Что грозит нашей земле. Существует ли угроза Земле из космоса? Космические лучи и их влияние на жизнь

По словам ученых, основные опасности, ожидающие Землю, придут из космоса. Чем больше ученые изучают нашу Вселенную, тем большее количество разнообразных катастроф пророчат. Впрочем, что и говорить: некоторые из них уже происходят, причем с незавидной частотой. Всегда ли в этих происшествиях виновата только мать-природа или человек тоже прикладывает свою руку? Есть ли у людей возможность противостоять катастрофам планетарного масштаба?

Согласно выводам ученых, Земля пережила 5 столкновений с астероидами, и после каждого из них флора и фауна Земли претерпевали глобальные изменения. В 2004 году ученые обнаружили астероид, который пролетал очень близко от нашей планеты. По Туринской шкале – шкала, показывающая опасность от небесных тел, — вероятность столкновения с Землей составила 4 балла. В 2013 году исследователи получили новые данные о массе астероида, который в 2005 году назвали Апофис. Выяснилось, что его масса на 75% больше, чем думали раньше. Ученые прогнозируют, что в 2029 году Апофис окажется настолько близко к Земле, что его можно будет наблюдать невооруженным глазом. Вероятность того, что астероид все же упадет на нашу планету, составляет менее 10%. Однако она есть. Причем произойдет это не в 2029 году, а в 2036. Оказывается, гравитация Земли может изменить его траекторию движения, а это приведет к необратимым последствиям.

Каждый день во Вселенной происходят вспышки гамма-излучений. Из-за них происходит такое явление, как солнечный ветер. Солнечный ветер – это поток частиц, которые движутся с огромной скоростью. Именно с этим явлением связаны магнитные бури и северное сияние. Их мощность больше мощности всего ядерного оружия на Земле в сотни раз. Если одна из таких вспышек произойдет на расстоянии в сто световых лет от нашей планеты, то нас ждет неминуемая гибель. Озоновый слой исчезнет, верхние слои атмосферы будут сожжены, а все живое на Земле погибнет. Ученые считают, что такие вспышки происходят из-за взрыва большой звезды, в 10 раз большей, чем Солнце.

Солнце – один из источников жизни на голубой планете. Однако Солнце может и убить. Постепенно оно становится больше, горячее и превращается в красного гиганта. Когда его яркость увеличится в 1.000 раз, Солнце, расплавив Меркурий и Венеру, подберётся и к Земле, а после к Марсу и другим планетам Солнечной системы. «Поглотив» свою систему, Солнце станет белым карликом и начнет остывать. Планеты также начнут охлаждаться. Но на самом деле, жизнь на Земле закончится ещё раньше. Из-за увеличения количества тепла температура воздуха на планете будет расти, а вода – испаряться. Как известно еще со школьной скамьи, вода – источник жизни. Что будет, если вода исчезнет? Правильно, исчезнет и жизнь. У Солнца есть еще один минус – солнечная радиация. Она выделяется также и с солнечными ветрами, солнечными вспышками. Самое сильное влияние она оказывает на наше тело, часто становясь главной причиной рака кожи.

Метеориты и метеоритные дожди, последствиям которых посвящено множество фантастических фильмах, далеко не редкое явление. Эти космические тела падают на Землю (и не только) постоянно, однако, в основном, их размеры не велики. Самый большой упавший метеорит, Гоба, весит 60 тонн. Гоба был найден в Намибии в начале 20 века и на сегодняшний день является не только самым большим метеоритом, но и самым крупным месторождением железа. Совсем недавно метеоритный дождь стал достоянием общественности. Речь идет о всемирно известном происшествии в Челябинске. По счастью, ни к каким серьезным разрушениям это не привело.

По непонятным причинам кометы кажутся смертельной опасностью. А зря, потому что кометы, на самом деле, довольно маленькие и для Земли не представляют большой опасности. Кометы видно лучше, чем астероиды, благодаря их красивому „хвосту“, состоящему из газа и пыли. Относительно недавно, в 1910 году, с Землей столкнулся хвост кометы Галлея и, как мы сейчас можем заметить, никакой катастрофы не произошло. Юпитеру в 1994 году повезло меньше – он столкнулся с обломком кометы «Шумейкеров-Леви 9». Температура самой большой планеты резко возросла, и на ней образовалось газовое облако. Страшно подумать, что было бы, если бы на месте Юпитера оказалась наша Земля. Жители Земли на своем примере смогли ощутить силу столкновения с планетой.

Считается, что в 1908 году на территории Сибири упало тело кометного происхождения. Мощность удара была настолько велика, что в радиусе 2.000 км были обнаружены поваленные деревья. После этого на протяжении нескольких дней из космоса можно было увидеть красивое светящееся небо и светящиеся облака. Нельзя сказать, что падение было в одной точке, поэтому ученые называют лишь эпицентр взрыва. Считается, что сам взрыв произошел на высоте в несколько километров от земли. Поговаривают, что незадолго до этого происшествия над территорией взрыва наблюдались серебристые облака, яркие сумерки и светящиеся кольца вокруг Солнца, именуемые солнечными гало.

