Дифференциальные уравнения в полных дифференциалах. Уравнение в полных дифференциалах Криволинейные интегралы восстановление полного дифференциала

Имеющее стандартный вид $P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy=0$, в котором левая часть представляет собой полный дифференциал некоторой функции $F\left(x,y\right)$, называется уравнением в полных дифференциалах.

Уравнение в полных дифференциалах всегда можно переписать в виде $dF\left(x,y\right)=0$, где $F\left(x,y\right)$ -- такая функция, что $dF\left(x,y\right)=P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy$.

Проинтегрируем обе части уравнения $dF\left(x,y\right)=0$: $\int dF\left(x,y\right)=F\left(x,y\right) $; интеграл от нулевой правой части равен произвольной постоянной $C$. Таким образом, общее решение данного уравнения в неявной форме имеет вид $F\left(x,y\right)=C$.

Для того, чтобы данное дифференциальное уравнение представляло собой уравнение в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие $\frac{\partial P}{\partial y} =\frac{\partial Q}{\partial x} $. Если указанное условие выполнено, то существует такая функция $F\left(x,y\right)$, для которой можно записать: $dF=\frac{\partial F}{\partial x} \cdot dx+\frac{\partial F}{\partial y} \cdot dy=P\left(x,y\right)\cdot dx+Q\left(x,y\right)\cdot dy$, откуда получаем два соотношения: $\frac{\partial F}{\partial x} =P\left(x,y\right)$ и $\frac{\partial F}{\partial y} =Q\left(x,y\right)$.

Интегрируем первое соотношение $\frac{\partial F}{\partial x} =P\left(x,y\right)$ по $x$ и получаем $F\left(x,y\right)=\int P\left(x,y\right)\cdot dx +U\left(y\right)$, где $U\left(y\right)$ -- произвольная функция от $y$.

Подберем её так, чтобы удовлетворялось второе соотношение $\frac{\partial F}{\partial y} =Q\left(x,y\right)$. Для этого продифференцируем полученное соотношение для $F\left(x,y\right)$ по $y$ и приравняем результат к $Q\left(x,y\right)$. Получаем: $\frac{\partial }{\partial y} \left(\int P\left(x,y\right)\cdot dx \right)+U"\left(y\right)=Q\left(x,y\right)$.

Дальнейшее решение таково:

  • из последнего равенства находим $U"\left(y\right)$;
  • интегрируем $U"\left(y\right)$ и находим $U\left(y\right)$;
  • подставляем $U\left(y\right)$ в равенство $F\left(x,y\right)=\int P\left(x,y\right)\cdot dx +U\left(y\right)$ и окончательно получаем функцию $F\left(x,y\right)$.
\

Находим разность:

Интегрируем $U"\left(y\right)$ по $y$ и находим $U\left(y\right)=\int \left(-2\right)\cdot dy =-2\cdot y$.

Находим результат: $F\left(x,y\right)=V\left(x,y\right)+U\left(y\right)=5\cdot x\cdot y^{2} +3\cdot x\cdot y-2\cdot y$.

Записываем общее решение в виде $F\left(x,y\right)=C$, а именно:

Находим частное решение $F\left(x,y\right)=F\left(x_{0} ,y_{0} \right)$, где $y_{0} =3$, $x_{0} =2$:

Частное решение имеет вид: $5\cdot x\cdot y^{2} +3\cdot x\cdot y-2\cdot y=102$.

некоторых функций. Если восстановить функцию по ее полному дифференциалу, то найдем общий интеграл дифференциального уравнения. Ниже поговорим о методе восстановления функции по ее полному дифференциалу .

Левая часть дифференциального уравнения - это полный дифференциал некоторой функции U(x, y) = 0 , если выполняется условие .

Т.к. полный дифференциал функции U(x, y) = 0 это , значит, при выполнении условия утверждают, что .

Тогда, .

