Вертикальная асимптота графика функции y 3. Асимптоты графика функции

- (от греч. a отриц. част., и symptotos совпадающий вместе). Прямая линия, постоянно приближающаяся к кривой и встречающаяся с ней только в бесконечности. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АСИМПТОТА от… … Словарь иностранных слов русского языка

АСИМПТОТА - (от греческого asymptotos несовпадающая), прямая, к которой бесконечная ветвь кривой приближается неограниченно, например асимптота гиперболы … Современная энциклопедия

АСИМПТОТА - (от греч. asymptotos несовпадающий) кривой с бесконечной ветвью прямая, к которой эта ветвь неограниченно приближается, напр., асимптота гиперболы … Большой Энциклопедический словарь

асимптота - Прямая линия, к которой постепенно приближается кривая. асимптота Прямая, к которой стремится (никогда не достигая ее) имеющая бесконечную ветвь кривая некоторой функции, когда ее аргумент неограниченно возрастает или … Справочник технического переводчика

Асимптота - (от греческого asymptotos несовпадающая), прямая, к которой бесконечная ветвь кривой приближается неограниченно, например асимптота гиперболы. … Иллюстрированный энциклопедический словарь

АСИМПТОТА - жен., геом. прямая черта, вечно близящаяся к кривой (гиперболе), но никогда с нею не сходящаяся. Пример, для объяснения этого: если какое либо число все делить пополам, то оно будет умаляться до бесконечности, но никогда не сделается нулем.… … Толковый словарь Даля

асимптота - сущ., кол во синонимов: 1 линия (182) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Асимптота - (от греч. слов: a, sun, piptw) несовпадающая. Подасимптотой подразумевается такая линия, которая, будучи неопределеннопродолжена, приближается к данной кривой линии или к некоторой ее частитак, что расстояние между общими линиями делается менее… …

Асимптота - поверхности называется прямая линия, пересекающаяповерхность по крайней мере в двух бесконечно удаленных точках … Энциклопедия Брокгауза и Ефрона

АСИМПТОТА - (asymptote) Значение, к которому стремится данная функция при изменении аргумента (argument), но не достигает его ни при одном конечном значении аргумента. Например, если общая стоимость выпуска х задается функцией ТС=а+bх, где а и b – константы … Экономический словарь

Асимптота - прямая, к которой стремится (никогда не достигая ее), имеющая бесконечную ветвь кривая некоторой функции, когда ее аргумент неограниченно возрастает или уменьшается. Например, в функции: y = c + 1/x значение y приближается с… … Экономико-математический словарь

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие асимптоты

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное. Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

Определение 1. Асимптотами называются такие прямые , к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy .

Определение . Прямая x = a является вертикальной асимптотой графика функции , если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f (x ) , если выполняется хотя бы одно из условий:

При этом функция f (x ) может быть вообще не определена соответственно при x a и x a .

Замечание:

Пример 1. График функции y =lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

(рис. сверху).

самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции .

Пример 3. Найти асимптоты графика функции

Горизонтальные асимптоты

Первое, что нужно узнать о горизонтальных асимптотах: они параллельны оси Ox .

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b ), то y = b горизонтальная асимптота кривой y = f (x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении "икса" к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении "икса" к плюс бесконечности равен бесконечности:

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число - точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше - угловой коэффициент k , который показывает угол наклона прямой, и свободный член b , который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё - уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом . Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f (x ) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

(1)

(2)

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва:

Заключение: x = −1 - точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция - дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой - наклонной асимптоты:

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

y = −3x + 5 .

На рисунке график функции обозначен бордовым цветом, а асимптоты - чёрным.

Пример 8. Найти асимптоты графика функции

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

.

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при .

Пример 9. Найти асимптоты графика функции

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство и при этом . Знак переменной x совпадает со знаком . Поэтому рассмотрим эквивалентное неравенство . Из этого получаем область определения функции: . Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при (левосторонний предел не существует):

.

Точка x = 2 - точка разрыва второго рода, поэтому прямая x = 2 - вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Итак, y = x + 1 - наклонная асимптота графика данной функции при . Ищем наклонную асимптоту при :

Итак, y = −x − 1 - наклонная асимптота при .

Пример 10. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при .

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при, и сразу понятно, что в данной точке функция терпит бесконечный разрыв, а прямая, заданная уравнением, является вертикальной асимптотой графика функции. Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:


Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва. В выражение под знаком предела вместо «икса» подставляем. В числителе ничего интересного:

А вот в знаменателе получается бесконечно малое отрицательное число:

Оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого - они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО. Поэтому обязательно вычислим и правосторонний предел:


Вывод: односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при.

Первый предел конечен, значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен.

Таким образом, наша асимптота:

Вывод: прямая, заданная уравнением является горизонтальной асимптотой графика функции при.

Для нахождения горизонтальной асимптоты можно пользоваться упрощенной формулой:

Если существует конечный предел, то прямая является горизонтальной асимптотой графика функции при.

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста, а значит, искомый предел будет конечным:


По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции, то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов, попытайтесь самостоятельно прикинуть, как может располагаться график функции. Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции, и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта - вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдёна по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Найти асимптоты графика функции

Решение: Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва, поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение:

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители:

(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке:


асимптота график функция предел

И в точке:


Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию, то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции. Правильная картинка - в конце урока.

Найти асимптоты графика функции

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4порядок роста знаменателя больше, чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста. В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая - через предел.

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Найти асимптоты графика функции

Решение: классика жанра:

  • 1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово - отлично! Пункт №1 закрыт.
  • 2) Проверим наличие наклонных асимптот:

Второй предел тоже конечен, следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Таким образом, при график функции бесконечно близко приближается к прямой.

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы - важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).


Найти асимптоты графика функции

Решение: комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку.

Прямая является вертикальной асимптотой для графика при.

2) Наклонные асимптоты:


Прямая является наклонной асимптотой для графика при.

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции.

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше - наклонной асимптоты уже не будет (например,).

Но в жизни происходят и другие чудеса.

Асимптоты графика функции

Призрак асимптоты давно бродил по сайту чтобы, наконец, материализоваться в отдельно взятой статье и привести в особый восторг читателей, озадаченных полным исследованием функции . Нахождение асимптот графика – одна из немногих частей указанного задания, которая освещается в школьном курсе лишь в обзорном порядке, поскольку события вращаются вокруг вычисления пределов функций , а они относятся всё-таки к высшей математике. Посетители, слабо разбирающиеся в математическом анализе, намёк, думаю, понятен;-) …стоп-стоп, вы куда? Пределы – это легко!

Примеры асимптот встретились сразу же на первом уроке о графиках элементарных функций , и сейчас тема получает детальное рассмотрение.

Итак, что такое асимптота?

Представьте переменную точку , которая «ездит» по графику функции. Асимптота – это прямая , к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.

Примечание : определение содержательно, если вам необходима формулировка в обозначениях математического анализа, пожалуйста, обратитесь к учебнику.

На плоскости асимптоты классифицируют по их естественному расположению:

1) Вертикальные асимптоты , которые задаются уравнением вида , где «альфа» – действительное число. Популярная представительница определяет саму ось ординат,
с приступом лёгкой тошноты вспоминаем гиперболу .

2) Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты . Например, та же гипербола с асимптотой .

Резво пошло-поехало, ударим по теме короткой автоматной очередью:

Сколько асимптот может быть у графика функции?

Ни одной, одна, две, три,… или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции . Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса – бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.

Что значит ?

Вертикальные асимптоты графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.

Примечание : обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой – зависит от контекста.

Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции . Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций ).

Из вышесказанного также следует очевидный факт: если функция непрерывна на , то вертикальные асимптоты отсутствуют . На ум почему-то пришла парабола. Действительно, где тут «воткнёшь» прямую? …да… понимаю… последователи дядюшки Фрейда забились в истерике =)

Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.

Наклонные асимптоты графика функции

Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс бесконечности» или к «минус бесконечности». Поэтому график функции не может иметь больше двух наклонных асимптот . Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при , а график арктангенса при – двумя такими асимптотами, причём различными.

Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью . Например, …правильно догадались: .

Общее практическое правило :

Если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

Примечание : формулы остаются справедливыми, если «икс» стремится только к «плюс бесконечности» или только к «минус бесконечности».

Покажем, что у параболы нет наклонных асимптот:

Предел бесконечен, значит, наклонная асимптота отсутствует. Заметьте, что в нахождении предела необходимость отпала, поскольку ответ уже получен.

Примечание : если у вас возникли (или возникнут) трудности с пониманием знаков «плюс-минус», «минус-плюс», пожалуйста, посмотрите справку в начале урока
о бесконечно малых функциях , где я рассказал, как правильно интерпретировать данные знаки.

Очевидно, что у любой квадратичной, кубической функции, многочлена 4-й и высших степеней также нет наклонных асимптот.

А теперь убедимся, что при у графика тоже нет наклонной асимптоты. Для раскрытия неопределённости используем правило Лопиталя :
, что и требовалось проверить.

При функция неограниченно растёт, однако не существует такой прямой, к которой бы её график приближался бесконечно близко .

Переходим к практической части урока:

Как найти асимптоты графика функции?

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса – речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться). Начнём с чего-нибудь простого:

Пример 1

Найти асимптоты графика функции

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв , а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва . В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного:
.

А вот в знаменателе получается бесконечно малое отрицательное число :
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого – они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО . Поэтому обязательно вычислим и правосторонний предел:

Вывод : односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

Первый предел конечен , значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен .

Таким образом, наша асимптота:

Вывод : прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты
можно пользоваться упрощенной формулой :

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста , а значит, искомый предел будет конечным:

Ответ :

По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции , то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции , и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Пример 2

Найти асимптоты графика функции

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта – вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдена по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Пример 3

Найти асимптоты графика функции

Решение : Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва , поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение :

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители :
(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке :

И в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ :

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции . Правильная картинка – в конце урока.

Пример 4

Найти асимптоты графика функции

Пример 5

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше , чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста . В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая – через предел .

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Пример 6

Найти асимптоты графика функции

Решение : классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово – отлично! Пункт №1 закрыт.

