Каковы особенности строения твердых тел жидкостей газов. Особенности строения газов, жидкостей и твердых тел

Строение газов, жидкостей и твердых тел.

Основные положения молекулярно-кинетической теории :

    все вещества состоят из молекул, а молекулы из атомов,

    атомы и молекулы находятся в постоянном движении,

    между молекулами существуют силы притяжения и отталкивания.

В газах молекулы двигаются хаотически, расстояния между молекулами большие, молекулярные силы малы, газ занимает весь предоставленный ему объем.

В жидкостях молекулы располагаются упорядочно только на малых расстояниях, а на больших расстояниях порядок (симметрия) расположения нарушается – “ближний порядок”. Силы молекулярного притяжения удерживают молекулы на близком расстоянии. Движение молекул – “перескоки ” из одного устойчивого положения в другое (как правило, в пределах одного слоя. Таким движением объясняется текучесть жидкости. Жидкость не имеет форму, но имеет объем.

Твердые тела – вещества, которые сохраняют форму, делятся на кристаллические и аморфные. Кристаллические твердые тела имеют кристаллическую решетку, в узлах которой могут находиться ионы, молекулы или атомы Они совершают колебания относительно устойчивых положений равновесия.. Кристаллические решетки имеют правильную структуру по всему объему – “дальний порядок” расположения.

Аморфные тела сохраняют форму, но не имеют кристаллической решетки и, как следствие, не имеют ярко выраженной температуры плавления. Их называют застывшими жидкостями, так как они, как жидкости имеют “ближний ” порядок расположения молекул.

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания. Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др. Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе. Как это объяснить? Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален. Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна. Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул. Между телами в природе могут существовать гравитационные и электромагнитные силы. Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет. Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения. При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания. Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия. Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул. Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией. Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы. Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел. Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся. Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул. Слабое взаимодействие частиц. Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями. Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости. В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы. По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами. Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.

Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся. Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул. Частицы вещества практически не взаимодействуют. Газы характеризуются полной беспорядочностью расположения и движения молекул.

Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться. Газы легко сжимаются под действием внешнего давления, т.к. расстояния между молекулами велики, а силы взаимодействия пренебрежимо малы. Давление газа на стенки сосуда создается ударами движущихся молекул газа.

К жидкостям относят вещества, которые по своим свойствам занимают промежуточное положение между газами и твердыми телами. Жидкие среды составляют наибольшую часть организма, их перемещение обеспечивает обмен веществ и снабжение клеток кислородом, поэтому механические свойства и течение жидкостей представляют особый интерес для медиков и биологов.

Материал, изложенный в главе, имеет отношение к гидродинамике - разделу физики, в котором изучают вопросы движения несжимаемых жидкостей и взаимодействие их при этом с окружающими твердыми телами, и к реологии - учению о деформациях и текучести вещества.

НЬЮТОНОВСКИЕ И НЕНЬЮТОНОВСКИЕ ЖИДКОСТИ

При течении реальной жидкости отдельные слои ее воздействуют друг на друга с силами, касательными к слоям. Это явление называют внутренним трением или вязкостью.

Рассмотрим течение вязкой жидкости между двумя твердыми пластинками (рис. 9.1), из которых нижняя неподвижна, а верхняя движется со скоростью υ Β . Условно представим жидкость в виде нескольких слоев 1, 2, 3 и т.д. Слой, «прилипший» ко дну, неподвижен. По мере удаления от дна (нижняя пластинка) слои жидкости имеют все большие скорости (υ 1 < υ 2 < υ 3 <... и т.д), максимальная скорость υ Β будет у слоя, который «прилип» к верхней пластинке.

9.1. ВЯЗКОСТЬ ЖИДКОСТИ.

УРАВНЕНИЕ НЬЮТОНА.

Слои воздействуют друг на друга. Так, например, третий слой стремится ускорить движение второго, но сам испытывает торможение с его стороны, а ускоряется четвертым слоем и т.д. Сила внутреннего трения пропорциональна площади S взаимодействующих слоев и тем больше, чем больше их относительная скорость.

Это уравнение Ньютона. Здесь η - коэффициент пропорциональности, называемый коэффициентом внутреннего трения или динамической с вязкостью (или просто вязкостью). Вязкость зависит от состояния и молекулярных свойств жидкости (или газа).

Единицей вязкости является паскаль-секунда (Пах). В системе СГС вязкость выражают в пуазах (П): 1 Пах = 10 П.

Для многих жидкостей вязкость не зависит от градиента скорости, такие жидкости подчиняются уравнению Ньютона (9.1) и их называют ньютоновскими. Жидкости, не подчиняющиеся уравнению (9.1), относят к неньютоновским. Иногда вязкость ньютоновских жидкостей называют нормальной, а неньютоновской - аномальной.