Космические лучи передвигаются в космическом пространстве, но частенько попадают и в нашу атмосферу. Космонавты никогда не выходят в открытый космос без скафандра, еще и потому что он защищает от космических лучей. Ученые предполагают, что первичные космические лучи, при попадании на ткани человека, разрушают ядра атомов, путем выбивания электронов. Изучение первичных лучей продолжается. Ученые ищут и специальную ткань для скафандров, которая позволит длительное время находиться под воздействием космической радиации. В атмосфере они становятся вторичными, а потому уже не так активны. Это значит, что лучи менее опасны, но с уверенностью сказать, что никакого вреда от них нет, никак нельзя.

Не меньшую опасность представляет собой и космический мусор, ведь на данный момент вес различных использованных и неисправных объектов в космосе достигает нескольких тысяч тонн! Уже были случаи, когда такой мусор падал на Землю, но удачно – попадал в Тихий океан или сгорал в атмосфере. Но кто знает, куда он попадет в следующий раз?

Угрозу Земле могут нести объекты, сближающиеся с ней на расстояние не менее 8 миллионов километров и достаточно большие, чтобы не разрушиться при вхождении в атмосферу планеты. Они представляют опасность для нашей планеты.

Еще недавно астероид Апофис, открытый в 2004 году, назывался объектом с наиболее высокой вероятностью столкновения с Землей. Такое столкновение считалось возможным в 2036 году. Однако после того как в январе 2013 года Апофис прошел мимо нашей планеты на расстоянии около 14 млн. км. специалисты NASA снизили вероятность столкновения до минимума. Шансы, по мнению Дона Йеоманса, руководителя лаборатории по исследованию объектов сближающихся с Землей, менее одного на миллион.
Тем не менее, специалисты рассчитали приблизительные последствия падения Апофиса, диаметр которого около 300 метров, а вес порядка 27 млн. тонн. Так энергия, высвободившаяся при столкновении тела с поверхностью Земли, составит 1717 мегатонн. Сила землетрясения в радиусе 10 километров от места падения может достигнуть 6,5 балла по шкале Рихтера, а скорость ветра окажется не менее 790 м/с. При этом разрушению подвергнутся даже укрепленные объекты.

Астероид 2007 TU24 был обнаружен 11 октября 2007 года, а уже 29 января 2008 года он пролетал рядом с нашей планетой на расстоянии около 550 тыс. км. Благодаря необычайной яркости – 12-й звездной величины – его можно было разглядеть даже в телескопы средней силы. Столь близкое прохождение крупного небесного тела от Земли – редкое явление. В следующий раз астероид таких же размеров сблизится с нашей планетой только в 2027 году.
TU24 – массивное небесное тело сравнимое с размером здания Университета на Воробьевых горах. По мнению астрономов, астероид потенциально опасен, поскольку приблизительно раз в три года пересекает орбиту Земли. Но, по крайне мере, до 2170 года, по расчетам специалистов, он Земле не угрожает.

Космический объект 2012 DA14 или Дуэнде принадлежит к околоземным астероидам. Его габариты относительно скромные – диаметр около 30 метров, масса примерно 40 000 тонн. По словам ученых, он похож на гигантскую картофелину. Сразу после открытия 23 февраля 2012 года было выяснено, что наука имеет дело с необычным небесным телом. Дело в том, что орбита астероида находится в резонансе 1:1 с Землей. Это значит, что период его обращения вокруг Солнца приблизительно соответствует земному году.
В течение долгого времени Дуэнде может находиться рядом с Землей, однако астрономы пока не готовы предсказать поведение небесного тела в будущем. Хотя по имеющимся на сегодняшний день расчетам вероятность столкновения Дуэнде с Землей до 16 февраля 2020 года не превысит один шанс из 14 000.

Сразу же после открытия 28 декабря 2005 года астероид YU55 был причислен к потенциально опасным. В диаметре космический объект достигает 400 метров. Он обладает эллиптической орбитой, что говорит о нестабильности его траектории и непредсказуемости поведения.
В ноябре 2011 года астероид уже всполошил научный мир, подлетев на опасное к Земле расстояние в 325 тыс. километров – то есть оказался ближе чем Луна. Интересно, что объект абсолютно черный и практически незаметен в ночном небе, за что астрономы прозвали его «Невидимкой». Ученые тогда всерьез опасались, что космический пришелец войдет в земную атмосферу.

Астероид с таким интригующим названием давний знакомый землян. Он был открыт немецким астрономом Карлом Виттом еще в 1898 году и оказался первым обнаруженным околоземным астероидом. Эрос также стал первым астероидом, кто обзавелся искусственным спутником. Речь идет о космическом аппарате NEAR Shoemaker, который в 2001 году совершил посадку на небесное тело.
Эрос – крупнейший астероид внутренней Солнечной системы. Его размеры поражают –33 х 13 х 13 км. Средняя скорость гиганта 24,36 км/с. Форма астероида похожа на арахис, что влияет на неравномерное распределение на нем силы тяжести. Ударный потенциал Эроса в случае столкновения с Землей просто огромен. По мнению ученых, последствия после попадания астероида в нашу планету будут более катастрофические, чем после падения Чиксулуба, который предположительно стал причиной вымирания динозавров. Утешает лишь то, что шансы на это в обозримом будущем мизерно малы.

