Радиус вписанной окружности треугольника лежит. Формулы радиусов вписанных и описанных окружностей правильных многоугольников

Окружность считается вписанной в границы правильного многоугольника, в случае, если лежит внутри него, касаясь при этом прямых, которые проходят через все стороны. Рассмотрим, как найти центр и радиус окружности. Центром окружности будет являться точка, в которой пересекаются биссектрисы углов многоугольника. Радиус рассчитывается: R=S/P; S – площадь многоугольника, Р – полупериметр окружности.

В треугольнике

В правильный треугольник вписывают лишь одну окружность, центр которой называется инцентром; он от всех сторон удалён на одинаковое расстояние и является местом пересечения биссектрис.

В четырёхугольнике

Часто приходится решать, как найти радиус вписанной окружности в эту геометрическую фигуру. Она должна быть выпуклой (если нет самопересечений). Окружность вписать в неё можно только в случае равенства сумм противоположных сторон: AB+CD=BC+AD.

При этом центр вписанной окружности, середины диагоналей, расположены на одной прямой (согласно теореме Ньютона). Отрезок, концы которого находятся там, где пересекаются противоположные стороны правильного четырёхугольника, лежит на этой же прямой, называемой прямой Гаусса. Центром окружности будет точка, в которой пересекаются высоты треугольника с вершинами, диагоналями (по теореме Брокара).

В ромбе

Им считается параллелограмм с одинаковой длиной сторон. Радиус окружности, вписываемой в него, можно рассчитать несколькими способами.

  1. Чтобы сделать это правильно, найдите радиус вписанной окружности ромба, если известна площадь ромба, длина его стороны. Применяется формула r=S/(2Хa). К примеру, если площадь ромба составляет 200 мм кв., длина стороны 20 мм, то R=200/(2Х20), то есть, 5 мм.
  2. Известен острый угол одной из вершин. Тогда необходимо использовать формулоу r=v(S*sin(α)/4). Например, при площади в 150 мм и известном угле в 25 градусов, R= v(150*sin(25°)/4) ≈ v(150*0,423/4) ≈ v15,8625 ≈ 3,983 мм.
  3. Все углы в ромбе равны. В этой ситуации радиус окружности, вписанной в ромб, будет равен половине длины одной стороны данной фигуры. Если рассуждать по Евклиду, утверждающего, что сумма углов всякого четырёхугольника равна 360 градусов, то один угол будет равен 90 градусам; т.е. получится квадрат.

Радиус - это отрезок, который соединяет любую точку на окружности с ее центром. Это одна из самых важных характеристик данной фигуры, поскольку на ее основе можно вычислить все другие параметры. Если знать, как найти радиус окружности, то можно рассчитать ее диаметр, длину, а также площадь. В том случае, когда данная фигура вписана или описана вокруг другой, то можно решить еще целый ряд задач. Сегодня мы разберем основные формулы и особенности их применения.

Известные величины

Если знать, как найти радиус окружности, который обычно обозначают буквой R, то его можно вычислить по одной характеристике. К таким величинам относят:

  • длину окружности (C);
  • диаметр (D) - отрезок (вернее, хорда), который проходит через центральную точку;
  • площадь (S) - пространство, которое ограничено данной фигурой.

По длине окружности

Если в задаче известна величина C, то R = С / (2 * П). Эта формула является производной. Если мы знаем, что из себя представляет длина окружности, то ее уже не нужно запоминать. Предположим, что в задаче C = 20 м. Как найти радиус окружности в этом случае? Просто подставляем известную величину в вышеприведенную формулу. Отметим, что в таких задачах всегда подразумевается знание числа П. Для удобства расчетов примем его значение за 3,14. Решение в этом случае выглядит следующим образом: записываем, какие величины даны, выводим формулу и проводим вычисления. В ответе пишем, что радиус равен 20 / (2 * 3,14) = 3,19 м. Важно не забыть о том, что мы считали, и упомянуть название единиц измерения.

По диаметру

Сразу подчеркнем, что это самый простой вид задач, в которых спрашивается о том, как найти радиус окружности. Если такой пример попался вам на контрольной, то можете быть спокойны. Тут даже не нужен калькулятор! Как мы уже говорили, диаметр - это отрезок или, правильнее сказать, хорда, которая проходит через центр. При этом все точки окружности равноудалены. Поэтому данная хорда состоит из двух половинок. Каждая из них является радиусом, что следует из его определения как отрезка, который соединяет точку на окружности и ее центр. Если в задаче известен диаметр, то для нахождения радиуса нужно просто разделить эту величину на два. Формула выглядит следующим образом: R = D / 2. Например, если диаметр в задаче равен 10 м, то радиус - 5 метров.

По площади круга

Этот тип задач обычно называют самым сложным. Это связано в первую очередь с незнанием формулы. Если знать, как найти радиус окружности в этом случае, то остальное - дело техники. В калькуляторе только нужно заранее найти значок вычисления квадратного корня. Площадь круга - это произведение числа П и радиуса, умноженного на самого себя. Формула выглядит следующим образом: S = П * R 2 . Обособив радиус на одной из сторон уравнения, можно с легкость решить задачу. Он будет равен квадратному корню из частного от деления площади на число П. Если S = 10 м, то R = 1,78 метров. Как и в предыдущих задачах, важно не забыть об используемых единицах измерения.