Жидкости, состоящие из сложных и крупных молекул, например растворы полимеров, и образующие благодаря сцеплению молекул или частиц пространственные структуры, являются неньютоновскими. Их вязкость при прочих равных условиях много больше, чем у простых жидкостей.

Увеличение вязкости происходит потому, что при течении этих жидкостей работа внешней силы затрачивается не только на преодоление истинной, ньютоновской, вязкости, но и на разрушение структуры. Кровь является неньютоновской жидкостью.

9.2. ТЕЧЕНИЕ ВЯЗКОЙ ЖИДКОСТИ ПО ТРУБАМ. ФОРМУЛА ПУАЗЕЙЛЯ

Течение вязкой жидкости по трубам представляет для медицины особый интерес, так как кровеносная система состоит в основном из цилиндрических сосудов разного диаметра.

Вследствие симметрии ясно, что в трубе частицы текущей жидкости, равноудаленные от оси, имеют одинаковую скорость. Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; самый близкий к трубе слой жидкости неподвижен.


9.3. ДВИЖЕНИЕ ТЕЛ В ВЯЗКОЙ ЖИДКОСТИ. ЗАКОН СТОКСА

Вязкость проявляется при движении не только жидкости по сосудам, но и тел в жидкости. При небольших скоростях в соответствии с уравнением Ньютона сила сопротивления движущемуся телу пропорциональна вязкости жидкости, скорости движения тела и зависит от размеров тела. Так как невозможно указать общую формулу для силы сопротивления, ограничимся рассмотрением частного случая.

Наиболее простой формой тела является сфера. Для сферического тела (шарик) зависимость силы сопротивления при его движении в сосуде с жидкостью от перечисленных выше факторов выражается законом Стокса:


Формула (9.15) справедлива для движения шарика не только в жидкости, но и в газе. Она может быть использована, в частности, для вычисления времени выпадения пыли в воздухе. Поясним это следующим примером. Для воздуха - среды, в которой взвешены различные частицы пыли, - вязкость η = 0,000175 П ? с. Около 80% пыли, обнаруженной в легких умерших людей, составляют частицы размером от 5 до 0,2 мкм. Если считать пылинки шарообразными, а плотность пыли равной плотности земли (р = 2,5 г/см 3), то, вычисляя скорость падения этих пылинок по формуле (9.15), найдем, что ее значения находятся в пределах 0,2-0,0003 см/с. Для полного выпадения такой пыли в комнате высотой 3 м потребуется около 12 суток при условии полной неподвижности воздуха и отсутствия броуновского движения.

9.4. МЕТОДЫ ОПРЕДЕЛЕНИЯ

ВЯЗКОСТИ ЖИДКОСТИ.

КЛИНИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ

ВЯЗКОСТИ КРОВИ

Совокупность методов измерения вязкости называют вискозиметрией, а приборы, используемые для таких целей, - вискозиметрами. Рассмотрим наиболее распространенные методы вискозиметрии.

Капиллярный метод основан на формуле Пуазейля и заключается в измерении времени протекания через капилляр жидкости известной

массы под действием силы тяжести при определенном перепаде давлений. Капиллярные вискозиметры различной формы показаны на рис. 9.7, а, б (1 - измерительные резервуары; М 1 и М 2 - метки, обозначающие границы этих резервуаров; 2 - капилляры; 3 - приемные сосуды).

Капиллярный вискозиметр применяется для определения вязкости крови.

Капиллярными вискозиметрами измеряют вязкость от значений 10 -5 Па? с, свойственных газам, до значений 10 4 Па? с, характерных для консистентных смазок.

Метод падающего шарика используется в вискозиметрах, основанных на законе Стокса. Из формулы (9.15) находим

Таким образом, зная величины, входящие в правую часть этой формулы, и измеряя скорость равномерного падения шарика, можно найти вязкость данной жидкости.

Предел измерений вискозиметров с движущимся шариком составляет 6 ? 10 4 - 250 Па? с.

Применяются также ротационные вискозиметры, в которых жидкость находится в зазоре между двумя соосными телами, например цилиндрами. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость измеряется по угловой скорости ротора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы,

действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора.

С помощью ротационных вискозиметров определяют вязкость жидкостей в интервале 1-10 5 Пах, т.е. смазочных масел, расплавленных силикатов и металлов, высоковязких лаков и клеев, глинистых растворов и т.п.

В ротационных вискозиметрах можно менять градиент скорости, задавая разные угловые скорости вращения ротора. Это позволяет измерять вязкость при разных градиентах и установить зависимость η = /(άυ/άχ), которая характерна для неньютоновских жидкостей.