Из первого уравнения системы получаем . Функцию находим, воспользовавшись вторым уравнением системы:

Таким образом мы найдем искомую функцию U(x, y) = 0 .

Пример.

Найдем общее решение ДУ .

Решение.

В нашем примере . Условие выполняется, потому что:

Тогда, левая часть начального ДУ является полным дифференциалом некоторой функции U(x, y) = 0 . Нам необходимо найти эту функцию.

Т.к. является полным дифференциалом функции U(x, y) = 0 , значит:

.

Интегрируем по x 1-е уравнение системы и дифференцируем по y результат:

.

Из 2-го уравнения системы получаем . Значит:

Где С - произвольная постоянная.

Т.о., и общим интегралом заданного уравнения будет .

Есть второй метод вычисления функции по ее полному дифференциалу . Он состоит во взятии криволинейного интеграла от фиксированной точки (x 0 , y 0) до точки с переменными координатами (x, y) : . В таком случае значение интеграла не зависимо от пути интегрирования. Удобно брать в качестве пути интегрирования ломаную, звенья которой параллельны осям координат.

Пример.

Найдем общее решение ДУ .

Решение.

Проверяем выполнение условия :

Т.о., левая часть ДУ является полным дифференциалом некоторой функции U(x, y) = 0 . Найдем эту функцию, вычислив криволинейный интеграл от точки (1; 1) до (x, y) . Как путь интегрирования берем ломаную: первый участок ломаной пройдем по прямой y = 1 от точки (1, 1) до(x, 1) , вторым участком пути берем отрезок прямой от точки (x, 1) до (x, y) :


Значит, общее решение ДУ выглядит так: .

Пример.

Определим общее решение ДУ .

Решение.

Т.к. , значит, условие не выполняется, тогда, левая часть ДУ не будет полным дифференциалом функции и нужно использовать второй способ решения (это уравнение является дифференциальным уравнением с разделяющимися переменными).

В этой теме мы рассмотрим метод восстановления функции по ее полному дифференциалу, дадим примеры задач с полным разбором решения.

Бывает так, что дифференциальные уравнения (ДУ) вида P (x , y) d x + Q (x , y) d y = 0 могут содержать в левых частях полные дифференциалы некоторых функций. Тогда мы можем найти общий интеграл ДУ, если предварительно восстановим функцию по ее полному дифференциалу.

Пример 1

Рассмотрим уравнение P (x , y) d x + Q (x , y) d y = 0 . В записи левой его части содержится дифференциал некоторой функции U (x , y) = 0 . Для этого должно выполняться условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Полный дифференциал функции U (x , y) = 0 имеет вид d U = ∂ U ∂ x d x + ∂ U ∂ y d y . С учетом условия ∂ P ∂ y ≡ ∂ Q ∂ x получаем:

P (x , y) d x + Q (x , y) d y = ∂ U ∂ x d x + ∂ U ∂ y d y

∂ U ∂ x = P (x , y) ∂ U ∂ y = Q (x , y)

Преобразовав первое уравнение из полученной системы уравнений, мы можем получить:

U (x , y) = ∫ P (x , y) d x + φ (y)

Функцию φ (y) мы можем найти из второго уравнения полученной ранее системы:
∂ U (x , y) ∂ y = ∂ ∫ P (x , y) d x ∂ y + φ y " (y) = Q (x , y) ⇒ φ (y) = ∫ Q (x , y) - ∂ ∫ P (x , y) d x ∂ y d y

Так мы нашли искомую функцию U (x , y) = 0 .

Пример 2

Найдите для ДУ (x 2 - y 2) d x - 2 x y d y = 0 общее решение.

Решение

P (x , y) = x 2 - y 2 , Q (x , y) = - 2 x y

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x:

∂ P ∂ y = ∂ (x 2 - y 2) ∂ y = - 2 y ∂ Q ∂ x = ∂ (- 2 x y) ∂ x = - 2 y

Наше условие выполняется.