Как найти радиус описанной окружности

Предположим, что a, b, c - это стороны треугольника. Если знать их величины, то можно найти радиус описанной вокруг него окружности. Для этого сначала нужно найти полупериметр треугольника. Чтобы было легче для восприятия, обозначим его маленькой буквой p. Он будет равен половине суммы сторон. Его формула: p = (a + b + c) / 2.

Также вычислим произведение длин сторон. Для удобства обозначим его буквой S. Формула радиуса описанной окружности будет выглядеть так: R = S / (4 * √(p * (p - a) * (p - b) * (p - c)).

Рассмотрим пример задачи. У нас есть окружность, описанная вокруг треугольника. Длины ее сторон составляют 5, 6 и 7 см. Сначала вычисляем полупериметр. В нашей задаче он будет равен 9 сантиметрам. Теперь вычислим произведение длин сторон - 210. Подставляем результаты промежуточных расчетов в формулу и узнаем результат. Радиус описанной окружности равен 3,57 сантиметра. Записываем ответ, не забывая о единицах измерения.

Как найти радиус вписанной окружности

Предположим, что a, b, c - длины сторон треугольника. Если знать их величины, то можно найти радиус вписанной в него окружности. Сначала нужно найти его полупериметр. Для облегчения понимания обозначим его маленькой буквой p. Формула его вычисления выглядит следующим образом: p = (a + b + c) / 2. Этот тип задачи несколько проще, чем предыдущий, поэтому больше не нужно никаких промежуточных расчетов.

Радиус вписанной окружности вычисляется по следующей формуле: R = √((p - a) * (p - b) * (p - c) / p). Рассмотрим это на конкретном примере. Предположим, в задаче описан треугольник со сторонами 5, 7 и 10 см. В него вписана окружность, радиус которой и нужно найти. Сначала находим полупериметр. В нашей задаче он будет равен 11 см. Теперь подставляем его в основную формулу. Радиус окажется равным 1,65 сантиметрам. Записываем ответ и не забываем о правильных единицах измерения.

Окружность и ее свойства

У каждой геометрической фигуры есть свои особенности. Именно от их понимания зависит правильность решения задач. Есть они и у окружности. Зачастую их используют при решении примеров с описанными или вписанными фигурами, поскольку они дают ясное представление о такой ситуации. Среди них:

  • Прямая может иметь ноль, одну или две точки пересечения с окружностью. В первом случае она с ней не пересекается, во втором является касательной, в третьем - секущей.
  • Если взять три точки, что не лежат на одной прямой, то через них можно привести только одну окружность.
  • Прямая может быть касательной сразу двух фигур. В этом случае она будет проходить через точку, которая лежит на отрезке, соединяющем центры окружностей. Его длина равна сумме радиусов данных фигур.
  • Через одну или две точки можно провести бесконечное количество окружностей.

Окружность, вписанная в треугольник

Существование окружности, вписанной в треугольник

Напомним определение биссектрисы угла .

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

Доказательство D , лежащую на биссектрисе угла BAC , и DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая , то она лежит на биссектрисе угла (рис.2).

Рис. 2

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

a , b , c – стороны треугольника, S –площадь,

r радиус вписанной окружности, p – полупериметр

Посмотреть вывод формулы

a боковая сторона равнобедренного треугольника , b – основание, r радиус вписанной окружности

a r радиус вписанной окружности

Посмотреть вывод формул

,

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

Теорема 7 . Для справедливо равенство

где a – сторона равностороннего треугольника, r радиус вписанной окружности (рис. 8).

Рис. 8

Доказательство .

,

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

Замечание . Я рекомендую вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a , b – катеты прямоугольного треугольника, c гипотенуза , r радиус вписанной окружности.

Доказательство . Рассмотрим рисунок 9.

Рис. 9

Поскольку четырёхугольник CDOF является , у которого соседние стороны DO и OF равны, то этот прямоугольник – . Следовательно,

СВ = СF= r,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание , получаем

что и требовалось.

Подборка задач по теме «Окружность, вписанная в треугольник».

1.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

2.

3

В треугольнике ABC АС=4, ВС=3, угол C равен 90º. Найдите радиус вписанной окружности.

4.

Катеты равнобедренного прямоугольного треугольника равны 2+. Найдите радиус окружности, вписанной в этот треугольник.

5.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите с(–1).

Приведем ряд задач из ЕГЭ с решениями.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

Задача 2.

1. В произвольном две боковые стороны 10см и 6см (AB и BC). Найти радиусы описанной и вписанной окружностей
Задача решается самостоятельно с комментированием.

Решение:


В .

1) Найти:
2) Доказать:
и найти СK
3) Найти: радиусы описанной и вписанной окружностей

Решение:


Задача 6.

Р адиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата. Дано :

Найти : ОС=?
Решение : в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.


Задача 7.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь треугольника будет равна 0,5х 2 .

Значит


Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

Задача 8.

