Что такое стехиометрический коэффициент. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций

При составлении уравнений окислительно-восстановительных реакций необходимо соблюдать два следующих важных правила:

Правило 1: В любом ионном уравнении должно соблюдаться сохранение зарядов. Это означает, что сумма всех зарядов в левой части уравнения («слева») должна совпадать с суммой всех зарядов в правой части уравнения («справа»). Это правило относится к любым ионным уравнениям, как для полных реакций, так и для полуреакций.

Заряды слева справа

Правило 2: Число электронов, теряемых в окислительной полуреакции, должно быть равно числу электронов, приобретаемых в восстановительной полуреакции. Например, в первом примере, приведенном в начале данного раздела (реакция между железом и гидратированными ионами двухвалентной меди), число электронов, теряемых в окислительной полуреакции, равно двум:

Следовательно, число электронов, приобретаемых в восстановительной полуреакции, тоже должно быть равно двум:

Для составления уравнения полной окислительно-восстановительной рекции из уравнений двух полуреакций может использоваться следующая процедура:

1. Уравнения каждой из двух полуреакций балансируются порознь, причем для выполнения указанного выше правила 1 к левой или правой части каждого уравнения добавляется соответствующее число электронов.

2. Уравнения обеих полуреакций балансируются по отношению друг к другу, так чтобы число электронов, теряемых в одной реакции, стало равно числу электронов, приобретаемых в другой полуреакции, как этого требует правило 2.

3. Уравнения обеих полуреакций суммируют для получения полного уравнения окислительно-восстановительной реакции. Например, суммируя уравнения двух приведенных выше полуреакций и удаляя из левой и правой части полученного уравнения

равное число электронов, находим

Сбалансируем уравнения приведенных ниже полуреакций и составим уравнение окислительно-восстановительной реакции окисления водного раствора какой-либо соли двухвалентного железа в соль трехвалентного железа с помощью кислого раствора калия.

Стадия 1. Сбалансируем сначала порознь уравнение каждой из двух полуреакций. Для уравнения (5) имеем

Чтобы сбалансировать обе стороны этого уравнения, необходимо добавить к его левой части пять электронов, либо вычесть столько же электронов из правой части. После этого получим

Это позволяет записать следующее сбалансированное уравнение:

Поскольку к левой части уравнения пришлось добавлять электроны, оно описывает восстановительную полуреакцию.

Для уравнения (6) можно записать

Чтобы сбалансировать это уравнение, можно добавить один электрон к его правой части. Тогда

Который изучает количественные соотношения между веществами, вступившими в реакцию и образовавшимися в ходе нее (от др.-греч. "стехион" - "элементный состав", "мейтрен" - "измеряю").

Стехиометрия является важнейшей для материальных и энергетических расчетов, без которых невозможно организовать ни одно химическое производство. Химическая стехиометрия позволяет рассчитать количество сырья, необходимого для конкретного производства, с учетом нужной производительности и возможных потерь. Ни одно предприятие не может быть открыто без предварительных расчетов.

Немного истории

Само слово «стехиометрия» - это изобретение немецкого химика Иеремии Бениамина Рихтера, предложенное им в своей книге, в которой впервые была описана идея возможности расчетов по химическим уравнениям. Позднее идеи Рихтера получили теоретическое обоснование с открытием законов Авогадро (1811), Гей-Люссака (1802), закона постоянства состава (Ж.Л. Пруст, 1808), кратных отношений (Дж. Дальтон, 1803), развитием атомно-молекулярного учения. Сейчас эти законы, а также закон эквивалентов, сформулированный самим Рихтером, называют законами стехиометрии.

Понятие «стехиометрия» используют в отношении и веществ, и химических реакций.

Стехиометрические уравнения

Стехиометрические реакции - реакции, в которых исходные вещества взаимодействуют в определенных соотношениях, а количество продуктов соответствует теоретическим расчетам.

Стехиометрические уравнения - уравнения, которые описывают стехиометрические реакции.

Стехиометрические уравнений) показывают количественные соотношения между всеми участниками реакции, выраженные в молях.

Большинство неорганических реакций - стехиометрические. Например, стехиометрическими являются три последовательные реакции получения серной кислоты из серы.

S + O 2 → SO 2

SO 2 + ½O 2 → SO 3

SO 3 + H 2 O → H 2 SO 4

Расчетами по этим уравнениям реакций можно определить, сколько необходимо взять каждого вещества, чтобы получить определенное количество серной кислоты.