На основе вычислений мы можем сделать вывод, что левая часть исходного ДУ является полным дифференциалом некоторой функции U (x , y) = 0 . Нам нужно найти эту функцию.

Так как (x 2 - y 2) d x - 2 x y d y является полным дифференциалом функции U (x , y) = 0 , то

∂ U ∂ x = x 2 - y 2 ∂ U ∂ y = - 2 x y

Интегрируем по x первое уравнение системы:

U (x , y) = ∫ (x 2 - y 2) d x + φ (y) = x 3 3 - x y 2 + φ (y)

Теперь дифференцируем по y полученный результат:

∂ U ∂ y = ∂ x 3 3 - x y 2 + φ (y) ∂ y = - 2 x y + φ y " (y)

Преобразовав второе уравнение системы, получаем: ∂ U ∂ y = - 2 x y . Это значит, что
- 2 x y + φ y " (y) = - 2 x y φ y " (y) = 0 ⇒ φ (y) = ∫ 0 d x = C

где С – произвольная постоянная.

Получаем: U (x , y) = x 3 3 - x y 2 + φ (y) = x 3 3 - x y 2 + C . Общим интегралом исходного уравнения является x 3 3 - x y 2 + C = 0 .

Разберем еще один метод нахождения функции по известному полному дифференциалу. Он предполагает применение криволинейного интеграла от фиксированной точки (x 0 , y 0) до точки с переменными координатами (x , y) :

U (x , y) = ∫ (x 0 , y 0) (x , y) P (x , y) d x + Q (x , y) d y + C

В таких случаях значение интеграла никак не зависит от пути интегрирования. Мы можем взять в качестве пути интегрировании ломаную, звенья которой располагаются параллельно осям координат.

Пример 3

Найдите общее решение дифференциального уравнения (y - y 2) d x + (x - 2 x y) d y = 0 .

Решение

Проведем проверку, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x:

∂ P ∂ y = ∂ (y - y 2) ∂ y = 1 - 2 y ∂ Q ∂ x = ∂ (x - 2 x y) ∂ x = 1 - 2 y

Получается, что левая часть дифференциального уравнения представлена полным дифференциалом некоторой функции U (x , y) = 0 . Для того, чтобы найти эту функцию, необходимо вычислить криволинейный интеграл от точки (1 ; 1) до (x , y) . Возьмем в качестве пути интегрирования ломаную, участки которой пройдут по прямой y = 1 от точки (1 , 1) до (x , 1) , а затем от точки (x , 1) до (x , y) :

∫ (1 , 1) (x , y) y - y 2 d x + (x - 2 x y) d y = = ∫ (1 , 1) (x , 1) (y - y 2) d x + (x - 2 x y) d y + + ∫ (x , 1) (x , y) (y - y 2) d x + (x - 2 x y) d y = = ∫ 1 x (1 - 1 2) d x + ∫ 1 y (x - 2 x y) d y = (x y - x y 2) y 1 = = x y - x y 2 - (x · 1 - x · 1 2) = x y - x y 2

Мы получили общее решение дифференциального уравнения вида x y - x y 2 + C = 0 .

Пример 4

Определите общее решение дифференциального уравнения y · cos x d x + sin 2 x d y = 0 .

Решение

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Так как ∂ (y · cos x) ∂ y = cos x , ∂ (sin 2 x) ∂ x = 2 sin x · cos x , то условие выполняться не будет. Это значит, что левая часть дифференциального уравнения не является полным дифференциалом функции. Это дифференциальное уравнение с разделяющимися переменными и для его решения подходят другие способы решения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Дифференциальным называется уравнение вида

P (x,y )dx + Q (x,y )dy = 0 ,

где левая часть является полным дифференциалом какой-либо функции двух переменных.