В треугольнике ABC АС = 4, ВС = 3, угол C равен 90 0 . Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

Задача 9.

Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:


Тогда

Если окружность располагается внутри угла и касается его сторон, её называют вписанной в этот угол. Центр такой вписанной окружности располагается на биссектрисе этого угла .

Если же она лежит внутри выпуклого многоугольника и соприкасается со всеми его сторонами, она называется вписанной в выпуклый многоугольник.

Окружность, вписанная в треугольник, соприкасается с каждой стороной этой фигуры лишь в одной точке. В один треугольник возможно вписать лишь одну окружность.

Радиус такой окружности будет зависеть от следующих параметров треугольника:

  1. Длин сторон треугольника.
  2. Его площади.
  3. Его периметра.
  4. Величины углов треугольника.

Для того чтобы вычислить радиус вписанной окружности в треугольник, не всегда обязательно знать все перечисленные выше параметры, поскольку они взаимосвязаны между собой через тригонометрические функции.

Вычисление с помощью полупериметра

  1. Если известны длины всех сторон геометрической фигуры (обозначим их буквами a, b и c), то вычислять радиус придётся путём извлечения квадратного корня.
  2. Приступая к вычислениям, необходимо добавить к исходным данным ещё одну переменную - полупериметр (р). Его можно рассчитать, сложив все длины и полученную сумму разделив на 2. p = (a+b+c)/2. Таким образом можно существенно упростить формулу нахождения радиуса.
  3. В целом формула должна включать в себя знак радикала, под который помещается дробь, знаменателем этой дроби будет величина полупериметра р.
  4. Числителем данной дроби будет представлять собой произведение разностей (p-a)*(p-b)*(p-c)
  5. Таким образом, полный вид формулы будет представлен следующим образом: r = √(p-a)*(p-b)*(p-c)/p).

Вычисление с учётом площади треугольника

Если нам известна площадь треугольника и длины всех его сторон, это позволит найти радиус интересующей нас окружности, не прибегая к извлечению корней.

  1. Для начала нужно удвоить величину площади.
  2. Результат делится на сумму длин всех сторон. Тогда формула будет выглядеть следующим образом: r = 2*S/(a+b+c).
  3. Если воспользоваться величиной полупериметра, можно получить совсем простую формулу: r = S/p.

Расчёт с помощью тригонометрических функций

Если в условии задачи присутствует длина одной из сторон, величина противоположного угла и периметр, можно воспользоваться тригонометрической функцией - тангенсом. В этом случае формула расчёта будет иметь следующий вид:

r = (P /2- a)* tg (α/2), где r - искомый радиус, Р - периметр, а - значение длины одной из сторон, α - величина противоположного стороне, а угла.

Радиус окружности, которую необходимо будет вписывать в правильный треугольник, можно найти по формуле r = a*√3/6.

Окружность, вписанная в прямоугольный треугольник

В прямоугольный треугольник можно вписать только одну окружность . Центр такой окружности одновременно служит точкой пересечения всех биссектрис. Эта геометрическая фигура имеет некоторые отличительные черты, которые необходимо учесть, вычисляя радиус вписанной окружности.

  1. Для начала необходимо выстроить прямоугольный треугольник с заданными параметрами. Построить такую фигуру можно по размеру её одной стороны и величинам двух углов или же по двум сторонам и углу между этими сторонами. Все эти параметры должны быть указаны в условии задачи. Треугольник обозначается как АВС, причём С - это вершина прямого угла. Катеты при этом обозначаются переменными, а и b , а гипотенуза - переменной с .
  2. Для построения классической формулы и вычисления радиуса окружности необходимо найти размеры всех сторон описанной в условии задачи фигуры и по ним вычислить полупериметр. Если в условиях даются размеры двух катетов, по ним можно вычислить величину гипотенузы, исходя из теоремы Пифагора.
  3. Если в условии дан размер одного катета и одного угла, необходимо понять, прилежащий этот угол или противолежащий. В первом случае гипотенуза находится с помощью теоремы синусов: с=a/sinСАВ , во втором случае применяют теорему косинусов с=a/cosCBA .
  4. Когда все расчёты выполнены и величины всех сторон известны, находят полупериметр по формуле, описанной выше.
  5. Зная величину полупериметра, можно найти радиус. Формула представляет собой дробь. Её числителем является произведение разностей полупериметра и каждой из сторон, а знаменателем -величина полупериметра.

Следует заметить, что числитель данной формулы является показателем площади. В этом случае формула нахождения радиуса гораздо упрощается - достаточно разделить площадь на полупериметр.

Определить площадь геометрической фигуры можно и в том случае, если известны оба катета. По сумме квадратов этих катетов находится гипотенуза, далее вычисляется полупериметр. Вычислить площадь можно, умножив друг на друга величины катетов и разделив полученное на 2.

Если в условиях даны длины и катетов и гипотенузы, определить радиус можно по очень простой формуле: для этого складываются длины катетов, из полученного числа вычитается длина гипотенузы. Результат необходимо разделить пополам.

Видео

Из этого видео вы узнаете, как находить радиус вписанной в треугольник окружности.

Не получили ответ на свой вопрос? Предложите авторам тему.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.