В настоящее время в клинике для определения вязкости крови используют вискозиметр Тесса с двумя капиллярами. Схема его устройства дана на рис. 9.7, в. Два одинаковых капилляра а 1 Ь 1 и а 2 Ь 2 соединены с двумя трубочками 1 и 2. Посредством резиновой груши или втягивая воздух ртом через наконечник 3, поочередно благодаря тройнику с краном 4 заполняют капилляр а 1 Ь 1 и трубочку 1 до отметки 0 дистиллированной водой, а капилляр а 2 Ь 2 и трубочку 2 до отметки 0 - исследуемой кровью. После этого теми же способами одновременно перемещают обе жидкости до тех пор, пока кровь не достигнет цифры 1, а вода - другой отметки в своей трубке. Так как условия протекания воды и крови одинаковы, то объемы наполнения трубок 1 и 2 будут различными вследствие того, что вязкости этих жидкостей неодинаковы. Хотя кровь и является неньютоновской жидкостью, используем с некоторым приближением формулу Пуазейля (9.8) и запишем очевидную пропорцию:

где V K - объем крови в трубке 2 от отметки 0 до отметки 1; У в - объем воды в трубке 1 от отметки 0 до отметки, полученной при измерении; η, и соответственно вязкость крови и воды. Отношение вязкости крови и вязкости воды при той же температуре называют относительной вязкостью крови.

В вискозиметре Гесса объем крови всегда одинаков, а объем воды отсчитывают по делениям на трубке 1, поэтому непосредственно получают значение относительной вязкости крови. Для удобства отсчета сече-

ния трубок 1 и 2 делают различными, так, что, несмотря на разные объемы крови и воды, их уровни в трубках будут примерно одинаковы.

Вязкость крови человека в норме 4-5 мПа? с, при патологии колеблется от 1,7-22,9 мПа? с, что сказывается на скорости оседания эритроцитов (СОЭ). Венозная кровь обладает несколько большей вязкостью, чем артериальная. При тяжелой физической работе вязкость крови увеличивается. Некоторые инфекционные заболевания увеличивают вязкость, другие же, например брюшной тиф и туберкулез, - уменьшают.

9.5. ЛАМИНАРНОЕ И ТУРБУЛЕНТНОЕ ТЕЧЕНИЯ. ЧИСЛО РЕЙНОЛЬДСА

Рассмотренное ранее течение жидкости является слоистым, или ламинарным. Увеличение скорости течения вязкой жидкости вследствие неоднородности давления по поперечному сечению трубы создает завихрение и движение становится вихревым, или турбулентным. При турбулентном течении скорость частиц в каждом месте непрерывно и хаотически изменяется, движение является нестационарным.

Характер течения жидкости по трубе зависит от свойств жидкости, скорости ее течения, размеров трубы и определяется числом Рейнольдса:

Кинематическая вязкость полнее, чем динамическая, учитывает влияние внутреннего трения на характер течения жидкости или газа. Так, вязкость воды приблизительно в 100 раз больше, чем воздуха (при 0°С), но кинематическая вязкость воды в 10 раз меньше, чем воздуха, и поэтому вязкость сильнее влияет на характер течения воздуха, чем воды.

Как видно из (9.17), характер течения жидкости или газа существенно зависит от размеров трубы. В широких трубах даже при сравнительно небольших скоростях может возникнуть турбулентное движение. Так, например, в трубке диаметром 2 мм течение воды становится турбулентным при скорости более 127 см/с, а в трубе диаметром 2 см - уже при скорости примерно 12 см/с (температура 16 °С). Течение крови по такой трубе стало бы турбулентным при скорости 50 см/с, но практически в кровеносных сосудах диаметром 2 см турбулентное течение возникает даже при меньшей скорости.

Течение крови в артериях в норме является ламинарным, небольшая турбулентность возникает вблизи клапанов.

При патологии, когда вязкость бывает меньше нормы, число Рей-нольдса может превышать критическое значение и движение станет турбулентным.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости, что в случае крови приводит к добавочной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболеваний. Этот шум прослушивают на плечевой артерии при измерении давления крови.

Течение воздуха в носовой полости в норме ламинарное. Однако при воспалении или каких-либо других отклонениях от нормы оно может стать турбулентным, что повлечет дополнительную работу дыхательных мышц.

Число Рейнольдса является критерием подобия. При моделировании гидро- и аэродинамических систем, в частности кровеносной системы, модель должна иметь такое же число Рейнольдса, как и натура, в противном случае не будет соответствия между ними. Это относится и к моделированию обтекания тел при движении их в жидкости или газе.

Из (9.17) видно, что уменьшение размеров модели по сравнению с натурой должно быть скомпенсировано увеличением скорости течения или уменьшением кинематической вязкости модельной жидкости или газа.