Обозначим неизвестную функцию двух переменных (её-то и требуется найти при решении уравнений в полных дифференциалах) через F и скоро вернёмся к ней.

Первое, на что следует обратить внимание: в правой части уравнения обязательно должен быть нуль, а знак, соединяющий два члена в левой части, должен быть плюсом.

Второе - должно соблюдаться некоторое равенство, которое является подтверждением того, что данное дифференциальное уравнение является уравнением в полных дифференциалах. Эта проверка является обязательной частью алгоритма решения уравнений в полных дифференциалах (он во втором параграфе этого урока), так процесс поиска функции F достаточно трудоёмкий и важно на начальном этапе убедиться в том, что мы не потратим время зря.

Итак, неизвестную функцию, которую требуется найти, обозначили через F . Сумма частных дифференциалов по всем независимым переменным даёт полный дифференциал. Следовательно, если уравнение является уравнением в полных дифференциалах, левая часть уравнения представляет собой сумму частных дифференциалов. Тогда по определению

dF = P (x,y )dx + Q (x,y )dy .

Вспоминаем формулу вычисления полного дифференциала функции двух переменных:

Решая два последних равенства, можем записать

.

Первое равенство дифференцируем по переменной "игрек", второе - по переменной "икс":

.

что является условием того, что данное дифференциальное уравнение действительно представляет собой уравнение в полных дифференциалах.

Алгоритм решения дифференциальных уравнений в полных дифференциалах

Шаг 1. Убедиться, что уравнение является уравнением в полных дифференциалах. Для того, чтобы выражение было полным дифференциалом некоторой функции F (x, y ) , необходимо и достаточно, чтобы . Иными словами, нужно взять частную производную по x и частную производную по y другого слагаемого и, если эти производные равны, то уравнение является уравнением в полных дифференциалах.

Шаг 2. Записать систему уравнений из частных производных, составляющих функцию F :

Шаг 3. Проинтегрировать первое уравнение системы - по x (y F :

,
y .

Альтернативный вариант (если так интеграл найти проще) - проинтегрировать второе уравнение системы - по y (x остаётся константой и выносится за знак интеграла). Таким образом так же восстанавливается функция F :

,
где - пока неизвестная функция от х .

Шаг 4. Результат шага 3 (найденный общий интеграл) продифференцировать по y (в альтернативном варианте - по x ) и приравнять ко второму уравнению системы:

,

а в альтернативном варианте - к первому уравнению системы:

.

Из полученного уравнения определяем (в альтернативном варианте )

Шаг 5. Результат шага 4 интегрировать и найти (в альтернативном варианте найти ).

Шаг 6. Результат шага 5 подставить в результат шага 3 - в восстановленную частным интегрированием функцию F . Произвольную постоянную C чаще записывают после знака равенства - в правой части уравнения. Таким образом получаем общее решение дифференциального уравнения в полных дифференциалах. Оно, как уже говорилось, имеет вид F (x, y ) = C .

Примеры решений дифференциальных уравнений в полных дифференциалах

Пример 1.

Шаг 1. уравнением в полных дифференциалах x одного слагаемого в левой части выражения

и частную производную по y другого слагаемого
уравнением в полных дифференциалах .

Шаг 2. F :

Шаг 3. по x (y остаётся константой и выносится за знак интеграла). Таким образом восстанавливаем функцию F :


где - пока неизвестная функция от y .

Шаг 4. y

.


.

Шаг 5.

Шаг 6. F . Произвольную постоянную C :
.

Какая ошибка возможна здесь с наибольшей вероятностью? Самые распространённые ошибки - принять частный интеграл по одной из переменных за обычный интеграл произведения функций и пытаться интегрировать по частям или заменной переменной а также принять частную производную двух сомножителей за производную произведения функций и искать производную по соответствующей формуле.

Это надо запомнить: при вычислении частного интеграла по одной из переменной другая является константой и выносится за знак интеграла, а при вычислении частной производной по одной из переменной другая также является константой и производная выражения находится как производная "действующей" переменной, умноженной на константу.

