Что такое азот и для чего используется? Азот (общие сведения).

Рождающий селитру — так переводится с латинского языка слово Nitrogenium. Это название азота — химического элемента с атомным номером 7, возглавляющего 15-ю группу в длинном варианте периодической таблицы. В форме простого вещества распространен в составе воздушной оболочки Земли — атмосферы. Разнообразные соединения азота встречаются в земной коре и живых организмах, находят широкое применение в отраслях промышленности, военном деле, сельском хозяйстве и медицине.

Почему азот называли «удушливым» и «безжизненным»

Как предполагают историки химии, первым получил это простое вещество Генри Кавендиш (1777). Ученый пропускал воздух над раскаленными углями, для поглощения продуктов реакции использовал щелочь. В результате опыта исследователь обнаружил бесцветный газ без запаха, не вступивший в реакцию с углем. Кавендиш назвал его «удушливым воздухом» за неспособность поддерживать дыхание, а также горение.

Современный химик объяснил бы, что кислород прореагировал с углем, образовался углекислый газ. Оставшаяся «удушливая» часть воздуха состояла по большей части из молекул N 2 . Кавендиш и другие ученые в то время об этом веществе еще не знали, хотя соединения азота и селитры тогда широко использовались в хозяйстве. Ученый сообщил о необычном газе своему коллеге, проводившему аналогичные опыты, — Джозефу Пристли.

Одновременно Карл Шееле обратил внимание на неизвестную составную часть воздуха, но не сумел правильно объяснить ее происхождение. Только Даниэль Рутерфорд в 1772 году понял, что присутствующий в экспериментах «удушливый» «испорченный» газ — азот. Какого ученого считать его первооткрывателем — об этом до сих пор ведут спор историки науки.

Через 15 лет после опытов Рутерфорда знаменитый химик Антуан Лавуазье предложил сменить термин «испорченный» воздух, относившийся к азоту, на другой — Nitrogenium. К тому времени было доказано, что это вещество не горит, не поддерживает дыхание. Тогда же появилось русское название «азот», которое трактуется по-разному. Чаще всего говорят, что термин означает «безжизненный». Последующие работы опровергли распространенное мнение о свойствах вещества. Соединения азота — белки — важнейшие макромолекулы в составе живых организмов. Для их построения растения поглощают из почвы необходимые элементы минерального питания — ионы NO 3 2- и NH 4+ .

Азот — химический элемент

Разобраться в строении атома и свойствах помогает (ПС). По положению в таблице Менделеева можно определить заряд ядра, количество протонов и нейтронов (массовое число). Необходимо обратить внимание на значение атомной массы — это одна из главных характеристик элемента. Номер периода соответсвует количеству энергетических уровней. В коротком варианте периодической таблицы номер группы соответствует числу электронов на внешнем энергатическом уровне. Обобщим все данные в общей характеристике азота по его положению в периодической системе:

  • Это неметаллический элемент, находится в правом верхнем углу ПС.
  • Химический знак: N.
  • Порядковый номер: 7.
  • Относительная атомная масса: 14,0067.
  • Формула летучего водородного соединения: NH 3 (аммиак).
  • Образует высший оксид N 2 O 5 , в котором валентность азота равна V.

Строение атома азота:

  • Заряд ядра: +7.
  • Число протонов:7; число нейтронов: 7.
  • Количество энергетических уровней: 2.
  • Общее число электронов: 7; электронная формула: 1s 2 2s 2 2p 3 .

Подробно изучены стабильные изотопы элемента № 7, их массовые числа — 14 и 15. Содержание атомов более легкого из них составляет 99,64 %. В ядрах короткоживущих радиоактивных изотопов находится также 7 протонов, а число нейтронов сильно варьируется: 4, 5, 6, 9, 10.

Азот в природе

В составе воздушной оболочки Земли присутствуют молекулы простого вещества, формула которого — N 2 . Содержание газообразного азота в атмосфере составляет по объему примерно 78,1 %. Неорганические соединения этого химического элемента в земной коре — различные соли аммония и нитраты (селитры). Формулы соединений и названия некоторых из важнейших веществ:

  • NH 3, аммиак.
  • NO 2, диоксид азота.
  • NaNO 3, нитрат натрия.
  • (NH 4) 2 SO 4, сульфат аммония.

Валентность азота в двух последних соединениях — IV. Каменный уголь, почва, живые организмы также содержат атомы N в связанном виде. Азот является составной частью макромолекул аминокислот, нуклеотидов ДНК и РНК, гормонов и гемоглобина. Общее содержание химического элемента в теле человека достигает 2,5 %.

Простое вещество

Азот в виде двухатомных молекул — самая большая по объему и массе часть воздуха атмосферы. Вещество, формула которого N 2 , не обладает запахом, цветом и вкусом. Этот газ составляет более 2/3 воздушной оболочки Земли. В жидком виде азот представляет собой бесцветную субстанцию, напоминающую воду. Кипит при температуре -195,8 °C. М (N 2) = 28 г/моль. Простое вещество азот немного легче кислорода, его плотность по воздуху близка к 1.

Атомы в молекуле прочно связывают 3 общие электронные пары. Соединение проявляет высокую химическую устойчивость, что отличает его от кислорода и ряда других газообразных веществ. Для того чтобы молекула азота распалась на составляющие ее атомы, необходимо затратить энергию 942,9 кдж/моль. Связь из трех пар электронов очень прочная, начинает разрушаться при нагревании свыше 2000 °С.

При нормальных условиях диссоциация молекул на атомы практически не происходит. Химическая инертность азота также обусловлена полным отсутствием полярности в его молекулах. Они очень слабо взаимодействуют друг с другом, чем обусловлено газообразное состояние вещества при нормальном давлении и температуре, близкой к комнатной. Низкая химическая активность молекулярного азота находит применение в разных процессах и устройствах, где необходимо создать инертную среду.

Диссоциация молекул N 2 может происходить под влиянием солнечного излучения в верхних слоях атмосферы. Образуется атомарный азот, который при нормальных условиях реагирует с некоторыми металлами и неметаллами (фосфором, серой, мышьяком). В результате идет синтез веществ, которые в земных условиях получают косвенным путем.

Валентность азота

Наружный электронный слой атома образуют 2 s и 3 p электрона. Эти отрицательные частицы азот может отдать при взаимодействии с другими элементами, что соответствует его восстановительным свойствам. Присоединяя недостающие до октета 3 электрона, атом проявляет окислительные способности. Электроотрицательность азота ниже, его неметаллические свойства менее выражены, чем у фтора, кислорода и хлора. При взаимодействии с этими химическими элементами азот отдает электроны (окисляется). Восстановлением до отрицательных ионов сопровождаются реакции с другими неметаллами и металлами.

Типичная валентность азота — III. В этом случае химические связи образуются за счет притяжения внешних р-электронов и создания общих (связывающих) пар. Азот способен к образованию донорно-акцепторной связи за счет своей неподеленной пары электронов, как это происходит в ионе аммония NH 4+ .

Получение в лаборатории и промышленности

Один из лабораторных способов основан на окислительных свойствах Используется соединение азота с водородом — аммиак NH 3 . Этот неприятно пахнущий газ взаимоддействует с порошкообразным оксидом меди черного цвета. В результате реакции выделяется азот и появляется металлическая медь (красный порошок). На стенках трубки оседают капли воды — еще одного продукта реакции.

Другой лабораторный способ, в котором используется соединение азота с металлами — азид, например NaN 3 . Получается газ, который не надо очищать от примесей.

В лаборатории проводят разложение нитрита аммония на азот и воду. Для того чтобы реакция началась, требуется нагревание, затем процесс идет с выделением тепла (экзотермический). Азот загрязнен примесями, поэтому его очищают и осушают.

Получение азота в промышленности:

  • фракционная перегонка жидкого воздуха — способ, в котором используются физические свойства азота и кислорода (разные температуры кипения);
  • химическая реакция воздуха с раскаленным каменным углем;
  • адсорбционное газоразделение.

Взаимодействие с металлами и водородом — окислительные свойства

Инертность прочных молекул не позволяет получать некоторые соединения азота прямым синтезом. Для активации атомов необходимо сильное нагревание или облучение вещества. Азот может прореагировать с литием при комнатной температуре, с магнием, кальцием и натрием реакция идет лишь при нагревании. Образуются нитриды соответствующих металлов.

Взаимодействие азота с водородом происходит при высоких значениях температуры и давления. Также для этого процесса необходим катализатор. Получается аммиак — один из важнейших продуктов химического синтеза. Азот, как окислитель, проявляет в своих соединениях три отрицательные степени окисления:

  • −3 (аммиак и другие водородные соединения азота — нитриды);
  • −2 (гидразин N 2 H 4);
  • −1 (гидроксиламин NH 2 OH).

Важнейший нитрид — аммиак — в больших количествах получают в промышленности. Большой проблемой долгое время оставалась химическая инертность азота. Его сырьевыми источниками были селитры, но запасы минералов стали быстро сокращаться с ростом производства.

Большим достижением химической науки и практики стало создание аммиачного метода связывания азота в промышленных масштабах. В специальных колоннах проводится прямой синтез — обратимый процесс между азотом, полученным из воздуха, и водородом. При создании оптимальных условий, сдвигающих равновесие этой реакции в сторону продукта, применении катализатора выход аммиака достигает 97 %.

Взаимодействие с кислородом — восстановительные свойства

Для того чтобы началась реакция азота и кислорода, необходимо сильное нагревание. Достаточной энергией обладают и грозовой разряд в атмосфере. Важнейшие неорганические соединения, в которых азот находится в своих положительных степенях окисления:

  • +1 (оксид азота (I) N 2 O);
  • +2 (монооксид азота NO);
  • +3 (оксид азота (III) N 2 O 3 ; азотистая кислота HNO 2 , ее соли нитриты);
  • +4 (диоксид азота (IV) NO 2);
  • +5 (пентаоксид азота (V) N 2 O 5 , азотная кислота HNO 3 , нитраты).

Значение в природе

Растения поглощают ионы аммония и нитратные анионы из почвы, используют для химических реакций синтез органических молекул, постоянно идущий в клетках. Атмосферный азот могут усваивать клубеньковые бактерии — микроскопические существа, образующие наросты на корнях бобовых культур. В результате эта группа растений получает необходимый элемент питания, обогащает им почву.

Во время тропических ливней происходят реакции окисления атмосферного азота. Оксиды растворяются с образованием кислот, эти соединения азота в воде поступают в почву. Благодаря круговороту элемента в природе постоянно восполняются его запасы в земной коре, воздухе. Сложные органические молекулы, содержащие в своем составе азот, разлагаются бактериями на неорганические составляющие.

Практическое использование

Важнейшие соединения азота для сельского хозяйства — это хорошо растворимые соли. Усваиваются растениями мочевина, калиевая, кальциевая), аммонийные соединения (водный раствор аммиака, хлорид, сульфат, нитрат аммония).
Инертные свойства азота, неспособность растений усваивать его из воздуха приводят к необходимости ежегодно вносить большие дозы нитратов. Части растительного организма способны запасать макроэлемент питания «впрок», что ухудшает качество продукции. Избыток и фруктах может вызвать у людей отравления, рост злокачественных новообразований. Кроме сельского хозяйства, соединения азота используются в других отраслях:

  • для получения медикаментов;
  • для химического синтеза высокомолекулярных соединений;
  • в производстве взрывчатки из тринитротолуола (тротила);
  • для выпуска красителей.

Оксид NO находит применение в хирургии, вещество обладает обезболивающим эффектом. Потерю ощущений при вдыхании этого газа заметили еще первые исследователи химических свойств азота. Так появилось тривиальное название «веселящий газ».

Проблема нитратов в сельскохозяйственной продукции

В солях азотной кислоты — нитратах — содержится однозарядный анион NO 3- . До сих пор используется старое наименование этой группы веществ — селитры. Применяются нитраты для удобрения полей, в теплицах, садах. Вносят их ранней весной перед посевом, летом — в виде жидких подкормок. Сами по себе вещества не представляют большой опасности для людей, но в организме они превращаются в нитриты, затем в нитрозамины. Нитритные ионы NO 2- — токсичные частицы, они вызывают окисление двухвалентного железа в молекулах гемоглобина в трехвалентные ионы. В таком состоянии главное вещество крови человека и животных не способно переносить кислород и удалять из тканей углекислый газ.

Чем опасно нитратное загрязнение продуктов питания для здоровья человека:

  • злокачественными опухолями, возникающими при превращении нитратов в нитрозамины (канцерогены);
  • развитием язвенного колита,
  • гипотензией или гипертензией;
  • сердечной недостаточностью;
  • нарушением свертываемости крови
  • поражениями печени, поджелудочной железы, развитием диабета;
  • развитием почечной недостаточности;
  • анемией, нарушениями памяти, внимания, интеллекта.