2) Проверим наличие наклонных асимптот:

Первый предел конечен , поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:

Второй предел тоже конечен , следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод :

Таким образом, при график функции бесконечно близко приближается к прямой :

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы – важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).

Пример 7

Найти асимптоты графика функции

Решение : комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ :

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Пример 8

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше – наклонной асимптоты уже не будет (например, ).

Но в жизни происходят и другие чудеса:

Пример 9


Пример 11

Исследовать график функции на наличие асимптот

Решение : очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопиталя мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ :
, если ;
, если .

Чертёж для наглядности:

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Пример 12

Исследовать график функции на наличие асимптот

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса - речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться).

Начнём с чего-нибудь простого:

Пример 1

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв , а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

Напоминаю технику вычислений, на которой я подобно останавливался в статье непрерывность функции. Точки разрыва . В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного:
.

А вот в знаменателе получается бесконечно малое отрицательное число :
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого - они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО . Поэтому обязательно вычислим и правосторонний предел:

Вывод : односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

Первый предел конечен , значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен .

Таким образом, наша асимптота:

Вывод : прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты можно пользоваться упрощенной формулой :

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста , а значит, искомый предел будет конечным:

Ответ :

По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции , то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции , и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Пример 2

Найти асимптоты графика функции


Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта - вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдёна по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Пример 3

Найти асимптоты графика функции

Решение : Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва , поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение :

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители :
(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке :

И в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ :

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции . Правильная картинка - в конце урока.

Пример 4

Найти асимптоты графика функции

Пример 5

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше , чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста . В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая - через предел .

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Пример 6

Найти асимптоты графика функции

Решение : классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово - отлично! Пункт №1 закрыт.

2) Проверим наличие наклонных асимптот:

Первый предел конечен , поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:

Второй предел тоже конечен , следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод :

Таким образом, при график функции бесконечно близко приближается к прямой :

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы - важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).

Пример 7

Найти асимптоты графика функции

Решение : комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ :

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Пример 8

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше - наклонной асимптоты уже не будет (например, ).

Но в жизни происходят и другие чудеса:

Пример 9


Решение : функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствует. Но вот наклонные вполне могут быть. Проверяем:

Вспоминаю, как ещё в ВУЗе столкнулся с похожей функцией и просто не мог поверить, что у неё есть наклонная асимптота. До тех пор, пока не вычислил второй предел:

Строго говоря, здесь две неопределённости: и , но так или иначе, нужно использовать метод решения, который разобран в Примерах 5-6 статьи о пределах повышенной сложности . Умножаем и делим на сопряженное выражение, чтобы воспользоваться формулой :

Ответ :

Пожалуй, самая популярная наклонная асимптота.

До сих пор бесконечности удавалось «стричь под одну гребёнку», но бывает, что у графика функции две разные наклонные асимптоты при и при :

Пример 10

Исследовать график функции на наличие асимптот

Решение : подкоренное выражение положительно, значит, область определения - любое действительно число, и вертикальных палок быть не может.

Проверим, существуют ли наклонные асимптоты.

Если «икс» стремится к «минус бесконечности», то:
(при внесении «икса» под квадратный корень необходимо добавить знак «минус», чтобы не потерять отрицательность знаменателя)

Выглядит необычно, но здесь неопределённость «бесконечность минус бесконечность». Умножаем числитель и знаменатель на сопряженное выражение:

Таким образом, прямая является наклонной асимптотой графика при .

С «плюс бесконечностью» всё тривиальнее:

А прямая - при .

Ответ :

Если ;
, если .

Не удержусь от графического изображения:


Это одна из ветвей гиперболы .

Не редкость, когда потенциальное наличие асимптот изначально ограничено областью определения функции :

Пример 11

Исследовать график функции на наличие асимптот

Решение : очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

1) Функция непрерывна на интервале , а значит, если вертикальная асимптота и существует, то это может быть только ось ординат. Исследуем поведение функции вблизи точки справа :

Обратите внимание, здесь НЕТ неопределённости (на таких случаях акцентировалось внимание в начале статьи Методы решения пределов) .

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопитал мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ :

Если ;
, если .

Чертёж для наглядности:

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Пример 12

Исследовать график функции на наличие асимптот

Для проверки на вертикальные асимптоты сначала нужно найти область определения функции , а затем вычислить пару односторонних пределов в «подозрительных» точках. Наклонные асимптоты тоже не исключены, поскольку функция определена на «плюс» и «минус» бесконечности.

Пример 13

Исследовать график функции на наличие асимптот

А здесь могут быть только наклонные асимптоты, причём направления , следует рассмотреть отдельно.

Надеюсь, вы отыскали нужную асимптоту =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение :
. Найдём односторонние пределы:

Прямая является вертикальной асимптотой графика функции при .
2) Наклонные асимптоты.

Прямая .
Ответ :

Чертёж к Примеру 3:

Пример 4: Решение :
1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Вычислим односторонние пределы:

Примечание : бесконечно малое отрицательное число в чётной степени равно бесконечно малому положительному числу: .

Прямая является вертикальной асимптотой графика функции.
2) Наклонные асимптоты.


Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ :