Что такое радиус окружности. Как найти радиус окружности: в помощь школьникам

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Данный урок посвящён изучению окружности и круга. Также учитель научит отличать замкнутые и незамкнутые линии. Вы познакомитесь с основными свойствами окружности: центром, радиусом и диаметром. Выучите их определения. Научитесь определять радиус, если известен диаметр, и наоборот.

Если заполнить пространство внутри окружности, например начертить окружность с помощью циркуля на бумаге или картоне и вырезать, то получим круг (рис. 10).

Рис. 10. Круг

Круг - это часть плоскости, ограниченная окружностью.

Условие: Витя Верхоглядкин начертил в своей окружности (рис. 11) 11 диаметров. А когда пересчитал радиусы, получил 21. Правильно ли он сосчитал?

Рис. 11. Иллюстрация к задаче

Решение: радиусов должно быть в два раза больше, чем диаметров, поэтому:

Витя сосчитал неправильно.

Список литературы

  1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] - 2-е изд. - М.: Просвещение, 2012. - 112 с.: ил. - (Школа России).
  2. Рудницкая В.Н., Юдачёва Т.В. Математика, 3 класс. - М.: ВЕНТАНА-ГРАФ.
  3. Петерсон Л.Г. Математика, 3 класс. - М.: Ювента.
  1. Mypresentation.ru ().
  2. Sernam.ru ().
  3. School-assistant.ru ().

Домашнее задание

1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] - 2-е изд. - М.: Просвещение, 2012., ст. 94 № 1, ст. 95 № 3.

2. Разгадайте загадку.

Мы живём с братишкой дружно,

Нам так весело вдвоём,

Мы на лист поставим кружку (рис. 12),

Обведём карандашом.

Получилось то, что нужно -

Называется …

3. Необходимо определить диаметр окружности, если известно, что радиус равен 5 м.

4. * С помощью циркуля начертите две окружности с радиусами: а) 2 см и 5 см; б) 10 мм и 15 мм.

Для начала дадим определение радиуса. В переводе с латинского radius - это «луч, спица колеса». Радиус окружности - это отрезок прямой, соединяющий центр окружности с точкой, которая находится на ней. Длина данного отрезка - это значение радиуса. В математических расчётах для обозначения данной величины используют R.

Советы по нахождению радиуса:

  1. является отрезком прямой, проходящей через ее центр и соединяющей точки, лежащие на окружности, которые максимально удалены друг от друга. Радиус окружности равняется половине её диаметра, следовательно, если вам известен диаметр окружности, то для нахождения её радиуса следует применить формулу: R = D/2, где D - диаметр.
  2. Длина закрытой кривой, которая образуется на плоскости - это длина окружности. Если вы знаете ее длину, то для нахождения радиуса окружности вы можете применить универсальную в своем роде формулу: R = L/(2*π), где L является длиной окружности, а π - константой, равной 3,14. Константа π представляет собой отношение длины окружности к длине ее диаметра, она одинакова для всех окружностей.
  3. Круг представляет собой геометрическую фигуру, являющуюся частью плоскости, ограниченной кривой - окружностью. В том случае, если вы знаете площадь какого либо круга, то радиус окружности может быть найден по специальной формуле R = √(S/π), где S является площадью круга.
  4. Радиус вписаной окружности (в квадрат) находится следующим образом: r = a/2, где а является стороной квадрата.
  5. Радиус описанной окружности (вокруг прямоугольника) вычисляют по формуле: R = √ (a2 + b 2)/2, где а и b являются сторонами прямоугольника.
  6. В том случае, если вы не знаете длину окружности, но знаете высоту и длину какого-либо ее сегмента, то вид формулы будет таков:

R = (4*h2 + L2)/8*h, где h является высотой сегмента, а L является его длиной.

Находим радиус окружности, вписанной в треугольник (прямоугольный). В треугольник, какой бы вид он не имел, может быть вписана лишь одна-единственная окружность, центр которой будет одновременно той точкой, где пересекаются биссектрисы его углов. имеет множество свойств, которые должны быть учтены, когда вычисляется радиус вписанной окружности. В задаче могут быть приведены различные данные, следовательно, требуется выполнить дополнительные вычисления, необходимые для ее решения.

Советы по нахождению радиуса вписанной окружности:

  1. Сначала нужно построить треугольник с теми размерами, которые уже были заданы в вашей задаче. Это необходимо делать, зная размеры всех трёх сторон или двух сторон и угла между ними. Так как размер одного угла вам уже известен, то в условии должны быть два катета. Катеты, которые противолежат углам, должны быть обозначены, как а и b, а гипотенуза - как с. Что касается радиуса вписанной окружности, то он обозначается как r.
  2. Для применения стандартной формулы определения радиуса вписанной окружности требуется найти все три стороны прямоугольного треугольника. Зная размеры всех сторон, вы сможете найти полупериметр треугольника из формулы: p = (a + b+ c)/2.
  3. Если вы знаете один угол и катет, то вам следует определить, прилежащий он или противолежащий. Если он прилежащий, то гипотенузу можно вычислить, используя теорему косинусов: c = a/cosCBA. Если он противолежащий, то тогда требуется воспользоваться c=a/sinCAB.
  4. Если у вас есть полупериметр, то вы можете определить радиус вписанной окружности. Вид формулы для радиуса будет таким: r=√(p-b)(p-a)(p-c)/p.
  5. Следует отметить, что найти радиус можно по формуле: r = S/p. Так что если вам известны два катета, то процедура вычисления будет более лёгкой. Гипотенуза, требуемая для полупериметра, может быть найдена по сумме квадратов его катетов. Вычислить площадь вы можете, перемножив все имеющиеся катеты и разделив надвое число, которое вы получили.

Окружностью называют замкнутую, плоскую кривую, все точки которой, лежащие в одной плоскости, удалены на одинаковом расстоянии от центра.

Точка О является центром окружности, R является радиусом окружности — расстоянием от какой-нибудь точки окружности до центра. По определению все радиусы замкнутой

рис. 1

кривой имеют одинаковую длину.

Расстояние между двумя точками окружности называется хордой. Отрезок окружности, проходящий через ее центр и соединяющий две ее точки, называется диаметром. Середина диаметра является центром окружности. Точки окружности делят замкнутую кривую на две части, каждая часть носит название дуги окружности. Если концы дуги принадлежат диаметру, то такая окружность называется полуокружностью, длину которой принято обозначать π . Градусная мера двух окружностей, имеющих общие концы, составляет 360 градусов.

Концентрические окружности - это окружности, имеющие общий центр. Ортогональные окружности — это окружности, которые пересекаются под углом равным 90 градусов.

Плоскость, которую ограничивает окружность, называется кругом. Одна часть круга, которая ограничена двумя радиусами и дугой — это круговой сектор. Дуга сектора - это дуга, ограничивающая сектор.

Рис. 2

Взаимное расположение окружности и прямой (рис.2).

Окружность и прямая имеют две общие точки, если расстояние от прямой до центра окружности менее радиуса окружности. В таком случае прямая по отношению к окружности называется секущей.

Окружность и прямая имеют одну общую точку, если расстояние от прямой до центра окружности равно радиусу окружности. В таком случае прямая по отношению к окружности называется касательной к окружности. Их общая точка носит название точки касания окружности и прямой.

Основные формулы окружности:

  • C = 2πR , где C — длина окружности
  • R = С/(2π) = D/2 , где С/(2π) — длина дуги окружности
  • D = C/π = 2R , где D — диаметр
  • S = πR2 , где S — площадь круга
  • S = ((πR2)/360)α , где S — площадь кругового сектора

Окружность и круг получили свое название в Древней Греции. Уже в древности человека интересовали круглые тела, поэтому окружность становилась венцом совершенства. То, что круглое тело могло двигаться само по себе, стало толчком к изобретению колеса. Казалось бы, что особенного в этом изобретении? Но представьте, если в одно мгновение колеса исчезнут из нашей жизни. В дальнейшем это изобретение и породило математическое понятие окружности.

Окружность - замкнутая кривая, все точки которой находятся на одинаковом расстоянии от центра. Эта фигура является плоской. Поэтому решение задачи, вопрос которой состоит в том, как найти длину окружности, является достаточно простым. Все имеющиеся способы, мы рассмотрим в сегодняшней статье.

Описания фигуры

Кроме достаточно простого описательного определения существуют еще три математических характеристики окружности, которые уже сами по себе содержат ответ на вопрос, как найти длину окружности:

  • Состоит из точек A и B и всех других, из которых AB можно увидеть под прямым углом. Диаметр данной фигуры равен длине рассматриваемого отрезка.
  • Включает исключительно такие точки X, что отношение AX/BX неизменно и не равно единице. Если это условие не соблюдается, то это не окружность.
  • Состоит из точек, для каждой из которых выполняется следующее равенство: сумма квадратов расстояний до двух других - это заданная величина, которая всегда больше половине длины отрезка между ними.

Терминология

Не у всех в школе был хороший учитель математики. Поэтому ответ на вопрос, как найти длину окружности, осложняется еще и тем, что не все знают основные геометрические понятия. Радиус - отрезок, который соединяет центр фигуры с точкой на кривой. Особым случаем в тригонометрии является единичная окружность. Хорда - отрезок, который соединяет две точки кривой. Например, под это определение подпадает уже рассмотренный AB. Диаметр - это хорда, проходящая через центр. Число π равно длине единичной полуокружности.

Основные формулы

Из определений непосредственно следуют геометрические формулы, которые позволяют рассчитать основные характеристики окружности:

  1. Длина равна произведению числа π и диаметра. Формулу обычно записывают следующим образом: C = π*D.
  2. Радиус равен половине диаметра. Его также можно рассчитать, вычислив частное от деления длины окружности на удвоенное число π. Формула выглядит так: R = C/(2* π) = D/2.
  3. Диаметр равен частному от деления длины окружности на π или удвоенному радиусу. Формула является достаточно простой и выглядит так: D = C/π = 2*R.
  4. Площадь круга равна произведению числа π и квадрата радиуса. Аналогично в этой формуле можно использовать диаметр. В этом случае площадь будет равна частному от деления произведения числа π и квадрата диаметра на четыре. Формулу можно записать следующим образом: S = π*R 2 = π*D 2 /4.

Как найти длину окружности по диаметру

Для простоты объяснения обозначим буквами необходимые для расчета характеристики фигуры. Пусть C - это искомая длина, D - ее диаметр, а число π приблизительно равно 3,14. Если у нас есть всего одна известная величина, то задачу можно считать решенной. Зачем это нужно в жизни? Предположим мы решили обнести круглый бассейн забором. Как вычислить необходимое количество столбиков? И тут на помощь приходит умение, как вычислить длину окружности. Формула выглядит следующим образом: C = π D. В нашем примере диаметр определяется на основе радиуса бассейна и необходимого расстояния до забора. Например, предположим, что наш домашний искусственный водоем составляет 20 метров в ширину, а столбики мы собираемся ставить на десятиметровом расстоянии от него. Диаметр получившейся окружности равен 20 + 10*2 = 40 м. Длина - 3,14*40 = 125,6 метров. Нам понадобятся 25 столбиков, если промежуток между ними будет около 5 м.

Длина через радиус

Как всегда, начнем с присвоения характеристикам окружности букв. На самом деле они являются универсальными, поэтому математикам из разных стран вовсе не обязательно знать язык друг друга. Предположим, что C - это длина окружности, r - ее радиус, а π приблизительно равно 3,14. Формула выглядит в этом случае следующим образом: C = 2*π*r. Очевидно, что это абсолютно правильное равенство. Как мы уже разобрались диаметр окружности равен ее удвоенному радиусу, поэтому эта формула так и выглядит. В жизни этот способ тоже может часто пригодиться. Например, мы печем торт в специальной раздвижной форме. Чтобы он не испачкался, нам нужна декоративная обертка. Но как вырезать круг нужного размера. Здесь на помощь и приходит математика. Те, кто знают, как узнать длину окружности, сразу скажут, что нужно умножить число π на удвоенный радиус формы. Если ее радиус равен 25 см, то длина будет составлять 157 сантиметров.

Примеры задач

Мы уже рассмотрели несколько практических случаев полученных знаний о том, как узнать длину окружности. Но зачастую нас заботят не они, а реальные математические задачи, которые содержатся в учебнике. Ведь за них учитель выставляет баллы! Поэтому давайте рассмотрим задачу повышенной сложности. Предположим, что длина окружности составляет 26 см. Как найти радиус такой фигуры?

Решение примера

Для начала запишем, что нам дано: C = 26 см, π = 3,14. Также вспомним формулу: C = 2* π*R. Из нее можно извлечь радиус окружности. Таким образом, R= C/2/π. Теперь приступим к непосредственному расчету. Сначала делим длину на два. Получаем 13. Теперь нужно разделить на значение числа π: 13/3,14 = 4,14 см. Важно не забыть записать ответ правильно, то есть с единицами измерения, иначе теряется весь практический смысл подобных задач. К тому же за подобную невнимательность можно получить оценку на один балл ниже. И как бы досадно ни было, придется мириться с таким положением вещей.

Не так страшен зверь, как его малюют

Вот мы и разобрались с такой непростой на первый взгляд задачей. Как оказалось, нужно просто понимать значение терминов и запомнить несколько легких формул. Математика - это не так страшно, нужно только приложить немного усилий. Так что геометрия ждет вас!