Одновременное употребление разных продуктов с большими дозами нитратов приводит к острому отравлению. Источниками могут быть растения, питьевая вода, готовые мясные блюда. Замачиванием в чистой воде и кулинарной обработкой можно снизить в продуктах питания содержание нитратов. Исследователи выяснили, что более высокие дозы опасных соединений отмечены в незрелой и тепличной растительной продукции.

Фосфор — элемент подгруппы азота

Атомы химических элементов, которые находятся в одном вертикальном столбце периодической системы, проявляют общие свойства. Фосфор расположен в третьем периоде, относится к 15 группе, как и азот. Строение атомов элементов сходное, но существуют различия в свойствах. Азот и фосфор проявляют отрицательную степень окисления и валентность III в своих соединениях с металлами и водородом.

Многие реакции фосфора идут при обычных температурах, это химически активный элемент. Взаимодействует с кислородом с образованием высшего оксида Р 2 О 5 . Водный раствор этого вещества обладает свойствами кислоты (метафосфорной). При ее нагревании получается ортофосфорная кислота. Она образует несколько типов солей, многие из которых служат минеральными удобрениями, например суперфосфаты. Соединения азота и фосфора составляют важную часть круговорота веществ и энергии на нашей планете, используются в промышленной, сельскохозяйственной и других сферах деятельности.

Электронная конфигурация 2s 2 2p 3 Химические свойства Ковалентный радиус 75 пм Радиус иона 13 (+5e) 171 (-3e) пм Электроотрицательность
(по Полингу) 3,04 Электродный потенциал — Степени окисления 5, 4, 3, 2, 1, 0, -1, -3 Термодинамические свойства простого вещества Плотность 0,808 (−195,8 °C) /см ³ Молярная теплоёмкость 29,125 (газ N 2) Дж /( ·моль) Теплопроводность 0,026 Вт /( ·) Температура плавления 63,29 Теплота плавления (N 2) 0.720 кДж /моль Температура кипения 77,4 Теплота испарения (N 2) 5.57 кДж /моль Молярный объём 17,3 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая Параметры решётки 5,661 Отношение c/a — Температура Дебая n/a
N 7
14,00674
2s 2 2p 3
Азот

Азот, в форме двухатомных молекул N 2 составляет большую часть атмосферы, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87·10 15 т.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2·10 13 т, кроме того примерно 7·10 11 т азота содержатся в гидросфере в виде соединений.

Биологическая роль

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2%, по массовой доле — около 2,5 % (четвертое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9·10 11 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Круговорот азота в природе

Круговорот азота в природе

Фиксация атмосферного азота в природе происходит по двум основным направлениям — абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4·10 8 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium , клубеньковые бактерии бобовых растений Rhizobium , цианобактерии Anabaena , Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH 4 +). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий — первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» — глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и в конце концов попадают в мировой океан (этот поток оценивается в 2,5—8·10 7 т/год).

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

Многие соединения азота очень активны и нередко токсичны.

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:

NH 4 NO 2 → N 2 + 2H 2 O

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.

Ещё один лабораторный способ получения азота — нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

K 2 Cr 2 O 7 + (NH 4) 2 SO 4 = (NH 4) 2 Cr 2 O 7 + K 2 SO 4

(NH 4) 2 Cr 2 O 7 →(t) Cr 2 O 3 + N 2 + 4H 2 O

Самый чистый азот можно получить разложением азидов металлов:

2NaN 3 →(t) 2Na + 3N 2

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом:

O 2 + 4N 2 + 2C → 2CO + 4N 2

При этом получается так называемый «генераторный», или «воздушный», газ — сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки, в которых используется метод адсорбционного и мембранного газоразделения.

Один из лабораторных способов — пропускание аммиака над оксидом меди (II) при температуре ~700°С:

2NH 3 + 3CuO → N 2 + 3H 2 O + 3Cu

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700°C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Свойства

Физические свойства

Оптический линейчатый эмиссионный спектр азота

При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100г при 80 °C).

В жидком состоянии (темп. кипения -195,8 °C) - бесцветная, подвижная, как вода, жидкость. При контакте с воздухом поглощает из него кислород.

При -209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.

Известны три кристаллические модификации твёрдого азота. В интервале 36,61 - 63,29 К существует фаза β-N 2 с гексагональной плотной упаковкой, пространственная группа P6 3 /mmc , параметры решётки a=3,93 Å и c=6,50 Å. При температуре ниже 36,61 К устойчива фаза α-N 2 с кубической решёткой, имеющая пространственную группу Pa3 или P2 1 3 и период a=5,660 Å. Под давлением более 3500 атмосфер и температуре ниже 83 K образуется гексагональная фаза γ-N 2 .

Химические свойства, строение молекулы

Азот в свободном состоянии существует в форме двухатомных молекул N 2 , электронная конфигурация которых описывается формулой σ s ²σ s *2 π x, y 4 σ z ², что соответствует тройной связи между молекулами азота N≡N (длина связи d N≡N = 0,1095 нм). Вследствие этого молекула азота крайне прочна, для реакции диссоциации N 2 ↔ 2N удельная энтальпия образования ΔH° 298 =945 кДж, константа скорости реакции К 298 =10 -120 , то есть диссоциация молекул азота при нормальных условиях практически не происходит (равновесие практически полностью сдвинуто влево). Молекула азота неполярна и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.

Даже при 3000 °C степень термической диссоциации N 2 составляет всего 0,1 %, и лишь при температуре около 5000 °C достигает нескольких процентов (при нормальном давлении). В высоких слоях атмосферы происходит фотохимическая диссоциация молекул N 2 . В лабораторных условиях можно получить атомарный азот, пропуская газообразный N 2 при сильном разряжении через поле высокочастотного электрического разряда. Атомарный азот намного активнее молекулярного: в частности, при обычной температуре он реагирует с серой , фосфором , мышьяком и с рядом металлов, например, со .

Вследствие большой прочности молекулы азота многие его соединения эндотермичны, энтальпия их образования отрицательна, а соединения азота термически малоустойчивы и довольно легко разлагаются при нагревании. Именно поэтому азот на Земле находится по большей части в свободном состоянии.

Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием :

6Li + N 2 → 2Li 3 N,

при нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:

3Mg + N 2 → Mg 3 N 2 ,

Наибольшее практическое значение имеет нитрид водорода (аммиак):

Промышленное связывание атмосферного азота

Соединения азота чрезвычайно широко используются в химии, невозможно даже перечислить все области, где находят применение вещества, содержащие азот: это индустрия удобрений, взрывчатых веществ, красителей, медикаментов и проч. Хотя колоссальные количества азота доступны в прямом смысле слова «из воздуха», из-за описанной выше прочности молекулы азота N 2 долгое время оставалась нерешённой задача получения соединений, содержащих азот, из воздуха; большая часть соединений азота добывалась из его минералов, таких, как чилийская селитра. Однако сокращение запасов этих полезных ископаемых, а также рост потребности в соединениях азота заставил форсировать работы по промышленному связыванию атмосферного азота.

Наиболее распространён аммиачный способ связывания атмосферного азота. Обратимая реакция синтеза аммиака:

3H 2 + N 2 ↔ 2NH 3

экзотермическая (тепловой эффект 92 кДж) и идёт с уменьшением объёма, поэтому для сдвига равновесия вправо в соответствии с принципом Ле Шателье — Брауна необходимо охлаждение смеси и высокие давления. Однако с кинетической точки зрения снижение температуры невыгодно, так как при этом сильно снижается скорость реакции — уже при 700 °C скорость реакции слишком мала для её практического использования.

В таких случаях используется катализ, так как подходящий катализатор позволяет увеличить скорость реакции без сдвига равновесия. В процессе поиска подходящего катализатора было испробовано около двадцати тысяч различных соединений. По совокупности свойств (каталитическая активность, стойкость к отравлению, дешевизна) наибольшее применение получил катализатор на основе металлического железа с примесями оксидов алюминия и калия . Процесс ведут при температуре 400—600°С и давлениях 10—1000 атмосфер.

Следует отметить, что при давлениях выше 2000 атмосфер синтез аммиака из смеси водорода и азота идёт с высокой скоростью и без катализатора. Например, при 850 °C и 4500 атмосфер выход продукта составляет 97 %.

Существует и ещё один, менее распространённый способ промышленного связывания атмосферного азота — цианамидный метод, основанный на реакции карбида кальция с азотом при 1000 °C. Реакция происходит по уравнению:

CaC 2 + N 2 → CaCN 2 + C.

Реакция экзотермична, её тепловой эффект 293 кДж.

Ежегодно из атмосферы Земли промышленным путём отбирается примерно 1·10 6 т азота. Подробно процесс получения азота изложен здесь ГРАСИС

Соединения азота

Степени окисления азота в соединениях −3, −2, −1, +1, +2, +3, +4, +5.

Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;
Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4 или гидразин (существует также крайне неустойчивый пернитрид водорода N2H2, диимид);
Соединения азота в степени окисления −1 NH2OH (гидроксиламин) — неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;
Соединения азота в степени окисления +1 оксид азота (I) N2O (закись азота, веселящий газ);
Соединения азота в степени окисления +2 оксид азота (II) NO (монооксид азота);
Соединения азота в степени окисления +3 оксид азота (III) N2O3, азотистая кислота, производные аниона NO2-, трифторид азота NF3;
Соединения азота в степени окисления +4 оксид азота (IV) NO2 (диоксид азота, бурый газ);
Соединения азота в степени окисления +5 — оксид азота (V) N2O5, азотная кислота и её соли — нитраты, и др.

Использование и применение

Слабокипящий жидкий азот в металлическом стакане.

Жидкий азот применяется как хладагент и для криотерапии.

Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941 , как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при розливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.

Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённая ошибка. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.

Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.

Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.

Маркировка баллонов

Баллоны с азотом окрашены в чёрный цвет, должны иметь надпись жёлтого цвета и коричневую полосу(нормы

Снег еще не успел полностью растаять, а беспокойные владельцы загородных участков уже спешат оценить фронт работ в саду. А заняться тут и правда, есть чем. И, пожалуй, самое главное, о чём необходимо подумать ранней весной – как защитить свой сад от болезней и вредителей. Опытные садоводы знают, что пускать на самотёк эти процессы нельзя, а промедление и откладывание на потом сроков обработки могут существенно снизить урожай и качество плодов.

Пирог с рыбными консервами и сыром - идея простого обеда или ужина для ежедневного или воскресного меню. Пирог рассчитан на небольшую семью из 4-5 человек с умеренным аппетитом. В этой выпечке есть сразу все - и рыба, и картошка, и сыр, и хрустящая корочка из теста, в общем, почти как закрытая пицца-кальцоне, только вкуснее и проще. Рыбные консервы могут быть любыми - скумбрия, сайра, горбуша или сардины, выбирайте по своему вкусу. Такой пирог также готовят с вареной рыбой.

Инжир, фига, смоковница - это всё названия одного и того же растения, которое у нас стойко ассоциируется со средиземноморской жизнью. Кто хоть раз пробовал на вкус плоды инжира, знает, какая это вкуснятина. Но, кроме нежного сладкого вкуса, они ещё и очень полезны для здоровья. И вот какая интересная деталь: оказывается, инжир - совершенно неприхотливое растение. К тому же, его с успехом можно выращивать на участке в средней полосе или в доме - в контейнере.

Вкусный крем-суп с морепродуктами готовится чуть меньше часа, он получается нежным и кремовым. Морепродукты выбирайте по своему вкусу и кошельку, это может быть и морской коктейль, и королевские креветки, и кальмары. Я готовила суп с крупными креветками и мидиями в раковинах. Во-первых, это очень вкусно, во-вторых, красиво. Если готовите для праздничного ужина или обеда, то мидии в раковинах и большие неочищенные креветки выглядят в тарелке аппетитно и симпатично.

Довольно часто сложности по выращиванию рассады томатов возникают даже у бывалых дачников. У кого-то вся рассада получается вытянутая и слабая, у кого-то - внезапно начинает падать и гибнет. Все дело в том, что в квартире трудно поддерживать идеальные условия для выращивания рассады. Сеянцам любых растений нужно обеспечить много света, достаточную влажность и оптимальную температуру. Что еще нужно знать и соблюдать при выращивании рассады томатов в квартире?

Сорта томатов серии «Алтайский» пользуются большой популярностью у огородников по причине своего сладкого нежного вкуса, больше напоминающего вкус фрукта, нежели овоща. Это крупные помидоры, вес каждого плода равняется в среднем 300 граммов. Но это не предел, есть томаты крупнее. Мякоть этих томатов характеризуется сочностью и мясистостью с незначительной приятной маслянистостью. Вырастить отличные томаты серии «Алтайский» можно из семян «Агроуспех».

Долгие годы алоэ оставалось самым недооцененным комнатным растением. И это не удивительно, ведь широкое распространение алоэ обыкновенного в прошлом столетии привело к тому, что о других видах этого удивительного суккулента все забыли. Алоэ – растение, в первую очередь, декоративное. И при правильном выборе вида и сорта способно затмить любого конкурента. В модных флорариумах и в обычных горшках алоэ – выносливое, красивое и удивительно долговечное растение.

Вкусный винегрет с яблоком и квашеной капустой - вегетарианский салат из сваренных и охлажденных, сырых, квашеных, солёных, маринованных овощей и фруктов. Название произошло от французского соуса из уксуса, оливкового масла и горчицы (vinaigrette). Винегрет появился в русской кухне не так давно, примерно в начале 19 века, возможно рецепт позаимствовали в австрийской или немецкой кухне, так как ингредиенты для австрийского селёдочного салата весьма похожи.

Когда мы мечтательно перебираем в руках яркие пакетики с семенами, то порой подсознательно уверены, что обладаем прототипом будущего растения. Мысленно выделяем ему место в цветнике и предвкушаем заветный день появления первого бутона. Однако покупка семян далеко не всегда гарантирует, что в конечном итоге вы получите желанный цветок. Мне хотелось бы обратить внимание на причины, вследствие которых семена могут не взойти или погибнуть в самом начале прорастания.

Приближается весна и у дачников появляются заботы, как вырастить хорошую рассаду. Многие выращивают рассаду томата, перца, огурца. Что нужно сделать, чтобы рассада была качественной с развитой корневой системой и надземной частью? Прежде всего правильно выбрать сорт или гибрид для выращивания в открытом грунте или теплице. Внимательно прочитайте информацию на пакете с семенами, обратите внимание на срок годности, обработаны семена протравителем или нет.

Наступает весна, и работ у садоводов прибавляется, причём с наступлением тепла изменения в саду происходят стремительно. На растениях, вчера ещё спавших, уже начинают набухать почки, всё буквально на глазах оживает. После долгой зимы это не может не радовать. Но вместе с садом оживают и его проблемы – насекомые-вредители и возбудители болезней. Долгоносики, цветоеды, тли, клястероспориоз, манилиоз, парша, мучнистая роса - перечислять можно очень долго.

Тосты на завтрак с авокадо и яичным салатом - отличное начало дня. Яичный салат в этом рецепте выступает в роли густого соуса, которым приправлены свежие овощи и креветки. Мой яичный салат довольно необычен, это диетический вариант всеми любимой закуски - с сыром «Фета», греческим йогуртом и красной икрой. Если утром у вас есть время, никогда не отказывайте себе в удовольствии приготовить что-нибудь вкусное и полезное. День нужно начать с положительных эмоций!

Пожалуй, каждая женщина хоть раз получала в подарок цветущую орхидею. Неудивительно, ведь такой живой букет потрясающе выглядит и долго цветёт. Орхидеи нельзя назвать очень сложными в выращивании комнатными культурами, но не выполнение главных условий их содержания часто приводит к потере цветка. Если вы только начинаете знакомство с комнатными орхидеями, вам стоит узнать правильные ответы на главные вопросы по выращиванию этих прекрасных растений в доме.

Пышные сырники с маком и изюмом, приготовленные по этому рецепту, в моей семье съедают в мгновение ока. В меру сладкие, толстенькие, нежные, с аппетитной корочкой, без лишнего масла, словом, именно такие, как в детстве жарила мама или бабушка. Если изюм очень сладкий, то сахарный песок можно не добавлять вовсе, без сахара сырники лучше поджарятся и никогда не пригорят. Готовьте их на хорошо разогретой сковородке, смазанной маслом, на маленьком огне и без крышки!

Азот (N 2) был открыт Дж. Пристли в 1774 г. Название "азот" в переводе с греческого означает "безжизненный". Оно обусловлено тем, что азот не поддерживает процессы горения и дыхания. Но для всех основных процессов жизнедеятельности растительных и живых оргнизмов азот крайне важен.


Характеристика элемента

7 N 1s 2 2s 2 2p 3



Изотопы: 14 N (99,635%); 15 N (0,365%)


Кларк в земной коре 0,01 % по массе. В атмосфере 78,09 % по объему (75,6 % по массе). Азот входит в состав живой материи (белки, нуклеиновые кислоты и др. ОВ). В гидросфере азот присутствует в виде нитратов (NО 3). Атомы азота занимают 5-е место по распространенности во Вселенной.

Важнейшие N-содержащие неорганические вещества.

