверть окружности. Отсчитаем три таких четверти от первой до третьей - и мы придем в крайнюю нижнюю точку на оси у , равной -1. Но если она включает три четверти - значит имя ей 3π/2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый знаменатель - причем это противоположные точки и относительно оси у , и относительно центра осей, и относительно оси х . Это нам и поможет знать их значения точек без зубрежки.


Надо запомнить лишь значение точек первой четверти: π/6, π/4 и π/3. И тогда мы «увидим» некоторые закономерности:

- Относительно оси у в точках второй четверти, противоположных точкам первой четверти, числа в числителях на 1 меньше величины знаменателей. К примеру, возьмем точку π/6. Противоположная ей точка относительно оси у тоже в знаменателе имеет 6, а в числителе 5 (на 1 меньше). То есть имя этой точки: 5π/6. Точка, противоположная π/4 тоже имеет в знаменателе 4, а в числителе 3 (на 1 меньше, чем 4) - то есть это точка 3π/4.
Точка, противоположная π/3, тоже имеет в знаменателе 3, а в числителе на 1 меньше: 2π/3.

- Относительно центра осей координат все наоборот: числа в числителях противоположных точек (в третьей четверти) на 1 больше значения знаменателей. Возьмем опять точку π/6. Противоположная ей относительно центра точка тоже имеет в знаменателе 6, а в числителе число на 1 больше - то есть это 7π/6.
Точка, противоположная точке π/4, тоже имеет в знаменателе 4, а в числителе число на 1 больше: 5π/4.
Точка, противоположная точке π/3, тоже имеет в знаменателе 3, а в числителе число на 1 больше: 4π/3.

- Относительно оси х (четвертая четверть) дело посложнее. Здесь надо к величине знаменателя прибавить число, которое на 1 меньше - эта сумма и будет равна числовой части числителя противоположной точки. Начнем опять с π/6. Прибавим к величине знаменателя, равной 6, число, которое на 1 меньше этого числа - то есть 5. Получаем: 6 + 5 = 11. Значит, противоположная ей относительно оси х точка будет иметь в знаменателе 6, а в числителе 11 - то есть 11π/6.

Точка π/4. Прибавляем к величине знаменателя число на 1 меньше: 4 + 3 = 7. Значит, противоположная ей относительно оси х точка имеет в знаменателе 4, а в числителе 7 - то есть 7π/4.
Точка π/3. Знаменатель равен 3. Прибавляем к 3 на единицу меньшее число - то есть 2. Получаем 5. Значит, противоположная ей точка имеет в числителе 5 - и это точка 5π/3.

3) Еще одна закономерность для точек середин четвертей. Понятно, что их знаменатель равен 4. Обратим внимание на числители. Числитель середины первой четверти - это 1π (но 1 не принято писать). Числитель середины второй четверти - это 3π. Числитель середины третьей четверти - это 5π. Числитель середины четвертой четверти - это 7π. Получается, что в числителях середин четвертей - четыре первых нечетных числа в порядке их возрастания:
(1)π, 3π, 5π, 7π.
Это тоже очень просто. Поскольку середины всех четвертей имеют в знаменателе 4, то мы уже знаем их полные имена: π/4, 3π/4, 5π/4, 7π/4.

Особенности числовой окружности. Сравнение с числовой прямой.

Как вы знаете, на числовой прямой каждая точка соответствует единственному числу. К примеру, если точка А на прямой равна 3, то она уже не может равняться никакому другому числу.

На числовой окружности все иначе, поскольку это окружность. К примеру, чтобы из точки А окружности прийти к точке M, можно сделать это, как на прямой (только пройдя дугу), а можно и обогнуть целый круг, а потом уже прийти к точке M. Вывод:

Пусть точка M равна какому-то числу t. Как мы знаем, длина окружности равна 2π. Значит, точку окружности t мы можем записать двояко: t или t + 2π. Это равнозначные величины.
То есть t = t + 2π. Разница лишь в том, что в первом случае вы пришли к точке M сразу, не делая круга, а во втором случае вы совершили круг, но в итоге оказались в той же точке M. Таких кругов можно сделать и два, и три, и двести. Если обозначить количество кругов буквой n , то получим новое выражение:
t = t + 2πn .

Отсюда формула:

На тригонометрическом круге помимо углов в градусы мы наблюдаем .

Подробнее про радианы:

Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

Все знают, что радиан – это

Так вот, например, , а . Так, мы научились переводить радианы в углы .

Теперь наоборот, давайте переводить градусы в радианы .

Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

Так как, радиан, то заполним таблицу:

Тренируемся находить значения синуса и косинуса по кругу

Давайте еще уточним следующее.

Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

Пример 1.

Найти значение .

Решение:

Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

Приходим в 0. Значит, .

Пример 2.

Найти значение .

Решение:

Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

Попадаем в -1 по оси синусов.

Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

Можно привести такую аналогию:

Представим тригонометрический круг как беговую дорожку стадиона.


Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

Пример 3.

Найти значение .

Решение:

Переведем для простоты в градусы

(позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

Понимаем, что значение синуса совпадает со значением синуса и равняется

Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

Пример 4.

Найти значение .

Решение:

Все же, не будем переводить радианы в градусы, как в предыдущем примере.

То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

Пример 5.

Найти значение .

Решение:

Как отложить на тригонометрическом круге ?


Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

Пример 6.

Найти значение .

Решение:

Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

Тригонометрический круг – у вас в руках

Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

Как находить значения тангенса и котангенса основных углов .

После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

На пустой шаблон круга. Тренируйтесь!

При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

Расположение точек на числовой окружности

Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

Числа не кратные π на числовой окружности

Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.