Астероид 2001 WN5 был открыт 20 ноября 2001 года и позднее попал в категорию потенциально опасных объектов. В первую очередь следует опасаться того, что ни сам астероид, ни его траектория достаточно не изучены. По предварительным данным в диаметре он может достигать 1,5 километров.
26 июня 2028 года произойдет очередное сближение астероида с Землей, причем космическое тело приблизится на минимальное для себя расстояние – 250 тыс. км. По мнению ученых, его можно будет рассмотреть в бинокль. Этого расстояния достаточно, чтобы привести к сбоям в работе спутников.

Этот астероид был открыт российским астрономом Геннадием Борисовым 16 сентября 2013 при помощи самодельного 20-см телескопа. Объект сразу же назвали едва ли не самой опасной угрозой среди небесных тел для Земли. Диаметр объекта составляет около 400 метров.
Сближение астероида с нашей планетой ожидается 26 августа 2032 года. По некоторым предположениям глыба пронесется всего в 4 тыс. километрах от Земли со скоростью 15 км/с. Ученые подсчитали, что в случае столкновения с Землей энергия взрыва составит 2,5 тыс. мегатонн в тротиловом эквиваленте. Для примера, мощность самой крупной термоядерной бомбы, взорванной в СССР – 50 мегатонн.
На сегодняшний день вероятность столкновения астероида с Землей оценивают примерно 1/63 000. Впрочем, при дальнейшем уточнении орбиты показатель может как увеличиться, так и уменьшиться.

Космические опасности – это опасные космические объекты и разнообразные космические излучения, которые в разной степени могут нести угрозу из Космоса планете Земля. В последнее время средства массовой информации наряду с привычными сенсациями, все чаще пророчат разнообразные космические катастрофы с метеоритными гигантскими волнами, падением комет, столкновениями с огромными астероидами.

Эти космические объекты и составляют определенный уровень угрозы в зависимости от своих размеров, массы и скорости движения.

1. Метеориты

Метеорит – это космическое тело, которое падает на поверхность любой планеты. В большинстве случаев они бывают в основном небольших размеров. Эти космические объекты постоянно падают на нашу планету. Метеориты более крупных размеров при падении на поверхность планеты образуют кратеры. На данный момент известен самый крупный метеорит – Гоба, масса которого составляет до 60 тонн. В фантастических фильмах очень популярные кадры, как стометровые волны, вызванные падением метеорита, смывают целые гигантские города с их небоскребами.

Гоба - крупнейший из найденных метеоритов. Также является самым большим на Земле куском железа природного происхождения. Фото: ru.wikipedia.org

2. Астероиды

Астероид – это крупное метеоритное тело, которое при падении может привести к катастрофе планетарного масштаба. Согласно данным науки палеонтологии, на протяжении последних 500 млн. лет, наша планета пережила пять столкновений с огромными астероидами. Каждое такое столкновение приводило к глобальным изменениям природы и живого мира на Земле. Современные астрономы стараются отслеживать траектории движения в космосе гигантских астероидов, и как – то предотвратить их вероятное столкновение с нашей планетой. Но, несмотря на все усилия, мимо Земли приблизительно один раз в месяц, совсем незамеченным, пролетает какой – ни будь крупный астероид с размером в футбольное поле. Столкновение с астероидом в несколько километров в диаметре, было бы смертельным для нашей планеты.


Крупное метеоритное тело- Астероид. Фото: wikimedia.org

3. Кометы

Комета – это яркое небесное тело небольшого размера. Хотя, многим кажется, что наоборот, они представляют величайшую опасность для Земли, - ведь они кажутся такими огромными! Но на самом деле, их огромные размеры не представляют большой опасности, по крайней мере, для планеты Земля. Ведь длину кометы составляют всего на всего мелкие пылинки, освещенные солнечным светом. В Космосе, они чаще заметнее, чем астероиды, благодаря своему эффектному газопылевому хвосту. Особенно красиво и зрелищно кометы смотрятся в ночном небе. Наша планета в 1910 году столкнулась с хвостом кометы Галлея – и никаких катастрофических последствий! Меньше в этом повезло Юпитеру, которому в 1994 году пришлось столкнуться с обломком кометы «Шумейкеров – Леви 9», вследствие чего, там поднялась высокая температура, и образовалось большое газовое облако. Но к счастью, по мнению астрономов, такие случаи в Космосе бывают не часто.


Комета „Hale Bopp“ Фото: wikimedia.org

Основной задачей астрономов является поиск путей предотвращения подобных «встреч» этих космических тел с нашей Землей. На данный момент усовершенствуется ракетно – ядерная технология со сложной системой перехвата, разрушения на части, изменения траектории движения, или даже уничтожения их с целью спасения жизни на планете Земля.

4.Проблемы, которых мы не замечаем
Существуют и невидимые космические опасности. Солнечная радиация, космические лучи, и различная космическая пыль также по – своему воздействуют на земную жизнь.

1.Солнечная радиация

О солнечной радиации мы очень часто слышим, и стараемся по мере возможности избегать ее. Это электромагнитное излучение Солнца. Сюда же включают солнечные ветры и солнечные вспышки. Особенно негативное их воздействие на незащищенное человеческое тело. В последнее время это становиться причиной рака кожи. Поэтому ставиться вопрос возможности защиты человечества от этого излучения. Также, уже доказано, что солнечное облучение очень губительно для глаз, так как при этом проявляются различные офтальмологические заболевания.

2. Космические лучи

Космические лучи – это мельчайшие частицы и ядра атомов, которые двигаются преимущественно в космическом пространстве. Но они могут попадать и в земную атмосферу. Конечно, для космонавтов в открытом космосе, космические лучи представляют большую опасность, и они от них защищаются скафандром. Но уже в атмосфере, эти невидимые космические опасности уже не такие активные. Но в какой мере они все же опасны для людей на Земле, в полной мере еще не изучено.

3.Космический мусор

Космический мусор – это все уже использованные и неисправные объекты в Космосе. Они больше представляют угрозу для функциональных космических аппаратов, чем для обитателей Земли. По подсчетам ученых, на данный момент, масса космического мусора достигает нескольких тысяч тонн. Эти неисправные космические объекты, в любой момент могут сойти с орбиты и упасть на Землю. Но пока различные обломки отработанных космических станций благополучно падали в воды Тихого океана или сгорали в плотном слое атмосферы. Но все же, проблема с космическим мусором еще полностью не решена.

Пятнадцатого февраля исполнилось пять лет со дня появления в небе над Челябинском крупного метеороида, вызвавшего переполох в городе и привлекшего к себе интерес астрономов всего мира. Что произошло в тот день? Может ли подобное повториться? Что человечество делает и может сделать, чтобы такие события, как минимум, не происходили внезапно, и чтобы мы, как максимум, нам научились парировать подобные угрозы? С этими вопросами редакция N + 1 обратилась к астроному Леониду Еленину, сотруднику Института прикладной математики РАН, для которого происшествие над Челябинском имело особое значение.

Пятнадцатое февраля 2013 года началось для меня неожиданно - в 7:30 утра мне позвонили из одной из госструктур с вопросом: «Что произошло над Челябинском?» Когда пришло понимание, что же все-таки произошло, главным вопросом стал другой: почему мы заблаговременно не обнаружили это тело? Пикантности ситуации добавляло и то, что в этот же день мимо Земли, но на безопасном расстоянии от нее, должен был пролететь известный околоземной астероид 2012 DA14, а за день до описываемых событий, выступая на пресс-конференции, я заверил собравшихся, что ни один из известных астероидов в ближайшем будущем нам не угрожает. Первый же беглый анализ данных с видеокамер показал, что болид не имеет никакого отношения к астероиду 2012 DA14, и стало понятно, почему этот метеороид подкрался к нам незамеченным... Но обо всем по порядку.

Для начала давайте разберемся, что это вообще за объекты, откуда они берутся, как их обнаруживают и почему челябинский гость физически не мог быть обнаружен существующими средствами контроля космического пространства.

Телескопы наизготовку

Первый астероид, сближающийся с Землей (АСЗ), был обнаружен в 1898 году. Впоследствии он получил номер 433 и имя - Эрос. Да, да, это тот астероид из сериала «Пространство» ("The Expanse"). В то время его орбита казалась уникальной, ведь большинство астероидов обращаются вокруг Солнца в Главном поясе астероидов, между орбитами Марса и Юпитера.

Спустя примерно 100 лет в области фиксации изображений произошла революция - фотопластинки ушли в историю, а на их место стали внедрять ПЗС -камеры. Переход от аналоговой информации к «цифре» произвел революцию и в астрономии, в том числе в области позиционных наблюдений малых тел Солнечной системы, к коим и относятся астероиды и кометы. Новая техника позволила быстро и с высокой точностью определять координаты небесных объектов, рассчитывать их орбиты и автоматизировать процесс обнаружения новых объектов на полученных кадрах, ведь раньше этим занимались вручную на устройствах, называемых блинк-компараторами.

Постепенно у астрономов появилось понимание, что объекты, подобные Эросу, достаточно распространены в Солнечной системе и что по теории вероятности они могут сталкиваться с планетами. Это был лишь первый шажок на пути к пониманию проблемы астероидно-кометной опасности (АКО).

В 1980 году ученые - отец и сын Альваресы - сформулировали теорию столкновения Земли с крупным небесным телом (диаметром 8–10 километров) в далеком прошлом и связали образование гигантского кратера Чиксулуб в Мексиканском заливе с вымиранием динозавров. Дальше - больше. Так, в 1983 году всего в 4,67 миллиона километров от Земли пролетела только что открытая комета C/1983 H1 (IRAS-Araki-Alcock). Размер ее ядра был сопоставим с телом, столкнувшимся с Землей 65 миллионов лет назад.

Последней каплей стало столкновение кометы P/1993 F2 (Shoemaker-Levy 9), а точнее цепочки ее осколков, c Юпитером. Комета была обнаружена в 1993 году, уже разорванной притяжением планеты-гиганта, и вопрос столкновения с планетой был лишь вопросом времени. Седьмого июля 1994 года 21 фрагмент кометы, каждый размером до двух километров, вошел в атмосферу Юпитера. Общее энерговыделение составило около 6 миллионов мегатонн, что в 750 раз больше всего ядерного потенциала, накопленного на Земле!


Рисунок 1. Количество открытых за последние десятилетия астероидов, сближающихся с Землей (АСЗ). Красным цветом обозначены объекты диаметром от километра и больше, оранжевым - 140 метров и более, синим - все остальные.