9.6. ОСОБЕННОСТИ МОЛЕКУЛЯРНОГО СТРОЕНИЯ ЖИДКОСТЕЙ

Обычные жидкости изотропны, структурно они являются аморфными телами. Для внутреннего строения жидкостей характерен ближайший порядок (упорядоченное относительное расположение ближайших частиц). Расстояния между молекулами невелики, силы взаимодействия значительны, что приводит к малой сжимаемости жидкостей: небольшое уменьшение расстояния между молекулами вызывает появление больших сил межмолекулярного отталкивания. Подобно твердым телам, жидкости мало сжимаемы и обладают большой плотностью; подобно газам, принимают форму сосуда, в котором находятся. Такой характер свойств жидкостей связан с особенностями теплового движения их молекул. В газах молекулы движутся беспорядочно, на малых отрезках пути - поступательно, в расположении частиц отсутствует какой-либо порядок. В кристаллических телах частицы колеблются около определенных положений равновесия - узлов кристаллической решетки. По теории Я.И.Френкеля, молекулы жидкости, подобно частицам твердого тела, колеблются около положений равновесия, однако эти положения равновесия не являются постоянными. По истечении некоторого времени, называемого временем оседлой жизни, молекула скачком переходит в новое положение равновесия на расстояние, равное среднему расстоянию между соседними молекулами.

Среднее время оседлой жизни молекулы называют временем релаксации r. С повышением температуры и понижением давления время релаксации сильно уменьшается, что обусловливает большую подвижность молекул жидкости и малую ее вязкость.

Для того чтобы молекула жидкости перескочила из одного положения равновесия в другое, должны нарушиться связи с окружавшими ее молекулами и образоваться связи с новыми соседями. Процесс разрыва связей требует затраты энергии Е а (энергия активации), выделяемой при образовании новых связей. Такой переход молекулы из одного положения равновесия в другое является переходом через потенциальный барьер

9.7. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

На поверхностях раздела жидкости и ее насыщенного пара, двух не-смешиваемых жидкостей, жидкости и твердого тела возникает сила, обусловленная различным межмолекулярным взаимодействием граничащих сред.

Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднородности окружения действует сила, не скомпенсированная другими молекулами жидкости. Поэтому для перемещения молекул из объема в поверхностный слой необходимо совершить работу.

Поверхностное натяжение определяется отношением работы, затраченной на создание некоторой поверхности жидкости при постоянной температуре к площади этой поверхности:

Условием устойчивого равновесия жидкостей является минимум энергии поверхностного слоя, поэтому при отсутствии внешних сил или

в состоянии невесомости жидкость стремится иметь минимальную площадь поверхности при данном объеме и принимает форму шара.

Поверхностное натяжение может быть определено не только энергетически. Стремление поверхностного слоя жидкости сократиться означает наличие в этом слое касательных сил - сил поверхностного натяжения. Если выбрать на поверхности жидкости некоторый отрезок длиной l (рис. 9.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку.

Поверхностное натяжение равно отношению силы поверхностного натяжения к длине отрезка, на котором действует эта сила:

Из школьного курса физики известно, что оба определения, (9.21) и (9.22), тождественны. Приведем значения поверхностного натяжения для некоторых жидкостей при температуре 20 °С (табл. 1).

Таблица 1

Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при увеличении температуры. Снижения поверхностного натяжения можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя.

9.8. СМАЧИВАНИЕ И НЕСМАЧИВАНИЕ. КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ

На границе соприкосновения различных сред может наблюдаться смачивание или несмачивание.

Рассмотрим поведение капли жидкости на поверхности другой, не смешивающейся с ней, жидкости (рис. 9.9) и капли жидкости на поверхности твердого тела (рис. 9.10 и 9.11). На поверхностях раздела каждых двух сред (1 и 3, 2 и 1, 3 и 2) действуют силы поверхностного натяжения.

Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает дополнительное по отношению к внешнему давление Др. Поверхностный слой подобен упругой оболочке, например резиновой пленке. Результирующая сил поверхностного натяжения искривленной поверхности направлена в сторону вогнуто-

ное количество жидкости из паров, что приводит к увлажнению белья, ваты в сырых помещениях, затрудняет сушку гигроскопических тел, способствует удержанию влаги в почве и т.п. Наоборот, несмачивающие жидкости не проникают в пористые тела. С этим связана, например, непроницаемость для воды перьев птиц, смазанных жиром.

Рассмотрим поведение пузырька воздуха, находящегося в капилляре с жидкостью. Если давление жидкости на пузырек с разных сторон одинаково, то оба мениска пузырька будут иметь одинаковый радиус кривизны (рис. 9.14, а). При избыточном давлении с одной из сторон, например при движении жидкости, мениски деформируются, изменятся их радиусы кривизны (рис. 9.14, б), дополнительное давление Ар с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пузырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут происходить в кровеносной системе человека.

Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функциональному расстройству или даже летальному исходу. Так, воздушная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, препятствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях.

Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков и космонавтов при разгерметизации кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом газов крови из растворенного состояния в свободное - газообразное в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует в газообмене организма и окружающего воздуха.

Обычные жидкости изотропны, структурно они являются аморфными телами. Для внутреннего строения жидкостей характерен ближний порядок в расположении молекул (упорядоченное расположение ближайших частиц). Расстояния между молекулами невелики, силы взаимодействия значительны, что приводит к 1 малой сжимаемости жидкостей: небольшое уменьшение расстоя­ния между молекулами вызывает появление больших сил межмолекулярного отталкивания.

Подобно твердым телам, жидкости мало сжимаемы и обладают большой плотностью, подобно газам, принимают форму сосуда, в котором находятся. Такой характер свойств жидкостей связан с особенностями теплового движения их молекул. В газах молекулы движутся беспорядочно, на малых отрезках пути - поступательно, в расположении частиц отсутствует какой-либо порядок. В кристаллических телах частицы колеблются около определенных положений равновесия - узлов кристаллической решетки. По теории Я. И. Френкеля молекулы жидкости, подобно частицам твердого тела, колеблются …
около положений равновесия, однако эти положения равновесия не являются постоянными. По истечении некоторого времени, называемого временем «оседлой жизни», молекула скачком переходит в новое положение равновесия на расстояние, равное среднему расстоянию между соседними молекулами.

Вычислим среднее расстояние между молекулами жидкости. Можно мысленно представить весь объем жидкости разделенным на небольшие одинаковые кубики с ребром 8. Пусть в среднем в каждом кубике находится одна молекула. В этом случае 5 можно рассматривать как среднее расстояние между молекулами жидкости. Объем жидкости равен V = δ 3 N, где N - общее количество молекул жидкости. Если n - концентрация молекул (количество молекул в 1 м 3), то N = nV. Из этих уравнений получаем

Для того чтобы молекула жидкости перескочила из одного по­ложения равновесия в другое, должны нарушиться связи с окру­жавшими ее молекулами и образоваться связи с новыми соседя­ми. Процесс разрыва связей требует затраты энергии Е а (энергии активации), выделяемой при образовании новых связей. Такой переход молекулы из одного положения равновесия в другое яв­ляется переходом через потенциальный барьер высотой Е а. Энергию для преодоления потенциального барьера молекула по­лучает за счет энергии теплового движения соседних молекул. За­висимость времени релаксации от температуры жидкости и энер­гии активации выражается формулой, вытекающей из распреде­ления Больцмана (см. § 2.4).

Где τ 0 - средний период колебаний молекулы около положения равновесия.

Зная среднее перемещение молекулы, равное расстоянию меж­ду молекулами δ, и среднее время τ, можно определить среднюю скорость движения молекул в жидкости:

Эта скорость мала по сравнению со средней скоростью движе­ния молекул в газе. Так, например, для молекул воды она в 20 раз меньше, чем для молекул пара при той же температуре.

РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ В ПОТЕНЦИАЛЬНОМ ПОЛЕ

СИЛ ТЯЖЕСТИ (РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА)

При выводе основного уравнения МКТ газов и распределения Максвелла предполагалось, что на молекулы газа внешние силы не действуют, а это значит, что молекулы распределяются по объему равномерно. Однако молекулы любого газа всегда находятся в потенциальном поле сил тяжести Земли. Тяготение с одной стороны, и тепловое движение молекул – с другой приводят к некоторому стационарному состоянию, при котором давление газа с ростом высоты убывает.

Получим закон изменения давления с высотой, предполагая, что по всей высоте: поле тяготения однородно (g = const); температура одинакова (Т = const); массы всех молекул одинаковы.

Пусть на высоте h давление р. Тогда на высоте h + dh давление – р + dp. Причём, если dh >0, то dp < 0. (р + dp) – р = – r·g·dh. Из уравнения состояния Менделеева-Клапейрона, имеем:

Теперь или .

Интегрируем правую и левую часть:

; .

Откуда, . (26)

Это так называемая барометрическая формула. Она позволяет определять давление атмосферы как функцию высоты над уровнем моря:

. (27)

Т.к. давление прямо пропорционально концентрации молекул, то можно получить закон изменения концентрации молекул с высотой при условии, что температура с высотой не меняется (Т = const):

. (28)

Учитывая, что М = m∙N A , а R = k∙N A из (27) получим:

Т.к. mgh = U(h) – потенциальная энергия одной молекулы на высоте h, то

(30)

– распределение Больцмана.