Большинство органических реакций являются нестехиометрическими. Например, уравнение реакции крекинга этана выглядит так:

C 2 H 6 → C 2 H 4 + H 2 .

Однако на самом деле в ходе реакции всегда будут получаться разные количества побочных продуктов - ацетилена, метана и других, рассчитать которые теоретически невозможно. Некоторые неорганические реакции тоже не поддаются расчетам. Например, нитрата аммония:

NH 4 NO 3 → N 2 O + 2H 2 O.

Она идет по нескольким направлениям, поэтому невозможно определить, сколько нужно взять исходного вещества, чтобы получить определенное количество оксида азота (I).

Стехиометрия - это теоретическая основа химических производств

Все реакции, которые используются в или на производстве, должны быть стехиометрическими, то есть подвергаться точным расчетам. Будет ли завод или фабрика приносить выгоду? Стехиометрия позволяет это выяснить.

На основании стехиометрических уравнений составляют теоретический баланс. Необходимо определить, какое количество исходных веществ потребуется для получения нужного количества интересующего продукта. Далее проводятся эксплуатационные опыты, которые покажут реальный расход исходных веществ и выход продуктов. Разница между теоретическими расчетами и практическими данными позволяет оптимизировать производство и оценить будущую экономическую эффективность предприятия. Стехиометрические расчеты, кроме того, дают возможность составить тепловой баланс процесса с целью подбора оборудования, определить массы образующихся побочных продуктов, которые нужно будет удалять, и так далее.

Стехиометрические вещества

Согласно закону постоянства состава, предложенному Ж.Л. Прустом, любое химически имеет постоянный состав, вне зависимости от способа получения. Это означает, что, например, в молекуле серной кислоты H 2 SO 4 независимо от способа, которым она была получена, на два атома водорода всегда будет приходиться один атом серы и четыре атома кислорода. Стехиометрическими являются все вещества, имеющие молекулярную структуру.

Однако в природе широко распространены вещества, состав которых может отличаться в зависимости от метода получения или источника происхождения. Подавляющее большинство из них - это кристаллические вещества. Можно даже сказать, что для твердых веществ стехиометрия - это скорее исключение, чем правило.

Для примера рассмотрим состав хорошо изученных карбида и оксида титана. В оксиде титана TiO x X=0.7-1.3, то есть на один атом титана приходится от 0,7 до 1,3 атомов кислорода, в карбиде TiC x X=0.6-1.0.

Нестехиометричность твердых тел объясняется дефектом внедрения в узлах кристаллической решетки либо, наоборот, появлением вакансий в узлах. К таким веществам относятся оксиды, силициды, бориды, карбиды, фосфиды, нитриды и другие неорганические вещества, а также высокомолекулярные органические.

И хотя доказательства существования соединений с переменным составом были представлены только в начале 20-го века И. С. Курнаковым, такие вещества часто называют бертоллидами по фамилии ученого К.Л. Бертолле, предполагавшего, что состав любого вещества меняется.

Стехиометрия - количественные соотношения между вступающими в реакцию веществами.

Если реагенты вступают в химическое взаимодействие в строго определенных количествах, а в результате реакции образуются вещества, количество которых можно расчитать, то такие реакции называются стехиометрическими .

Законы стехиометрии:

Коэффициенты в химических уравнениях перед формулами химических соединений называются стехиометрическими .

Все расчёты по химическим уравнениям основаны на использовании стехиометрических коэффициентов и связаны с нахождением количеств вещества (чисел молей).

Количество вещества в уравнении реакции (число молей) = коэффициенту перед соответствующей молекулой.

N A =6,02×10 23 моль -1 .

η - отношение реальной массы продукта m p к теоретически возможной m т, выраженное в долях единицы или в процентах.

Если в условии выход продуктов реакции не указан, то в расчетах его принимают равным 100% (количественный выход).

Схема расчёта по уравнениям химических реакций:

  1. Составить уравнение химической реакции.
  2. Над химическими формулами веществ написать известные и неизвестные величины с единицами измерения.
  3. Под химическими формулами веществ с известными и неизвестными записать соответствующие значения этих величин, найденные по уравнению реакций.
  4. Составить и решить пропорцию.

Пример. Вычислить массу и количество вещества оксида магния, образовавшегося при полном сгорании 24 г магния.