После всех этих событий в США была принята государственная программа поиска опасных небесных тел, сближающихся с Землей. В 1998 году первый обзорный телескоп заступил на дежурство. В течение нескольких лет по этой теме начали работать еще несколько инструментов, и результат не заставил себя ждать. На рисунке 1 изображена статистика открытий АСЗ с 1980 года, которая говорит сама за себя.

В настоящий момент по тематике АКО работают несколько выделенных инструментов с диаметром главных зеркал до 1,8 метра. Многие телескопы, начинавшие свою работу 20 лет назад, прошли модернизацию - на них были установлены новые ПЗС-камеры колоссальных размеров. Например, мозаика ПЗС-чипов телескопа Pan-STARRS имеет диаметр полметра. Назревает вопрос: ну сейчас-то мы бы уже смогли заблаговременно открыть челябинский метеороид? Нет! И вот почему.


Траектория движения метеороида над Челябинском

Трудно обнаружить

Все околоземные астероиды делятся на три семейства, в зависимости от их орбиты. Все они имеют афелии (наиболее удаленная от Солнца точка орбиты) вне орбиты Земли, поэтому их удается обнаруживать. Но ученые задались вопросом: а нет ли таких же объектов, обращающихся вокруг Солнца внутри орбиты Земли и опасно сближающихся с нашей планетой вблизи своего афелия?

Если орбита небесного тела находится внутри земной орбиты, то наблюдать его достаточно сложно, даже если это планета. Не зря Венеру называют «утренней звездой». Она видна на нашем небе в сумерках, вечером или утром. Но это очень яркий объект, а как же обнаружить небольшие астероиды на еще не темном, сумеречном небе? Такой опыт был поставлен. Телескоп, установленный высоко в горах, наводили на области над самым горизонтом, когда Солнце уже погружалось за него. Проницание телескопов (способность обнаруживать тусклые объекты) на светлом небе катастрофически снижается, но даже в таких условиях удалось открыть несколько объектов, которые отнесли к новому семейству околоземных астероидов. Этот опыт показал, что, если мы не видим какие-то объекты, это не значит, что их нет (эффект наблюдательной селекции).

Сразу отвечу на вопрос про применение радиотелескопов. Да, они могут работать и днем, но в настоящий момент их диаграмма направленности (угол зрения) очень мал и не позволяет осуществлять поиск объектов на больших расстояниях. Сейчас для лоцирования астероидов часто необходима оптическая поддержка - телескопы уточняют орбиту небесного тела и радиотелескоп наводится по уже уточненным координатам.

Челябинский метеороид не относился к этому семейству внутренних АСЗ (семейство Атиры), но приближался к нам со стороны Солнца, и в этом была главная причина того, что он не был обнаружен. Другая причина связана с его малым размером. До входа в атмосферу его диаметр составлял примерно 17 метров. Характерное время упреждения при обнаружении объектов такого размера - менее суток, когда они совсем близко подходят к Земле и современные телескопы могут их детектировать.

Кстати, челябинское событие достаточно сильно встряхнуло умы ученых, занимающихся проблематикой АКО. Ранее считалось, что объект менее 50–80 метров в диаметре не сможет причинить большого вреда людям, так как сгорит в атмосфере. События над Челябинском показали, что это не так. Все разрушения были вызваны не столкновением самого тела с поверхностью Земли, а с воздушным взрывом на высоте примерно 19 километров. Напомню, что пострадало более тысячи человек. Если бы это произошло над густонаселенными районами Европы или Японии, пострадавших было бы значительно больше. Так что сейчас ученые понимают, что поиск астероидов декаметрового размера (десятки метров в поперечнике) является важной задачей АКО.

Для такого поиска стали привлекать крупные телескопы, работающие по астрофизическим и космологическим задачам. Например, модернизированный 4-метровый телескоп, занимающийся поиском темной энергии, - Dark Energy Camera (DECam). Через несколько лет в Чили должен заработать обзорный телескоп нового поколения - Large Synoptic Survey Telescope (LSST), с диаметром главного зеркала 8,3 метра! Этот инструмент намного расширит область обнаружения небольших околоземных объектов. Но все это не решит проблему внутренних АСЗ.


Рисунок 2. Либрационные точки (точки Лагранжа). Точки L1, L4, L5 особенно удобны для того, чтобы, переместившись к ним, оценивать угрозу Земле со стороны летящих к ней астероидов.


Для ее эффективного решения необходимо запускать поисковые телескопы в космос, и не просто в космос, а подальше от Земли. Например, в либрационные точки (точки Лагранжа) L1, L4, L5 (рисунок 2). В этом случае мы будем смотреть на Землю как бы сбоку, что позволит обнаруживать опасные объекты, приближающиеся к нашей планете со стороны Солнца. По теоретическим расчетам, еще большую эффективность обнаружения даст размещение космических аппаратов на орбите Венеры или Меркурия.

Техническая реализация таких проектов осложнятся необходимостью передачи больших объемов данных на огромные расстояния. Для точки L1 это 1,5 миллиона километров, для L4/L5 - 150 миллионов километров, ну а для орбиты Венеры оно колеблется от 38 до 261 миллиона километров. Здесь потребуется найти баланс между двумя подходами. Что лучше, передавать «сырые» кадры на Землю и уже тут, на мощных компьютерах, выжимать из них максимум информации - в нашем случае детектировать даже самые тусклые объекты - или передавать только измерения, а всю упрощенную обработку вести на борту? Скорее всего, будет применен симбиоз обоих подходов. И это только одна из многих сложных технических задач, которые придется решить ученым и инженерам.

Теоретические проработки таких миссий ведутся, в том числе и в России. Только после того как мы сможем массово обнаруживать внутренние АСЗ и изучать их популяцию, мы сможем закрыть один из вопросов АКО в части обнаружения опасных объектов. Но это еще не все. Хорошо, спросите вы, мы обнаружили объект, летящий на столкновительной траектории к Земле, а что дальше?


Микроскопические исследования челябинского метеорита

Еще труднее «сбить»

Если говорить реально, то пока мы можем лишь рассчитать время и место падения. То есть, оповестить специальные службы и постараться эвакуировать население из опасного района. Для этого нужно увеличивать характерное время упреждения с нескольких часов до нескольких суток. Если говорить о парировании угрозы, то тут все не так просто. Если это экстренный случай и опасность грозит нам в самом ближайшем будущем, то выбор невелик - это либо чисто кинетическое воздействие (удар болванкой), либо взрывное, вкупе с кинетическим (заглубляем заряд и подрываем его).

Вроде бы все красиво и даже достаточно реализуемо. Малые тела мы уже успешно бомбардировали, заряд есть, дежурные носители-перехватчики можно создать, но есть не несколько «но».

Во-первых, этот подход касается только сравнительно небольших объектов. Хорошая новость заключается в том, что подавляющее большинство больших АСЗ мы уже знаем и реальной угрозы, на горизонте пары сотен лет, они собой не представляют. Но остаются еще неизвестные кометы, которые, как мы видим, могут приближаться к Земле.

Во-вторых, чтобы попасть в объект, надо хорошо знать его орбиту, а для этого требуется длительное время наблюдения (наблюдательная дуга). Если же объект обнаружен за несколько суток до столкновения, даже если у нас перехватчик стоит под парами, то можем и не попасть.

И в-третьих, описанные выше методы не контролируемые - то есть, разрушив один большой объект, мы можем получить облако осколков, которые войдут в атмосферу, и далеко не все из них сгорят. И тут еще вопрос, что лучше: один большой объект или рой его осколков. Или мы можем кинетическим воздействием сдвинуть астероид не так, как нам хотелось бы, переместив его, к примеру, на орбиту с еще большей вероятностью столкновения. Поскольку мы не пишем сценарий нового блокбастера, то все может пойти далеко не так, как задумано…

Если объект опасен для нас в среднесрочной перспективе, на интервале десятков лет, то тут можно использовать методы мягкого и, что немаловажно, контролируемого воздействия. Для неподготовленного человека они могут показаться достаточно странными, но они действительно могут сработать, если у нас в запасе есть десятки лет. Например, мы можем разместить вблизи астероида небольшой космический аппарат, который будет притягивать астероид - так же как и астероид будет притягивать к себе аппарат, но, конечно, с большей силой, ведь огромная глыба намного массивнее. В этом случае мы можем очень точно рассчитать воздействие и предсказуемо, очень медленно, изменить орбиту небесного тела.

Можно посадить космический аппарат на поверхность астероида и менять его орбиту двигателями малой тяги. Посадка на астероид или ядро кометы давно не фантастика - это уже было реализовано. Можно даже покрасить астероид! Да-да, покрасить одну сторону астероида в белый цвет, чтобы она отражала солнечный свет, а вторая, неокрашенная сторона при этом нагревалась, излучая тепловую энергию, способную придать астероиду дополнительное ускорение (эффект Ярковского). Зная форму астероида и параметры его вращения вокруг своей оси, можно рассчитать, как именно необходимо его окрасить для достижения требуемого результата.

Таков краткий обзор проблематики АКО, хотя, конечно, эта тема намного обширнее и глубже. Есть те, кто говорит, что эта проблема не заслуживает внимания, ведь вероятность крупного столкновения очень мала. Да, это так, и задача настоящих ученых - не пугать, а предупреждать. Пусть вероятность и правда очень мала, но и цена бездействия - миллионы и миллиарды жизней, а может, и судьба всей цивилизации. У человечества есть все для того, чтобы не пойти по печальному пути динозавров (хотя для нас падение небесного тела в Мексиканском заливе оказалось счастливым событием - первые млекопитающие вытянули тогда свой счастливый билет).

Поэтому нам необходимо сделать все, чтобы сохранить наш мир, и это относится, конечно, не только к астероидно-кометной опасности. Всем добра и почаще смотрите на ночное небо - оно очень красиво и таит еще много загадок, которые нам предстоит разгадать!


Леонид Еленин

Бури, землетрясения, извержения вулканов - земным катаклизмам ничего не стоит уничтожить человеческую цивилизацию. Но даже самые грозные стихии никнут, когда на сцену выходит космическая катастрофа, способная взрывать планеты и тушить звезды — главная угроза Земле. Сегодня мы покажем, на что способна Вселенная во гневе.

Танец галактик раскрутит Солнце и выбросит в бездну

Начнем из самого масштабного бедствия - столкновения галактик. Уже через каких-то 3-4 миллиарда лет врежется в наш Млечный путь и поглотит его, превратившись в громадное яйцеобразное море звезд. В этот период ночное небо Земли побьет рекорд по количеству звезд - их станет в три-четыре раза больше. А вы знаете, ?