ЧИСЛО СОУДАРЕНИЙ И СРЕДНЯЯ ДЛИНА СВОБОДНОГО ПРОБЕГА МОЛЕКУЛ ИДЕАЛЬНОГО ГАЗА.

Молекулы газа в результате хаотического движения непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекула проходит некоторый путь λ, который называется длиной свободного пробега . В общем случае длина этого пути различна, но т.к. число столкновений очень велико, а движение беспорядочно, то при постоянных внешних условиях можно говорить о средней длине свободного пробега – . Если молекулы данного газа испытывают за 1 секунду в среднем столкновений, то

где – средняя арифметическая скорость молекул.

Молекулы идеального газа мы рассматриваем как шарики. Очевидно, что соударение произойдет, если две молекулы сблизятся до расстояния равного двум радиусам, т. е. диаметру молекул d. Минимальное расстояние, на которое сближаются при соударении центры двух молекул, называется эффективным диаметром молекул. Этот параметр зависит от , а значит и от температуры газа.

Для определения представим себе молекулу с эффективным диаметром d, которая движется со скоростью среди других молекул, которые при этом остаются неподвижными. Эта молекула столкнется со всеми молекулами, центры которых лежат внутри "ломаного" цилиндра радиусом d. Это значит, что равно числу молекул в объеме этого цилиндра

где n – концентрация молекул, а V–объём цилиндра: . С учётом этого –

. (32)

Учет движения других молекул увеличивает число столкновений в раз. Окончательно для z получим:

. (33)

Тогда (34)

Т.к. p ~ n, то для разных внешних условий имеем:

Для воздуха при н.у. (р = 760мм.рт.ст.; t 0 = 0 0 С): z = 10 9 c -1 , а = 5∙10 -8 м.

ЯВЛЕНИЯ ПЕРЕНОСА

В термодинамически неравновесных системах, т.е. в системах, для которых значения макропараметров (Т, р, ) в разных ее точках различны, возникают необратимые процессы, получившие название явлений переноса . В результате таких процессов из одной локальной области системы в другую происходит перенос энергии (явление теплопроводности), массы (явление диффузии), импульса (внутреннее трение), заряда и т.д. Это ведет к выравниванию значений макропараметров по объему системы. Понятно, что перенос любой величины объясняется переходом с места на место некоторого числа частиц (молекул и атомов) в результате их хаотического движения.

Получим общее уравнение переноса вдоль произвольного направления. Направим вдоль него ось Ох (рис 3). Выделим мысленно элемент плоскости площадью ∆S, перпендикулярный Ох . В силу хаотичности движения за время ∆t через ∆S в направлении Ох переместится N частиц:

(1)

Здесь n – концентрация молекул (атомов), а – их средняя арифметическая скорость. Переходя через ∆S, каждая молекула переносит присущие ей массу, заряд, импульс, энергию или какие-то другие свои характеристики. Обозначим значение величины, переносимое одной молекулой буквой φ. Тогда за время ∆t через площадку ∆S в направлении оси Ох будет перенесено количество физической величины

(2).

Очевидно, если концентрация справа тоже n, то и справа налево перейдет столько же частиц. Т.е. результирующий перенос в этом случае равен нулю: ΔN = 0 и ΔNφ = 0.

Если же среда неоднородна, т.е. либо концентрация частиц, либо значения φ для частиц слева и справа неодинаковы, то более вероятными будут переходы из областей, где значение (nφ) больше в области, где оно меньше. Если предположить, что (nφ) 1 > (nφ) 2 , то результирующий перенос величины φ будет определяться соотношением: . (3)

Знак «минус» в (3) отражает факт убыли величины (nφ) в направлении переноса.

Выясним, на каком расстоянии от ∆S слева и справа следует взять значения (nφ). Т.к. изменение физических характеристик молекул происходит только при соударениях, а до соударения каждая из молекул прошла расстояние равное длине свободного пробега, то можно считать, что (nφ) молекул сохраняются неизменными на расстоянии, равном длине свободного пробега влево и вправо от ∆S. Разделим и умножим правую часть (3) на 2 :

Распределение величин вдоль какого-либо направления определяется характеристикой, которая называется – градиент. Градиент это изменение величины на расстоянии равном единице длины .

В данном случае, в точке с координатой х 2 значение перенасимой величины – (nφ) 2 , а в точке х 1 – (nφ) 1 , тогда под градиентом величины nφ, переносимой вдоль оси Ох , следует понимать отношение:

.

Тогда градиент величины nφ в области ∆S.

. (5)

(5) – общее уравнение переноса.