Среди уравнений в полных дифференциалах не редкость - примеры с экспонентой. Таков следующий пример. Он же примечателен и тем, что в его решении используется альтернативный вариант.

Пример 2. Решить дифференциальное уравнение

.

Шаг 1. Убедимся, что уравнение является уравнением в полных дифференциалах . Для этого находим частную производную по x одного слагаемого в левой части выражения

и частную производную по y другого слагаемого
. Эти производные равны, значит, уравнение является уравнением в полных дифференциалах .

Шаг 2. Запишем систему уравнений из частных производных, составляющих функцию F :

Шаг 3. Проинтегрируем второе уравнение системы - по y (x остаётся константой и выносится за знак интеграла). Таким образом восстанавливаем функцию F :


где - пока неизвестная функция от х .

Шаг 4. Результат шага 3 (найденный общий интеграл) продифференцируем по х

и приравняем к первому уравнению системы:

Из полученного уравнения определяем :
.

Шаг 5. Результат шага 4 интегрируем и находим :
.

Шаг 6. Результат шага 5 подставляем в результат шага 3 - в восстановленную частным интегрированием функцию F . Произвольную постоянную C записываем после знака равенства. Таким образом получаем общее решение дифференциального уравнения в полных дифференциалах :
.

В следующем примере возвращаемся от альтернативного варианта к основному.

Пример 3. Решить дифференциальное уравнение

Шаг 1. Убедимся, что уравнение является уравнением в полных дифференциалах . Для этого находим частную производную по y одного слагаемого в левой части выражения

и частную производную по x другого слагаемого
. Эти производные равны, значит, уравнение является уравнением в полных дифференциалах .

Шаг 2. Запишем систему уравнений из частных производных, составляющих функцию F :

Шаг 3. Проинтегрируем первое уравнение системы - по x (y остаётся константой и выносится за знак интеграла). Таким образом восстанавливаем функцию F :


где - пока неизвестная функция от y .

Шаг 4. Результат шага 3 (найденный общий интеграл) продифференцируем по y

и приравняем ко второму уравнению системы:

Из полученного уравнения определяем :
.

Шаг 5. Результат шага 4 интегрируем и находим :

Шаг 6. Результат шага 5 подставляем в результат шага 3 - в восстановленную частным интегрированием функцию F . Произвольную постоянную C записываем после знака равенства. Таким образом получаем общее решение дифференциального уравнения в полных дифференциалах :
.

Пример 4. Решить дифференциальное уравнение

Шаг 1. Убедимся, что уравнение является уравнением в полных дифференциалах . Для этого находим частную производную по y одного слагаемого в левой части выражения

и частную производную по x другого слагаемого
. Эти производные равны, значит, уравнение является уравнением в полных дифференциалах.

Шаг 2. Запишем систему уравнений из частных производных, составляющих функцию F :

Шаг 3. Проинтегрируем первое уравнение системы - по x (y остаётся константой и выносится за знак интеграла). Таким образом восстанавливаем функцию F :


где - пока неизвестная функция от y .

Шаг 4. Результат шага 3 (найденный общий интеграл) продифференцируем по y

и приравняем ко второму уравнению системы:

Из полученного уравнения определяем :
.

Шаг 5. Результат шага 4 интегрируем и находим :

Шаг 6. Результат шага 5 подставляем в результат шага 3 - в восстановленную частным интегрированием функцию F . Произвольную постоянную C записываем после знака равенства. Таким образом получаем общее решение дифференциального уравнения в полных дифференциалах :
.

Пример 5. Решить дифференциальное уравнение

.

Шаг 1. Убедимся, что уравнение является уравнением в полных дифференциалах . Для этого находим частную производную по y одного слагаемого в левой части выражения

и частную производную по x другого слагаемого
. Эти производные равны, значит, уравнение является уравнением в полных дифференциалах .

Определение 8.4. Дифференциальное уравнение вида

где
называется уравнением в полных дифференциалах.

Заметим, что левая часть такого уравнения есть полный дифференциал некоторой функции
.

В общем случае, уравнение (8.4) можно представить в виде

Вместо уравнения (8.5) можно рассматривать уравнение

,

решение которого есть общим интегралом уравнения (8.4). Таким образом, для решения уравнения (8.4) необходимо найти функцию
. В соответствии с определением уравнения (8.4), имеем

(8.6)

Функцию
будем отыскивать, как функцию, удовлетворяющую одному из этих условий (8.6):

где - произвольная функция, не зависящая от.

Функция
определяется так, чтобы выполнялось второе условие выражения (8.6)

(8.7)

Из выражения (8.7) и определяется функция
. Подставляя ее в выражение для
и получают общий интеграл исходного уравнения.

Задача 8.3. Проинтегрировать уравнение

Здесь
.

Следовательно, данное уравнение относится к типу дифференциальных уравнений в полных дифференциалах. Функцию
будем отыскивать в виде

.

С другой стороны,

.

В ряде случаев условие
может не выполняться.

Тогда такие уравнения к рассматриваемому типу приводятся умножением на так называемый интегрирующий множитель, который, в общем случае, является функцией только или.

Если у некоторого уравнения существует интегрирующий множитель, зависящий только от , то он определяется по формуле

где отношение должно быть только функцией.

Аналогично, интегрирующий множитель, зависящий только от , определяется по формуле

где отношение
должно быть только функцией.

Отсутствие в приведенных соотношениях, в первом случае переменной , а во втором - переменной, являются признаком существования интегрирующего множителя для данного уравнения.

Задача 8.4. Привести данное уравнение к уравнению в полных дифференциалах.

.

Рассмотрим отношение:

.

Тема 8.2. Линейные дифференциальные уравнения

Определение 8.5 . Дифференциальное уравнение
называется линейным, если оно линейно относительно искомой функции, ее производнойи не содержит произведения искомой функции и ее производной.

Общий вид линейного дифференциального уравнения представляется следующим соотношением:

(8.8)

Если в соотношении (8.8) правая часть
, то такое уравнение называется линейным однородным. В случае, когда правая часть
, то такое уравнение называется линейным неоднородным.

Покажем, что уравнение (8.8) интегрируется в квадратурах.

На первом этапе рассмотрим линейное однородное уравнение.

Такое уравнение является уравнением с разделяющимися переменными. Действительно,

;

/

Последнее соотношение и определяет общее решение линейного однородного уравнения.

Для отыскания общего решения линейного неоднородного уравнения применяется метод вариации производной постоянной. Идея метода состоит в том, что общее решение линейного неоднородного уравнения в том же виде, что и решение соответствующего однородного уравнения, однако произвольная постоянная заменяется некоторой функцией
, подлежащей определению. Итак, имеем:

(8.9)

Подставляя в соотношение (8.8) выражения, соответствующие
и
, получим

Подставляя последнее выражение в соотношение (8.9), получают общий интеграл линейного неоднородного уравнения.

Таким образом, общее решение линейного неоднородного уравнения определяется двумя квадратурами: общего решения линейного однородного уравнения и частного решения линейного неоднородного уравнения.

Задача 8.5. Проинтегрировать уравнение

Таким образом, исходное уравнение относится к типу линейных неоднородных дифференциальных уравнений.

На первом этапе найдем общее решение линейного однородного уравнения.

;

На втором этапе определим общее решение линейного неоднородного уравнения, которое отыскивают в виде-

,

где
- функция, подлежащая определению.

Итак, имеем:

Подставляя соотношения для ив исходное линейное неоднородное уравнение получим:

;

;

.

Общее решение линейного неоднородного уравнения будет иметь вид:

.