Само столкновение нам не грозит - если бы звезды были размером с мячик для настольного тенниса, то расстояние между ними в галактике составляло бы 3 километра.Наибольшую проблему представляет слабейшая, но одновременно самая мощная сила во Вселенной - гравитация.

Взаимное притяжение звезд в сливающихся Андромеде и Млечном Пути защитит Солнце от разрушения. Если две звезды сближаются, их гравитация разгоняет их и создает общий центр массы - они будут кружить возле него, как шарики по краям рулетки. То же самое произойдет с галактиками - прежде чем соединиться воедино, их ядра будут “танцевать” друг возле друга.

Как это выглядит? Смотрите на видео ниже:

Страх и ненависть в космической бездне

Эти танцы и принесут больше всего бед. Звезда на окраинах вроде Солнца сможет разогнаться до сотен и даже тысяч километров в секунду, что пробьет притяжение галактического центра - и наше светило улетит в межгалактическое пространство.

Земля и другие планеты останутся вместе с Солнцем - скорее всего, в их орбитах ничего не изменится. Правда Млечный Путь, что радует нас летними ночами, будет медленно отдаляться, а привычные звезды на небе сменятся светом одиноких галактик.

Но может и не повезти. В галактиках, кроме звезд, есть еще целые облака межзвездной пыли и газа. Солнце, оказавшись в таком облаке, начинает “поедать” его и набирать массу, следовательно, яркость и активность светила повысится, появятся нерегулярные сильные вспышки - настоящая космическая катастрофа для любой планеты.

Онлайн симулятор столкновения галактик

Чтобы смоделировать столкновение, щелкните левой кнопкой по черному участку и протяните курсор немного с зажатой кнопкой в сторону белой галактики. Так вы создадите вторую галактику и зададите ее скорость. Чтобы сбросить симуляцию, нажмите Reset внизу.

Кроме того, столкновения с облаками водорода и гелия вряд ли пойдут на пользу самой Земле. Если не повезет оказаться в массивном скоплении, можно оказаться внутри самого Солнца. А про такие вещи как жизнь на поверхности, вода и привычная атмосфера можно будет смело забыть.

Еще галактика Андромеда может попросту “отжать” Солнце и включить в свой состав. Сейчас мы живем в спокойном районе Млечного Пути, где мало сверхновых звезд, газовых потоков и прочих неспокойных соседей. Но никто не знает, куда “заселит” нас Андромеда - можно и вовсе угодить в , полный энергии самых диковинных объектов галактики. Там Земле не выжить.

Стоит ли бояться и собирать чемоданы в другую галактику?

Есть один старый русский анекдот. Идут две старушки мимо планетария и слышат как экскурсовод говорит:

— Итак, Солнце погаснет через 5 миллиардов лет.
В панике одна из старушек подбегает к экскурсоводу:
— Через сколько, через сколько погаснет?
— Через пять миллиардов лет, бабушка.
— Уф-ф-ф! Слава Богу! А мне показалось, что через пять миллионов.

Это же касается столкновения галактик - маловероятно, что человечество сумеет дожить до того момента, когда Андромеда начнет заглатывать Млечный Путь. Шансов будет мало даже в том случае, если люди очень постараются. Уже через миллиард лет Земля станет слишком горячей для существования жизни где-то помимо полюсов, а через 2-3 на ней не останется воды, как на .

Так что стоит бояться только катастрофы ниже - она куда опаснее и внезапнее.

Космическая катастрофа: вспышка сверхновой

Когда Солнце истратит свой запас звездного топлива-водорода, его верхние слои сдует в окружающее пространство, и от него останется только маленькое горячее ядро, белый карлик. Но Солнце - это желтый карлик, ничем не примечательная звезда. А большие звезды, массивнее нашего светила в 8 раз, уходят с космической сцены красиво. Они взрываются, разнося мелкие частицы и излучение на сотни световых лет.

Как и в случае со столкновениями галактик, здесь приложила руку гравитация. Она сжимает состарившиеся массивные звезды до такой степени, что все их вещество детонирует. Интересный факт - если звезда больше Солнца в двадцать раз, она превращается в . И перед этим она тоже взрывается.

Однако не обязательно быть большим и массивным, чтобы в один прекрасный день воссиять сверхновой. Солнце - звезда-одиночка, но есть множество звездных систем, где светила вращаются друг возле друга. Звезды-братья часто стареют с разной скоростью, и может оказаться так, что “старшее” светило выгорает до белого карлика, а младшее все еще в расцвете сил. Тут-то и начинается беда.

Когда “младшая” звезда постареет, она начнет превращаться в красного гиганта - ее оболочка расширится, а температура уменьшится. Этим и воспользуется старый белый карлик - поскольку в нем уже нет ядерных процессов, ему ничего не мешает подобно вампиру “высасывать” внешние слои своего брата. Причем высасывает он их столько, что ломает гравитационный предел собственной массы. Поэтому и взрывается сверхновой как большая звезда.

Сверхновые - это кузнецы Вселенной, ведь именно сила их вспышек и сжатие порождает элементы тяжелее железа, вроде золота и урана (по другой теории, они возникают в нейтронных звездах, но их появление невозможно без сверхновой). Еще считается, что вспышка звезды по соседству с Солнцем помогла образоваться , нашей Земле в том числе. Скажем же ей спасибо за это.

Не спешите любить сверхновые

Да, вспышки звезд бывают очень полезными - в конце концов, сверхновые являются естественной частью жизненного цикла звезд. Но для Земли они ничем хорошим не закончатся. Самая уязвимая часть планеты для сверхновых - это . Азот, с которого преимущественно состоит в воздух, под воздействием частиц сверхновой начнет соединяться с озоном

А без озонового слоя все живое на Земле станет уязвимым для ультрафиолетового излучения. Помните, что на ультрафиолетовые кварцевые лампы нельзя смотреть? А теперь представьте, что все небо превратилось в одну громадную синюю лампу, которая выжигает все живое. Особенно плохо придется морскому планктону, который производит большую часть кислорода в атмосфере.

Реальна ли угроза Земле?

Какова вероятность того, что сверхновая нас накроет? Посмотрите на следующую фотографию:

Это - останки уже отсветившей свое сверхновой. Она была столь яркой, что в 1054 году ее было видно как очень яркую звезду даже днем - и это при том, что сверхновую и Землю разделяет шесть с половиной тысяч световых лет!

Диаметр туманности составляет 11 . Для сравнения, наша Солнечная система от края до края занимает 2 световых года, а к самой близкой звезде, Проксима Центавре, 4 световых года. В пределах 11 световых лет вокруг Солнца есть как минимум 14 звезд - каждая из них может взорваться. А “боевой” радиус сверхновой составляет 26 световых лет. Такое событие случается не больше 1 раза в 100 миллионов лет, что очень часто в космических масштабах.

Гамма-всплеск — если бы Солнце стало термоядерной бомбой

Существует еще одна космическая катастрофа, куда опаснее сотни сверхновых одновременно — всплеск гамма-излучения. Это самый опасный вид радиации, который проникает через любую защиту — если забраться в глубокий подвал с металлобетона, облучение уменьшится в 1000 раз, но не исчезнет полностью. А какие-либо костюмы и вовсе неспособны спасти человека: гамма-лучи ослабевают всего в два раза, проходя сквозь лист свинца толщиной в сантиметр. Но свинцовый скафандр — неподъемная ноша, в десятки раз тяжелее рыцарского доспеха.

Однако даже во время взрыва атомной электростанции энергия гамма-лучей небольшая — нет такой массы вещества, чтобы их напитать. Зато такие массы есть в космосе. Это сверхновые очень тяжелых звезд (вроде звезд Вольфа-Райе, о которых мы написали ), а также слияние нейтронных звезд или черных дыр — недавно такое событие зафиксировали по гравитационным волнам. Сила гамма-вспышки таких катаклизмов может достичь 10 54 эрг, которые излучаются за период от миллисекунд до часа.

Единица измерения — взрыв звезды

10 54 эрг — много ли это? Если бы вся масса Солнца стала термоядерным зарядом и взорвалась, энергия взрыва составила бы 3×10 51 эрг — как у слабой гамма-вспышки. Но если такое событие произойдет на расстоянии 10 световых лет, угроза Земле будет не иллюзорной — эффект был бы как у взрыва ядерной бомбы на каждом условном гектаре неба! Это уничтожило бы жизнь на одном полушарии моментально, а на другом — спустя считанные часы. Расстояние не очень уменьшит угрозу: даже если гамма-излучение вспыхнет на другом конце галактики, до нашей планеты дойдет по атомной бомбе на 10км 2 .

Ядерный взрыв — не самое ужасное, что может случиться

Ежегодно регистрируется около 10 тысяч гамма-всплесков — они видны на расстояниях в миллиарды лет, с галактик на другом . В пределах одной галактики всплеск происходит приблизительно раз в один миллион лет. Возникает логический вопрос —

Почему мы еще живы?

Спасает Землю механизм образования гамма-всплеска. Энергию взрыва сверхновой ученые называют “грязной”, так как в ней участвуют миллиарды тонн частиц, которые разлетаются во все стороны. Гамма-всплеск же “чистый” — это выброс одной лишь энергии. Он происходит в виде сконцентрированных лучей, отходящих от полюсов объекта, звезды или черной дыры.

Помните звезды в аналогии с шариками для настольного тенниса, которые удалены друг от друга на 3 километра? Теперь давайте представим, что к одному из шариков прикрутили лазерную указку, светящую в произвольном направлении. Какой шанс, что лазер попадет в другой шарик? Очень и очень мал.

Но не стоит расслабляться. Ученые считают, что гамма-всплески уже однажды достигали Земли — в прошлом они могли вызвать одно из массовых вымираний. Узнать наверняка, доберется до нас излучение или нет, можно будет только на практике. Однако строить бункеры тогда будет уже поздно.

Напоследок

Сегодня мы прошлись лишь по самым глобальным космическим катастрофам. Но существует много других угроз Земле, например:

  • Удар астероида или кометы (мы написали о , где можно узнать о последствиях недавних падений)
  • Превращение Солнца в красного гиганта.
  • Вспышка на Солнце (их можно ).
  • Миграция планет-гигантов в Солнечной системе.
  • Остановка вращения .

Как защитить себя и предупредить трагедию? Следите за новостями науки и космоса, и исследуйте Вселенную с надежным гидом. А если осталось что-то неясное, или хотите узнать больше — пишите в чате, комментариях и заходите в