Диффузия – это перенос массы вещества . При условии, что массы молекул одинаковы (m 0 = const), температура газа по объёму одинакова (T = const) и однородного по объему распределения скоростей ( = const), подставляя вместо φ массу молекулы в (5), получим:

Или . (6)

Это закон Фика. D = – коэффициент диффузии. [D] = м 2 /с.

Теплопроводность – это перенос энергии . При условии, что по всему объему газа концентрация молекул (n = const), массы молекул одинаковы (m 0 = const), распределение скоростей по объёму однородно ( = const), а средняя кинетическая энергия поступательного движения одной молекулы , получим закон Фурье:

, или . (7)

– коэффициент теплопроводности. [χ] = Вт/(м·К) = кг·м/(с 3 ·К).

Вязкость – это перенос импульса между параллельными слоями, которые упорядоченно движутся со скоростями u 1 и u 2 . При условии, что по всему объему газа концентрация молекул n = const, массы молекул одинакова (m 0 = const), распределение скоростей по объёму однородно ( = const), а модуль импульса одной молекулы, связанный со скоростью упорядоченного движения слоев φ = р = m 0 u, для импульса силы взаимодействия слоёв имеем:

Или . ()

Это уравнение Ньютона, которое определяет величину силы внутреннего трения (вязкости). – поперечный градиент скорости, характеризующий быстроту изменения скорости в направлении х перпендикулярном движению трущихся слоев. η – динамический коэффициент вязкости . [η] = Па·с.

МОЛЕКУЛЯРНЫЕ СИЛЫ

Силы взаимодействия между молекулами, или, как их еще называют, Ван-дер-Ваальсовские силы имеют электрическую природу. Это кулоновские силы взаимодействия заряженных частиц, из которых состоят атомы и молекулы. Они проявляются на расстояниях, соизмеримых с размерами самих молекул и очень быстро убывают при увеличении расстояния. При этом одновременно действуют силы притяжения (взаимодействие разноименных зарядов) и силы отталкивания (взаимодействие одноименных зарядов). Т.к. реальные частицы не являются точечными, то величина этих сил зависит от расстояния между ними по-разному.

Различают три типа сил Ван-дер-Ваальса:

a) ориентационные – действуют между полярными молекулами:

,

где р – электрический дипольный момент частиц, r – расстояние между ними, k – постоянная Больцмана, Т – термодинамическая температура.

б) индукционные – описывают взаимодействие молекул, поляризация

зарядов в которых возникает под воздействием электрических полей соседних частиц:

.

Здесь: р инд = ε 0 αЕ – приобретённый электрический дипольный момент частиц; α – поляризуемость молекул.

в) дисперсионные – определяют взаимодействие молекул, несимметричное распределение зарядов в которых возникает случайно, в процессе движения электронов по орбитам, что и приводит к образованию мгновенных диполей:

.

В общем случае все три типа сил могут действовать одновременно:

F м = F о + F и + F д.

Рассмотрим зависимость сил межмолекулярного взаимодействия от расстояния. Силы притяжения F пр считаются отрицательными, а силы отталкивания F от – положительными. Сумма этих сил дает результирующую – F рез = f(r). На некотором расстоянии r 0 между молекулами |F пр | = |F от | и результирующая сила F = F пр + F от = 0. Если r < r 0 , то преобладают силы отталкивания. Если r >r 0 , то преобладают силы притяжения. Однако на расстоянии r > 10 -9 м силы Ван-дер-Ваальса быстро стремятся к нулю.

Система взаимодействующих молекул характеризуется некоторым запасом потенциальной энергии, которая сложным образом зависит от r, Е п = f(r):

r → ∞ – Е п → 0 ;

r > r 0 и r → r 0 – Е п → Е п min , Е п < 0 ;

r = r 0 – Е п = Е п min , Е п < 0;

r < r 0 и уменьшается – Е п → ∞, Е п > 0.

Наименьшая потенциальная энергия взаимодействия называется энергией связи молекул . Она равна работе, которую необходимо совершить против сил притяжения, чтобы разъединить молекулы, находящиеся в равновесии.

Соотношение минимальной потенциальной энергии (Е п min) и величины удвоенной средней энергии теплового движения приходящейся на одну степень свободы является критерием агрегатного состояния вещества. Если:

а) Е п min << kT – газ;

б) Е п min » kT – жидкость;

в) Е п min >> kT – твердое тело.

Таким образом, любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии.

ОСОБЕННОСТИ СТРОЕНИЯ ГАЗОВ, ЖИДКОСТЕЙ И ТВЕРДЫХ ТЕЛ

Р.Н.Грабовский. Курс физики. 1980 г., стр.168-174.

РЕАЛЬНЫЕ ГАЗЫ

Уравнения молекулярно-кинетической теории довольно хорошо описывают поведение реальных газов при достаточно высокой температуре и низком давлении. Это и понятно, ведь такое состояние реального газа наиболее близко к модели идеального газа, на основе которой получены все выводы МКТ. Однако с ростом давления и понижением температуры среднее расстояние между молекулами уменьшается и силы молекулярного взаимодействия растут. Например, при н.у. объем молекул составляет 1/10000 от занятого газом объема, а при давлении 500 атм (500 МПа) он будет составлять уже половину всего объема газа. Совершенно очевидно, что при этих условиях законы МКТ перестает работать, например, PV ¹ const при Т = const.

Таким образом, задача заключается в том, чтобы получить такое уравнение состояния реального газа, которое бы учитывало объем молекул и их взаимодействие.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Обычные жидкости изотропны, структурно они являются аморфными телами. Для внутреннего строения жидкостей характерен ближний порядок в расположении молекул (упорядоченное расположение ближайших частиц). Расстояния между молекулами невелики, силы взаимодействия значительны, что приводит к 1 малой сжимаемости жидкостей: небольшое уменьшение расстоя­ния между молекулами вызывает появление больших сил межмолекулярного отталкивания.

Подобно твердым телам, жидкости мало сжимаемы и обладают большой плотностью, подобно газам, принимают форму сосуда, в котором находятся. Такой характер свойств жидкостей связан с особенностями теплового движения их молекул. В газах молекулы движутся беспорядочно, на малых отрезках пути - поступательно, в расположении частиц отсутствует какой-либо порядок. В кристаллических телах частицы колеблются около определенных положений равновесия - узлов кристаллической решетки. По теории Я. И. Френкеля молекулы жидкости, подобно частицам твердого тела, колеблются около положений равновесия, однако эти положения равновесия не являются постоянными. По истечении некоторого времени, называемого временем «оседлой жизни», молекула скачком переходит в новое положение равновесия на расстояние, равное среднему расстоянию между соседними молекулами.

Вычислим среднее расстояние между молекулами жидкости. Можно мысленно представить весь объем жидкости разделенным на небольшие одинаковые кубики с ребром 8. Пусть в среднем в каждом кубике находится одна молекула. В этом случае 5 можно рассматривать как среднее расстояние между молекулами жидкости. Объем жидкости равен V = δ 3 N, где N - общее количество молекул жидкости. Если n - концентрация молекул (количество молекул в 1 м 3), то N = nV. Из этих уравнений получаем


Для того чтобы молекула жидкости перескочила из одного по­ложения равновесия в другое, должны нарушиться связи с окру­жавшими ее молекулами и образоваться связи с новыми соседя­ми. Процесс разрыва связей требует затраты энергии Е а (энергии активации), выделяемой при образовании новых связей. Такой переход молекулы из одного положения равновесия в другое яв­ляется переходом через потенциальный барьер высотой Е а. Энергию для преодоления потенциального барьера молекула по­лучает за счет энергии теплового движения соседних молекул. За­висимость времени релаксации от температуры жидкости и энер­гии активации выражается формулой, вытекающей из распреде­ления Больцмана (см. § 2.4).

Где τ 0 - средний период колебаний молекулы около положения равновесия.


Зная среднее перемещение молекулы, равное расстоянию меж­ду молекулами δ, и среднее время τ, можно определить среднюю скорость движения молекул в жидкости:

Эта скорость мала по сравнению со средней скоростью движе­ния молекул в газе. Так, например, для молекул воды она в 20 раз меньше, чем для молекул пара при той же температуре.

Поверхностное натяжение

На поверхностях раздела жидкости и ее насыщенного пара, двух несмешиваемых жидкостей, жидкости и твердого тела воз­никают силы, обусловленные различным межмолекулярным вза­имодействием граничащих сред.

Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднород­ности окружения действует сила, не скомпенсированная другими молекулами жидкости. Поэтому для переме­щения молекул из объема в поверхностный слой необходимо совершить работу.

Поверхностное натяжение (коэффициент поверхностного натяжения) определяется от­ношением работы, затраченной на создание некоторой поверхности жидкости при посто­янной температуре, к площади этой поверхности:

Условием устойчивого равновесия жидкостей является мини­мум энергии поверхностного слоя, поэтому при отсутствии внеш­них сил или в состоянии невесомости жидкость стремится иметь Минимальную площадь поверхности при данном объеме и прини­мает форму шара.

Поверхностное натяжение может быть определено не только энергетически. Стремление поверхностного слоя жидкости сокра­титься означает наличие в этом слое касательных сил - сил по­верхностного натяжения. Если выбрать на поверхности жид­кости некоторый отрезок длиной l (рис. 7.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку.