Принцип гюйгенса френеля метод зон. Метод зон Френеля

Вычисляя общее действие волнового фронта в какой-нибудь точке пространства, мы должны учесть, что световые колебания, исходящие из отдельных точек фронта, приходят в «точку наблюдения» с различными фазами. При этом все точки самого волнового фронта находятся в одной фазе. Для простоты вычисления суммарного действия всего волнового фронта мы будем считать, что источник света находится весьма далеко и, следовательно волну можно считать плоской. Пусть расстояние точки наблюдения А от волнового фронта будет (рис. 86). Все точки волнового фронта колеблются в одной фазе. В то же время все точки фронта 5 находятся от на различных расстояниях, вследствие чего суммарное действие всего фронта будет определяться разностью фаз интерферирующих колебаний, приходящих в от отдельных элементов волнового фронта

Рис. 86. Зоны Френеля

Для рассмотрения соответствующей интерференционной картины сделаем следующее построение. Из точки наблюдения А проведем ряд сфер с радиусами:

На поверхности волнового фронта эти сферы вырежут ряд колец, называемых зонами Френеля (рис. 86 и 87). Каждая последующая зона расположена от точки А на полволны дальше, чем предыдущая. На рис. 87 соотношения размеров, конечно, искажены, так как длина световой волны слишком мала для того, чтобы быть изображенной на рисунке. Следовательно, в точку А колебания прибывают от двух соседних зон Френеля в противоположной фазе и при сложении частично уничтожают друг друга.

Рис. 87. Образование зон Френеля

Полного уничтожения колебаний при совместном действии двух соседних зон Френеля не происходит. Это видно из следующих соображений. Вычислим площадь зоны Френеля:

Учитывая, что величина к весьма мала по сравнению с расстоянием мы можем пренебречь вторым членом в скобках и считать площади всех зон Френеля приблизительно одинаковыми, равными

Вместе с тем угол между линией, соединяющей зону с точкой А, и нормалью к фронту волны для каждой последующей зоны больше, чем для предыдущей, вследствие чего амплитуда колебаний, приходящих в постепенно падает с увеличением номера зоны. Ведь,

как было указано в предыдущем параграфе, излучение отдельных точек волнового фронта имеет наибольшую интенсивность в направлении нормали. Это ослабление усиливается еще возрастанием расстояния от зоны Френеля до А с ростом номера зоны. Это обстоятельство и вызывает неполное взаимное уничтожение колебаний двух смежных зон Френеля. Не делая специальных предположений о законе убывания амплитуды элементарных колебаний с расстоянием, мы можем все же утверждать, что с достаточным приближением амплитуда в точке А волны от какой-нибудь зоны является средним арифметическим амплитуд волн от двух смежных зон. На рис. 88 представлена зона, находящаяся между двумя заштрихованными половинами двух смежных зон. В силу указанного выше свойства действие всей этой части волнового фронта в точке а (рис. 87) равно нулю. То же самое можно сказать и о каждой зоне: половина центральной зоны (нулевой) вместе с половиной второй уничтожат первую, половины второй и четвертой уничтожат третью и т. д. Мы получаем, что некомпенсированной остается лишь половина центральной зоны Френеля. Таким образом, колебания, вызываемые в точке А большим участком волновой поверхности имеют такую же амплитуду, как если бы действовала только половина центральной зоны.

Рис. 88. Компенсация действия соседних зон Френеля.

В результате мы можем говорить о прямолинейном распространении света от одной точки до другой. Свет, идущий в данную точку, как бы сосредоточен в канале, сечение которого в любом месте равно половине центральной зоны Френеля.

Действие световой волны на некоторую точку сводится к действию половины центральной зоны Френеля только в том случае, если волна безгранична; только в этом случае действия остальных зон взаимно компенсируются, и можно пренебречь действием удаленных зон. Если мы имеем дело с конечным участком волны, то условия становятся существенно отличными.

Характерные дифракционные явления можно наблюдать при прохождении света сквозь малое отверстие или близ экрана.

1. Маленькое круглое отверстие. На рис. 89 изображен отрезок непрозрачного экрана с круглым Ътверстием размеры которого показаны здесь увеличенными в несколько тысяч раз; на отверстие снизу падает параллельный пучок света центр отверстия, две произвольные точки на прямой, перпендикулярной к и проходящей через О. Из центра

описываем концентрические сферы, из которых внутренняя с радиусом а проходит через О, а каждая следующая имеет радиус, наибольший, чем предыдущая. Таким образом,

Ряд таких же концентрических сфер с радиусами, постепенно увеличивающимися на у, опишем из точки Оба ряда сфер будут вырезать в отверстии зоны Френеля. На рис. 89 сферы, описанные вокруг вырезают три зоны, а описанные вокруг - четыре зоны.

Рис. 89. Объяснение дифракции на круглом отверстии (верхняя часть рисунка - разрез, нижняя - план).

При а, значительно превышающем радиус отверстия углы, образуемые прямыми с нормалью, очень малы и поэтому можно считать, что амплитуды волн, исходящих из точек маленького отверстия и достигающих точки равны между собой (то же самое справедливо и для амплитуд волн, исходящих из и достигающих

Так как зоны имеют практически одну и ту же площадь, то действие двух соседних зон в точке взаимно уничтожается. Отсюда следует, что светлыми будут те точки которые находятся от центра отверстия О на таком расстоянии, что в отверстии уложится нечетное число зон Френеля. При этом действие всего отверстия будет равно действию одной некомпенсированной зоны Френеля. Наоборот, такие точки, как для которых число зон, умещающихся в отверстии, четное, должны быть темными, так как в этом случае действие одной половйш зон компенсирует действие другой половины.

Таким образом, если мы поставим за отверстием белый экран, который будем приближать к отверстию или удалять от него, то центр экрана будет становиться по мере перемещения то темным, то светлым. Из закона сохранения энергии можно далее

заключить, что и боковые точки (расположенные в стороне от оси должны быть попеременно то светлыми, то темными: центральное пятно будет окружено рядом светлых и темных колец.

2. Маленький круглый экран. На рис. 90 изображен маленький круглый экран с краями На экран падают параллельные лучи Если бы лучи распространялись вполне прямолинейно, то за экраном образовалось бы теневое цилиндрическое пространство с осью являющейся перпендикуляром, проведенным из центра экрана. Однако волновая теория приводит к иному заключению.

Пусть фронт плоской волны простирается безгранично во все стороны от экрана. Проводим снова сферические поверхности, центром которых служит точка лежащая на оси. Радиус первой сферы радиусы следующих сфер будут:

Эти сферы вырезают на плоскости волны зоны Френеля, площади которых равны между собой. Мы можем применить к этим зонам те соображения, которыми мы пользовались для случая безграничной плоской волны.

Рис. 90. Объяснение дифракции на круглом экране (верхняя часть рисунка - разрез, нижняя - план).

В случае нормального падения параллельного пучка на маленький круглый экран осевая Точка пространства за экраном освещается так, как будто бы действовала только половина первой френелевой зоны, непосредственно примыкающей к краям экрана.

Таким образом, свет распространяется и за экран.

В соответствии с этим опыт показывает, что в центре тени экрана получается светлая точка (рис. II в конце книги). Наблюдать это явление удается, однако, только с экранами, близкими по размерам к центральной зоне Френеля, так как при значительно больших объектах интенсивность светлого пятна весьма мала.

Отметим курьезный исторический факт. Знаменитый математик Пуассон, бывший одним из наиболее резких противников волновой теории света, привел в качестве наиболее убедительного, по его мнению, аргумента против теории то, что согласно ей всегда должен получаться свет в центре тени от экрана. Ему это казалось совершенно неправдоподобным, и он был в большом смущении, когда

простой опыт, произведенный Френелем, подтвердил этот вывод из волновой теории, сделанный ее ярым противником.

Можно изготовить экран (так называемую пластинку зон), который закроет все четные или нечетные зоны Френеля. Тем самым искусственно будут нарушены условия интерференции, учтенные нами выше при расчете действия волновой поверхности. При этом останутся лишь зоны, посылающие в точку А колебания в одной фазе. В результате мы получим в А изображение источника света (рис. 91), образованное колебаниями, приходящими в одной фазе со всей площади пластинки зон. Действие пластинки будет подобно действию линзы; этот факт служит одним из ярких примеров непрямолинейного распространения света.

Рис. 91. Разрез пластинки зон

Большой экран на достаточно большом расстоянии отточки наблюдения дает заметную дифракционную картину. Некоторым явлениям, наблюдаемым во время солнечных затмений, когда экраном является Луна - тело с диаметром можно дать объяснение при помощи дифракции. В то же время маленький экран, стоящий близко от точки наблюдения, не дает дифракционной картины. Часто указывают как на необходимое для наблюдения дифракции условие - на сравнимость величины экрана или отверстия с длиной волны. Из сказанного выше видно, что это не так. На опыте наиболее часто для получения дифракционной картины пользуются объектами, в сотни раз превышающими длину световой волны.

Мы получаем заметную дифракционную картину в виде полос или колец, на которые приходится значительная доля прошедшей световой энергии, если экран или отверстие, помещенные на определенном расстоянии от точки наблюдения, имеют размеры, сравнимые с размерами центральной зоны Френеля. При этом нарушается независимость хода отдельных лучей. В случае, если объекты весьма велики по сравнению с центральной зоной Френеля, дифракционная картина получается лишь в виде незначительной детали на краю геометрической тени, на которую приходится ничтожная доля лучистой энергии, участвующей в образовании всего изображения.

В первом случае мы имеем существенное уклонение от прямолинейного распространения света, во втором практически будут справедливы законы лучевой оптики.

Для упрощения вычислений при определении амплитуды волны в заданной точке пр-ва. Метод З. Ф. используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса - Френеля принципом. Рассмотрим распространение монохроматической световой волны из точки Q(источник) в к.-л. точку наблюдения Р (рис.).

Согласно принципу Гюйгенса - Френеля, источника Q заменяют действием воображаемых источников, расположенных на вспомогат. поверхности S, в кач-ве к-рой выбирают поверхность фронта сферич. волны, идущей из Q. Далее поверхность S разбивают на кольцевые зоны так, чтобы расстояния от краёв зоны до точки наблюдения Р отличались на l/2: Ра=РО+l/2; Рb=Ра+l/2; Рс=Рb+l/2 (О - точка пересечения поверхности волны с линией PQ, l - ). Образованные т. о. равновеликие участки поверхности S наз. З. Ф. Участок Оа сферич. поверхности S наз. первой З. Ф., аb - второй, bc - третьей З. Ф. и т. д. Радиус m-й З. Ф. в случае дифракции на круглых отверстиях и экранах определяется . приближённым выражением (при ml

где R - расстояние от источника до отверстия, r0 - расстояние от отверстия (или экрана) до точки наблюдения. В случае дифракции на прямолинейных структурах (прямолинейный край экрана, щель) размер m-й З. Ф. (расстояние внеш. края зоны от линии, соединяющей источник и точку наблюдения) приближённо равен O(mr0l).

Волн. процесс в точке Р можно рассматривать как результат интерференции волн, приходящих в точку наблюдения от каждой З. Ф. в отдельности, приняв во внимание, что от каждой зоны медленно убывает с ростом номера зоны, а фазы колебаний, вызываемых в точке Р смежными зонами, противоположны. Поэтому волны, приходящие в точку наблюдения от двух смежных зон, ослабляют друг друга; амплитуда результирующего в точке Р меньше, чем амплитуда, создаваемая действием одной центр. зоны.

Метод разбиения на З. Ф. наглядно объясняет прямолинейное распространение света с точки зрения волн. природы света. Он позволяет просто составить качественное, а в ряде случаев и достаточно точное количеств. представление о результатах дифракции волн при разл. сложных условиях их распространения. Экран, состоящий из системы концентрич. колец, соответствующих З. Ф. (см. ЗОННАЯ ПЛАСТИНКА), может дать, как и , усиление освещённости на оси или даже создать изображение. Метод З. Ф. применим не только в оптике, но и при изучении распространения радио- и . волн.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЗОНЫ ФРЕНЕЛЯ

См. Френеля зоны.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЗОНЫ ФРЕНЕЛЯ" в других словарях:

    Участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (См. Дифракция света) (или звука). Впервые этот метод применил О. Френель в 1815 19. Суть метода такова. Пусть от… …

    ФРЕНЕЛЯ - (1) дифракция (см.) сферической световой волны, при рассмотрении которой нельзя пренебречь кривизной поверхности падающей и дифрагировавшей (либо только дифрагировавшей) волн. В центре дифракционной картины от круглого непрозрачного диска всегда… … Большая политехническая энциклопедия

    Участки, на которые разбивается волновая поверхность при рассмотрении дифракционных волн (Гюйгенса Френеля принцип). Зоны Френеля выбираются так, чтобы удаление каждой следующей зоны от точки наблюдения было на половину длины волны больше, чем… …

    Дифракция сферич. световой волны на неоднородности (напр., отверстии в экране), размер к рой b сравним с диаметром первой зоны Френеля?(z?): b=?(z?) (дифракция в сходящихся лучах), где z расстояние точки наблюдения до экрана. Назв. в честь франц … Физическая энциклопедия

    Участки, на которые разбивают волновую поверхность при рассмотрении дифракции волн (Гюйгенса Френеля принцип). Зоны Френеля выбираются так, чтобы удаление каждой следующей зоны от точки наблюдения было на половину длины волны больше, чем удаление … Энциклопедический словарь

    Дифракция сферической световой волны на неоднородности (например, отверстии), размер которой сравним с диаметром одной из зон Френеля (См. Зоны Френеля). Название дано в честь изучившего этот вид дифракции О. Ж. Френеля (См. Френель).… … Большая советская энциклопедия

    Участки, на к рые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке про странства. Метод Ф. з. используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса… … Физическая энциклопедия

    Дифракция сферической электромагнитной волны на неоднородности, напр., отверстии в экране, размер которого b сравним с размером Френеля зоны, т. е. , где z расстояние точки наблюдения от экрана, ?? длина волны. Назван по имени О. Ж. Френеля … Большой Энциклопедический словарь

    Дифракция сферической электромагнитной волны на неоднородности, например отверстии в экране, размер которого b сравним с размером Френеля зоны, то есть, где z расстояние точки наблюдения от экрана, λ длина волны. Названа по имени О. Ж. Френеля … Энциклопедический словарь

    Участки, на к рые разбивают волновую поверхность при рассмотрении дифракции волн (Гюйгенса Френеля принцип). Ф. з. выбираются так, чтобы удаление каждой след. зоны от точки наблюдения было на половину длины волны больше, чем удаление предыдущей… … Естествознание. Энциклопедический словарь

Френель предложил оригинальный метод разбиения волновой поверхности S на зоны, позволивший сильно упростить решение задач (метод зон Френеля ).

Границей первой (центральной) зоны служат точки поверхности S , находящиеся на расстоянии от точки M (рис. 9.2). Точки сферы S , находящиеся на расстояниях , , и т.д. от точки M , образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M .

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга:

, (9.2.2)

где A – амплитуда результирующего колебания, – амплитуда колебаний, возбуждаемая i -й зоной Френеля.

Величина зависит от площади зоны и угла между нормалью к поверхности и прямой, направленной в точку M .

Площадь одной зоны

Отсюда видно, что площадь зоны Френеля не зависит от номера зоны i . Это значит, что при не слишком больших i площади соседних зон одинаковы.

В то же время с увеличением номера зоны возрастает угол и, следовательно, уменьшается интенсивность излучения зоны в направлении точки M , т.е. уменьшается амплитуда . Она уменьшается также из-за увеличения расстояния до точки M :

Общее число зон Френеля, умещающихся на части сферы, обращенной в сторону точки M , очень велико: при , , число зон , а радиус первой зоны .

Отсюда следует, что углы между нормалью к зоне и направлением на точку M у соседних зон примерно равны, т.е. что амплитуды волн, приходящих в точку M от соседних зон , примерно равны.

Световая волна распространяется прямолинейно. Фазы колебаний, возбуждаемые соседними зонами, отличаются на π. Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания от некоторой m -й зоны равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.

.

Тогда выражение (9.2.1) можно записать в виде

. (9.2.2)

Так как площади соседних зон одинаковы, то выражения в скобках равны нулю, значит результирующая амплитуда .

Интенсивность излучения .

Таким образом, результирующая амплитуда, создаваемая в некоторой точке M всей сферической поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зоной , а интенсивность .

Так как радиус центральной зоны мал (), следовательно, можно считать, что свет от точки P до точки M распространяется прямолинейно .

Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только центральную зону Френеля, то амплитуда в точке M будет равна . Соответственно, интенсивность в точке M будет в 4 раза больше, чем при отсутствии экрана (т.к. ). Интенсивность света увеличивается, если закрыть все четные зоны.

Таким образом, принцип Гюйгенса–Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонные пластинки – система чередующихся прозрачных и непрозрачных колец.

Опыт подтверждает, что с помощью зонных пластинок можно увеличить освещенность в точке М , подобно собирающей линзе.

Дифракция света – в узком, но наиболее употребительном смысле – огибание лучами света границы непрозрачных тел (экранов); проникновение света в область геометрической тени. Наиболее рельефно дифракция света проявляется в областях резкого изменения плотности потока лучей: вблизи каустик, фокуса линзы, границ геометрической тени и др. дифракция волн тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.

Дифракцией называется совокупность явлений , наблюдаемых при распространении света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны, и связанных с отклонениями от законов геометрической оптики .

Огибание препятствий звуковыми волнами (дифракция звуковых волн) наблюдается нами постоянно (мы слышим звук за углом дома). Для наблюдения дифракции световых лучей нужны особые условия, это связано с малой длиной световых волн.

Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн , а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 9.1). Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Решающую роль в утверждении волновой природы света сыграл О. Френель в начале XIX века. Он объяснил явление дифракции и дал метод ее количественного расчета. В 1818 году он получил премию Парижской академии за объяснение явления дифракции и метод его количественного расчета.

Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

При рассмотрении дифракции Френель исходил из нескольких основных положений, принимаемых без доказательства. Совокупность этих утверждений и называется принципом Гюйгенса–Френеля.

Согласно принципу Гюйгенса , каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Используя эти положения, Френель уже мог сделать количественные расчеты дифракционной картины.

Дифракция света (от лат. diffractus - разломанный, преломлённый) - отклонение при распространении света от законов геометрической оптики, выражающееся в огибании лучами света границы непрозрачных тел, проникновение света в область геометрической тени, огибание светом малых препятствий. Дифракция наблюдается при распространении света в среде с резко выраженными неоднородностями. Дифракция света - проявление волновых свойств света в предельных условиях перехода от волновой оптики к геометрической. Явление дифракции света можно объяснить на основании принципа Гюйгенса.

Принцип Гюйгенса - принцип, согласно которому каждая точка волнового фронта в данный момент времени является центром вторичных элементарных волн, огибающая которых дает положение волнового фронта в следующий момент времени. Принцип Гюйгенса позволяет объяснить законы отражения и преломления света, однако он недостаточен для объяснения дифракционных явлений, Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн.

Гюйгенса-Френеля принцип - дальнейшее развитие принципа Х. Гюйгенса О. Френелем, введшего представление о когерентности и интерференции вторичных элементарных волн. Согласно принципу Гюйгенса-Френеля волновое возмущение в некоторой точке может быть представлено как результат интерференции когерентных вторичных элементарных волн, излучаемых каждым элементом некоторой волновой поверхности (волнового фронта). Принцип Гюйгенса-Френеля позволяет объяснить и дифракционные явления. Каждый элемент волновой поверхности площадью является источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента. В точку наблюдения от этого элемента приходит колебание

(6.37.21)

где - коэффициент, зависящий от угла между нормалью к поверхности и направлением на точку наблюдения; - расстояние от элемента поверхности до точки наблюдения; - фаза колебания в месте расположения элемента .

Результирующее колебание в точке наблюдения представляет собой суперпозицию когерентных колебаний от всех элементов волновой поверхности, пришедших в точку наблюдения. Для расчета амплитуды результирующего колебания для случаев, отличающихся симметрией, Френель предложил метод, получивший название метода зон Френеля. Различают два вида дифракции: дифракция Фраунгофера и дифракция Френеля.

Дифракция Фраунгофера (в параллельных лучах) - дифракция плоских волн на препятствии (источник света удалён от препятствия на бесконечно большое расстояние).

Дифракция Френеля - дифракция сферической световой волны на неоднородности (например, отверстии в экране). Дифракция Френеля осуществляется в тех случаях, когда источник света и экран, служащий для наблюдения дифракционной картины, находятся на конечных расстояниях от препятствия, вызвавшего дифракцию.


Метод зон Френеля.

Зоны Френеля - кольцевые участки, на которые разбивают сферическую поверхность фронта световой волны при рассмотрении задач о дифракции волн в соответствии с принципом Гюйгенса - Френеля для упрощения вычислений при определении амплитуды волны в заданной точке пространства. Пусть монохроматическая волна распространяется из точки в точку наблюдения . Положение волнового фронта в определенный момент времени указано на рисунке. Согласно принципу Гюйгенса - Френеля действие источника заменяют действием вторичных (воображаемых) источников, расположенных на поверхности фронта сферической волны, которую разбивают на кольцевые зоны так, чтобы расстояния от краёв соседних зон до точки наблюдения отличались на где - длина волны. (На рисунке - точка пересечения фронта волны с линией , расстояние = , = ). Тогда расстояние от края -й зоны до точки наблюдения равно

(6.37.22)

Внешний радиус -й зоны Френеля

(6.37.23)

площадь -й зоны

(6.37.24)

при не слишком больших площади зон Френеля одинаковы.

Так как колебания от соседних зон проходят до точки расстояния, отличающиеся на то в точку они приходят в противофазе. При вычислении амплитуды результирующего колебания в точке методом зон Френеля необходимо также учесть, что с ростом номера зоны амплитуды колебаний, приходящих в точку , монотонноубывают: А 1 > А 2 > А 3 > А 4 > …. Можно положить, что амплитуда колебания А m равна среднему арифметическому амплитуд примыкающих к ней зон: Поэтому амплитуда результирующего светового колебания, приходящего от всего волнового фронта в точку будет равна:

А = А 1 - А 2 + А 3 - А 4 + …….. А к.

Это выражение можно представить в следующем виде:

так как выражения в скобках равны нулю, а амплитуда от последней зоны Френеля бесконечно мала. Следовательно, амплитуда, создаваемая в точке всем сферическим волновым фронтом, равна половине амплитуды, создаваемой центральной зоной Френеля. Если 1м, 0,5 мкм, то радиус первой зоны Френеля равен 0,5 мм. Следовательно, свет от источника к точке наблюдения распространяется как бы в пределах узкого прямого канала, т.е. практически прямолинейно.

Колебания от четных и нечетных зон Френеля находятся в противофазе и взаимно ослабляют друг друга. Если какое-либо препятствие перекрывает часть сферического волнового фронта, то при расчете амплитуды результирующего колебания в точке наблюдения методом зон Френеля учитываются только открытые зоны Френеля. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны Френеля, то амплитуда колебания в точке наблюдения резко возрастает. Такая пластинка называется зонной . Зонная пластинка во много раз увеличивает интенсивность света в точке , действуя подобно собирающей линзе.