Дано:

m (Mg ) = 24 г

Найти:

ν ( MgO )

m ( MgO )

Решение:

1. Составим уравнение химической реакции:

2Mg + O 2 = 2MgO.

2. Под формулами веществ укажем количество вещества (число молей), которое соответствует стехиометрическим коэффициентам:

2Mg + O 2 = 2MgO

2 моль 2 моль

3. Определим молярную массу магния:

Относительная атомная масса магния Ar (Mg) = 24.

Т.к. значение молярной массы равно относительной атомной или молекулярной массе, то M (Mg) = 24 г/моль.

4. По массе вещества, заданной в условии, вычислим количество вещества:

5. Над химической формулой оксида магния MgO , масса которого неизвестна, ставим x моль , над формулой магния Mg пишем его молярную массу:

1 моль x моль

2Mg + O 2 = 2MgO

2 моль 2 моль

По правилам решения пропорции:

Количество оксида магния ν (MgO) = 1 моль.

7. Вычислим молярную массу оксида магния:

М (Mg) =24 г/моль,

М (О) =16 г/моль.

M (MgO) = 24 + 16 = 40 г/моль.

Рассчитываем массу оксида магния:

m (MgO) = ν (MgO) ×M (MgO) = 1 моль×40 г/моль = 40 г.

Ответ: ν (MgO) = 1 моль; m (MgO) = 40 г.

Все количественные соотношения при расчете химических процессов основаны на стехиометрии реакций. Количество вещества при таких расчетах удобнее выражать в молях, или производных единицах (кмоль, ммоль, и т.д.). Моль является одной из основных единиц СИ. Один моль любого вещества соответствует его количеству, численно равному молекулярной массе. Поэтому молекулярную массу в этом случае следует считать величиной размерной с единицами: г/моль, кг/кмоль, кг/моль. Так, например, молекулярная масса азота 28 г/моль, 28 кг/кмоль, но 0,028 кг/моль.

Массовые и мольные количества вещества связаны известными соотношениями

N А = m А /М А; m А = N А М А,

где N А - количество компонента А, моль; m A - масса этого компонента, кг;

М А - молекулярная масса компонента А, кг/моль.

При непрерывных процессах поток вещества А можно выражать его моль-

ным количеством в единицу времени

где W A - мольный поток компонента А, моль/с; τ - время, с.

Для простой реакции, протекающей практически необратимо, обычно стехиомет

рическое уравнение записывается в виде

v A А + v B В = v R R + v S S.

Однако удобнее записывать стехиометрическое уравнение в виде алгебраическо

го, принимая при этом, что стехиометрические коэффициенты реагентов отрицательны, а продуктов реакции положительны:

Тогда для каждой простой реакции можно записать следующие равенства:

Индекс «0» относится к начальному количеству компонента.

Эти равенства дают основание получить следующие уравнения материального баланса по компоненту для простой реакции:

Пример 7.1. Реакция гидрирования фенола до циклогексанола протекает по урав-

С 6 Н 5 ОН + ЗН 2 = С 6 Н 11 ОН, или А + ЗВ = R.

Вычислить количество образовавшегося продукта, если начальное количество компонента А было 235 кг, а конечное - 18,8 кг

Решение: Запишем реакцию в виде

R - А - ЗВ = 0.

Молекулярные массы компонентов: М А = 94 кг/кмоль, М В = 2 кг/кмоль и

М R = 100 кг/кмоль. Тогда мольные количества фенола в начале и в конце реакции будут:

N A 0 = 235/94 = 2,5; N A 0 = 18,8/94 =0,2; n = (0,2 - 2,5)/(-1) = 2,3.

Количество образовавшегося циклогексанола будет равно

N R = 0 +1∙2,3 = 2,3 кмоль или m R = 100∙2,3 = 230 кг.

Определение стехиометрически независимых реакций в их системе при материальных и тепловых расчётах реакционных аппаратов необходимо для исключения реакций, являющихся суммой или разностью некоторых из них. Такую оценку наиболее просто можно осуществить по критерию Грама.

Чтобы не проводить излишних расчетов, следует оценить, является ли система стехиометрически зависимой. Для этих целей необходимо:


Транспонировать исходную матрицу системы реакций;

Умножить исходную матрицу на транспонированную;

Вычислить определитель полученной квадратной матрицы.

Если этот определитель равен нулю, то система реакций стехиометрически зависима.

Пример 7.2. Имеем систему реакций:

FеО + Н 2 = Fе + Н 2 O;

Fе 2 О 3 + 3Н 2 = 2Fе + 3Н 2 O;

FеО + Fе 2 O 3 + 4Н 2 = 3Fе + 4Н 2 O.

Эта система стехиометрически зависима, так как третья реакция является суммой двух других. Составим матрицу

Коэффициент избытка воздуха при таком способе организации процесса сгорания должен соответствовать богатым смесям, близким к стехиометрическим. Организовать эффективное сгорание бедных смесей в этом случае будет очень сложно вследствие недостаточно высокой скорости распространения фронта пламени с большой вероятностью затухания очагов воспламенения, значительной цикловой неравномерностью сгорания и, в конечном итоге, пропусками воспламенения. Таким образом, данное направление можно назвать предельно медленным сгоранием богатых газовоздушных смесей.[ ...]

Коэффициент избытка воздуха (а) существенно влияет на процесс горения и компонентный состав продуктов сгорания. Очевидно, что при а 1,0) практически не влияет на компонентный состав дымовых газов и приводит только к снижению концентрации компонентов за счет разбавления не использованным в процессе горения воздухом.[ ...]

Исходя из стехиометрических коэффициентов реакции получения диалкилхлортиофосфата и оптимального решения для критерия 2, накладываем ограничение Х3 =-0,26 (1,087 моля/моль).[ ...]

24.5

Это дает значение стехиометрического коэффициента для потребления полифосфата 1/нас,р = г Р/г ХПК(НАс).[ ...]

В табл. 24.5 приведены стехиометрические коэффициенты выхода, определенные в опытах, проводимых в реакторах периодического непрерывного действия с чистой культурой. Эти значения довольно хорошо согласуются, несмотря на различные условия микробиологического роста.[ ...]

Из выражения (3.36) находим стехиометрический коэффициент "нас.р = 0,05 г Р/г ХПК(НАс).[ ...]

[ ...]

Из примера 3.2 можно найти стехиометрические коэффициенты уравнения удаления уксусной кислоты: 1 моль НАс (60 г НАс) требует 0,9 моль 02 и 0,9 32 = 29 г 02.[ ...]

3.12

В этих формулах первое исходное вещество входит во все стехиометрические уравнения и его стехиометрический коэффициент в них V/, = -1. Для этого вещества заданы степени превращения лу в каждом стехиометрическом уравнении (всего их - К). В уравнениях (3.14) и (3.15) предполагается, что г -й компонент - продукт, для которого определяют селективность и выход, образуется только в 1-м стехиометрическом уравнении (тогда Е/ = х(). Количества компонентов в этих формулах измеряются в молях (обозначение ЛО, как это традиционно принято в химических науках.[ ...]

При составлении окислительно-восстановительных уравнений находят стехиометрические коэффициенты по окисленности элемента до и после реакции. Окисленность элемента в соединениях определяется числом электронов, затрачиваемых атомом на образование полярных и ионных связей, а знак окисленности - на направление смещения связующих электронных пар. Например, окисленность иона натрия в соединении NaCl равна +1, а хлора -I.[ ...]

Более удобно представить стехиометрию микробиологической реакции стехиометрическим уравнением баланса, а не в форме таблиц значений коэффициентов выхода. Такое описание состава компонентов микробиологической клетки потребовало применения эмпирической формулы. Экспериментально была установлена формула вещества клетки C5H702N , которая часто применяется при составлении стехиометрических уравнений .[ ...]

В табл. 3.6 представлены типичные значения кинетических и других констант, а также стехиометрических коэффициентов для аэробного процесса очистки городских стоков. Следует отметить, что между индивидуальными константами существует определенная корреляция, поэтому необходимо пользоваться набором констант из одного источника, а не выбирать отдельные константы из различных источников. В табл. 3.7 представлены подобные корреляции.[ ...]

Метод стандартизируется по известным количествам иода, пересчитываемым на озон, исходя из стехиометрического коэффициента, равного единице (1 моль озона освобождает 1 моль иода) . В пользу такого коэффициента свидетельствуют результаты ряда работ, на основании которых была установлена стехиометричность реакций озона с олефинами . При другом коэффициенте эти результаты было бы трудно объяснить. Однако в работе найдено, что указанный коэффициент равен 1,5. Это согласуется с данными, по которым стехиометрический коэффициент, равный единице, получается при pH 9, а в кислой среде выделяется значительно больше иода, чем в нейтральной и щелочной .[ ...]

Испытания проводились при полной нагрузке и постоянной частоте вращения коленчатого вала 1 500 мин1. Коэффициент избытка воздуха изменялся в диапазоне 0,8 [ ...]

Материальные процессы в живой природе, круговороты биогенных элементов сопряжены с потоками энергии стехиометрическими коэффициентами, изменяющимися у самых различных организмов лишь в пределах одного порядка. При этом благодаря высокой эффективности катализа затраты энергии на синтез новых веществ в организмах гораздо меньше чем в технических аналогах этих процессов.[ ...]

Измерения характеристик двигателя и эмиссий вредных выбросов для всех камер сгорания проведены в широком диапазоне изменения коэффициента избытка воздуха от стехиометрического значения до предельно бедной смеси. На рис. 56 и 57 приведены основные результаты в зависимости от а, полученные при частоте вращения 2 ООО мин и полностью открытой дроссельной заслонкой. Значение угла опережения зажигания выбиралось из условия получения максимального крутящего момента.[ ...]

Биологический процесс удаления фосфора сложен, поэтому, конечно, используемый нами подход существенно упрощен. В табл. 8.1 представлен набор стехиометрических коэффициентов, описывающих процессы, протекающие с участием ФАО. Таблица выглядит сложно, а ведь в ней уже сделаны упрощения.[ ...]

В одной из последних работ принято, что 1 моль N02 дает 0,72 г-иона N07. По данным, представленным Международной организацией стандартизации , стехиометрический коэффициент зависит от состава реагентов типа Грисса. Предложено шесть вариантов этого реагента, отличающихся составом входящих в него компонентов, и указано, что эффективность поглощения для всех типов поглотительных растворов 90%, а стехиометрический коэффициент с учетом эффективности поглощения варьирует от 0,8 до 1. Уменьшение количества NEDA и замена сульфаниловой кислоты сульфаниламидом (белый стрептоцид) дает большее значение этого коэффициента. Авторы работы объясняют это потерями HN02 за счет образования NO при побочных реакциях.[ ...]

При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры: скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования.[ ...]

Константа скорости каталитического превращения к в общем случае представляет собой при данной температуре функцию констант скоростей прямой, обратной и побочных реакций, а также коэффициентов диффузии исходных реагентов и продуктов их взаимодействия. Скорость гетерогенного каталитического процесса определяется, как отмечено выше, относительными скоростями отдельных его стадий и лимитируется наиболее медленной из них. Вследствие этого порядок каталитической реакции почти никогда не совпадает с молекулярностью реакции, соответствующей стехиометрическому соотношению в уравнении этой реакции, а выражения для расчета константы скорости каталитического превращения являются специфичными для конкретных стадий и условий его реализации.[ ...]

Чтобы контролировать реакцию нейтрализации, надо знать, какое количество кислоты или щелочи следует добавить в раствор для получения необходимого значения pH. Для решений этой проблемы может быть использован метод эмпирической оценки стехиометрических коэффициентов, которая осуществляется с помощью титрования.[ ...]

Равновесный состав продуктов сгорания в камере определяется по закону действующих масс. Согласно этому закону скорость химических реакций прямо пропорциональна концентрации исходных реагентов, каждый из которых берется в степени, равной стехиометрическому коэффициенту, с которым вещество входит в уравнение химической реакции. Исходя из состава топлив, можно считать, что продукты сгорания, например, жидких ракетных топлив в камере будут состоять из С02, Н20, СО, N0, ОН, Ы2, Н2, N. Н, О, для твердого ракетного топлива - из А1203, Ы2, Н2, НС1, СО, С02, Н20 при Т= 1100...2200 К.[ ...]

Для обоснования возможности применения двухступенчатого сжигания природного газа были проведены экспериментальные исследования распределения локальных температур, концентраций окислов азота и горючих веществ по длине факела в зависимости от коэффициента избытка воздуха, подаваемого через горелку. Опыты выполнялись при сжигании природного газа в топке котла ПТВМ-50, оборудованного вихревой горелкой ВТИ с периферийной выдачей газовых струй в закрученный поперечный поток воздуха. Установлено, что при аг О.вб процесс выгорания топлива заканчивается на расстоянии 1ф/Х>Вых = 4,2, а при аг=1,10 - на расстоянии Ьф10вых = 3,6. Это указывает на растянутость процесса горения в условиях, значительно отличающихся от стехиометрических.[ ...]

Упрощенная матрица параметров процесса с активным илом без нитрификации представлена в табл. 4.2. Здесь принято, что в процесс конверсии вклад вносят три основных фактора: биологический рост, распад и гидролиз. Скорости реакций указаны в правой колонке, а представленные в таблице коэффициенты являются стехиометрическими. С помощью данных таблицы можно написать уравнение массового баланса, например, для легко разлагаемого органического вещества Бэ в реакторе идеального перемешивания. Выражения, ответственные за транспорт, не требуют объяснений. Два выражения, описывающие превращения вещества, находим, умножая стехиометрические коэффициенты из (в данном случае) «компонентных» колонок на соответствующие скорости реакций из правой колонки табл. 4.2.[ ...]

На рис. 50 приведено изменение содержания Шх в продуктах сгорания (г/кВт-ч) в зависимости от состава смеси и угла опережения зажигания. Т.к. образование ЫОх в значительной степени зависит от температуры газа, при раннем зажигании эмиссия ЫОх возрастает. Зависимость образования 1 Юх от коэффициента избытка воздуха является более сложной, т.к. существуют два противоположно действующих фактора. Образование 1ЧОх зависит от концентрации кислорода в сгорающей смеси и температуры. Обеднение смеси повышает концентрацию кислорода, но снижает максимальную температуру сгорания. Это приводит к тому, что максимум содержания достигается при работе на смесях немного беднее стехиометрических. При этих же значениях коэффициента избытка воздуха эффективный КПД имеет максимум.[ ...]

На рис. 7.2 показаны экспериментальные зависимости концентрации метанола от концентрации NO3-N на выходе из биофильтра полного вытеснения. Линии, соединяющие экспериментальные точки, характеризуют распределение вещества вдоль фильтра при различных отношениях Smc/Sn- Наклон кривых соответствует значению стехиометрического коэффициента: 3,1кг СН3ОН/кг NO -N.[ ...]

Соотношение, связывающее концентрации реагирующих веществ с константой равновесия, является математическим выражением закона действия масс, который можно сформулировать так: для данной обратимой реакции при состоянии химического равновесия отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ при данной температуре есть величина постоянная, причем концентрация каждого вещества должна быть возведена в степень его стехиометрического коэффициента.[ ...]

В Советском Союзе для определения NO¡¡ в атмосфере применяется метод Полежаева и Гириной . Для улавливания двуокиси азота в этом методе используется 8%-ный раствор KJ. Определение нитрит-ионов в полученном растворе производят при помощи реагента Грисса-Илосвая. Раствор иодида калия - существенно более эффективный поглотитель N02, чем раствор щелочи. При его объеме (всего 6 мл) и скорости пропускания воздуха (0,25 л/мин) за поглотительный прибор с пористой стеклянной пластинкой проскакивает не более 2% N02. Отобранные пробы хорошо сохраняются (около месяца). Стехиометрический коэффициент при поглощении NOa раствором KJ составляет 0,75 с учетом проскока . По нашим данным, в этом методе не мешает NO при отношении концентраций NO: NOa 3: 1.[ ...]

Недостатками этого метода, широко внедренного в практику высокотемпературной переработки отходов, является необходимость применения дорогостоящих щелочных реагентов (ЫаОН и Ыа2С03). Таким образом,можно удовлетворить потребности многих отраслей промышленности, испытывающих необходимость обезвреживания небольших количеств жидких отходов с широким спектром компонентов химического состава и любым содержанием хлорорганиче-ских соединений. Однако к сжиганию хлорсодержащих растворителей следует подходить осторожно, так как при определенных условиях (1 > 1200°С, коэффициент избытка воздуха > 1,5) в отходящих газах может содержаться фосген - высокотоксичный хлороксид углерода, или хлорангидрид угольной кислоты (СОС12). Опасная для жизни концентрация этого вещества составляет 450 мг на 1 м3 воздуха.[ ...]

Для процессов выщелачивания или химического выветривания труднорастворимых минералов или их ассоциаций характерно образование новых твердых фаз; равновесия между ними и растворенными компонентами анализируются с помощью термодинамических диаграмм состояния. Принципиальные сложности здесь обычно возникают в связи с необходимостью описания кинетики процессов, без которого их рассмотрение часто не оправдано. Соответствующие кинетические модели требуют отражения химических взаимодействий в явном виде - через парциальные концентрации реагирующих веществ сх с учетом стехиометрических коэффициентов V. конкретных реакций.