Свободный (молекулярный) азот


Атомы азота связаны между собой тремя ковалентными неполярными связями: одна из них - сигма-связь, 2 - пи-связи. Энергия разрыва связи очень велика

Физические свойства

При обычной температуре и атмосферном давлении N 2 - бесцветный газ, без запаха и вкуса, немного легче воздуха, очень плохо растворяется в воде. В жидкое состояние переводится с большим трудом (Ткип -196"С). Жидкий азот имеет большую теплоту испарения и применяется для создания низких температур (хладагент).

Способы получения

Азот присутствует в воздухе в свободном состоянии, поэтому промышленный способ получения заключается в разделении воздушной смеси (ректификация жидкого воздуха).


В лабораторных условиях небольшие количества азота можно получить следующими способами:


1. Пропускание воздуха над раскаленной медью, которая поглощает кислород за счет реакции: 2Cu + О 2 = 2СиО. Остается азот с примесями инертных газов.


2. Окислительно-восстановительное разложение некоторых солей аммония:


NH 4 NО 2 = N 2 + 2Н 2 О


(NH 4) 2 Cr 2 О 7 = N 2 + Cr 2 О 3 + 4Н 2 О


3. Окисление аммиака и солей аммония:


4NH 3 + 3О 2 = 2N 2 + 6Н 2 О


8NH 3 + ЗВr 2 = N 2 + 6NH 4 Br


NH 4 Cl + NaNO 2 = N 2 + NaCl + 2Н 2 О

Химические свойства

Молекулярный азот - химически инертное вещество вследствие исключительно высокой устойчивости молекул N 2 . Только реакции соединения с металлами протекают более или менее легко. Во всех остальных случаях для инициирования и ускорения реакций необходимо применять высокие температуры, искровые электрические разряды, ионизирующее излучение, катализаторы (Fe, Cr, V, Ti и их соединения).

Реакции с восстановителями (N 2 - окислитель)

1. Взаимодействие с металлами:


Реакции образования нитридов щелочных и щелочноземельных Me протекают как с чистым азотом, так и при горении металлов на воздухе


N 2 + 6Li = 2Li 3 N


N 2 + 6Cs = 2Cs 3 N


N 2 + 3Mg = Mg 3 N 2


2. Взаимодействие с водородом (реакция имеет большое практическое значение):


N 2 + ЗН 2 = 2NH 3 аммиак


3. Взаимодействие с кремнием и углеродом


2N 2 + 3Si = Si 3 N 4 нитрид кремния (IV)


N 2 + 2C = (CN) 2 дициан


2N 2 + 5C + 2Na 2 CО 3 = 4NaCN + 3CО 2 цианид натрия

Реакции с окислителями (N 2 - восстановитель)

Эти реакции в обычных условиях не протекают. С фтором и другими галогенами азот непосредственно не взаимодействует, а с кислородом реакция происходит при температуре электрических искровых разрядов:


N 2 + О 2 = 2NO


Реакция сильно обратимая; прямая протекает с поглощением тепла (эндотермичная).

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (лат. - mephitis - удушливое или вредное испарение земли). Официально открытие азота обычно приписывается Резерфорду, опубликовавшему в 1772 г. диссертацию "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ испорченным воздухом (Verdorbene Luft). Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). Лавуазье в 1776-1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Air mofette).
Лавуазье предложил назвать элемент "азот" от отрицательной греческой приставки "а" и слова жизнь "зоэ", подчеркивая его неспособность поддерживать дыхание. В 1790 году для азота было предложено название "нитроген" (nitrogene - "образующий селитру"), что и стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N.

Нахождение в природе, получение:

Азот в природе встречается главным образом в свободном состоянии. В воздухе объемная доля его составляет 78,09%, а массовая доля - 75,6%. Соединения азота в небольших количествах содержатся в почвах. Азот входит в состав белковых веществ и многих естественных органических соединений. Общее содержание азота в земной коре 0,01%.
В атмосфере азота содержится примерно 4 квадрильона (4·10 15) тонн, а в океанах - около 20 триллионов (20·10 12) тонн. Незначительная часть этого количества - около 100 миллиардов тонн - ежегодно связывается и включается в состав живых организмов. Из этих 100 миллиардов тонн связанного азота только 4 миллиарда тонн содержится в тканях растений и животных - все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.
В технике азот получают из воздуха. Для получения азота воздух переводят в жидкое состояние, а затем испарением отделяют азот от менее летучего кислорода (t кип N 2 = -195,8°С, t кип O 2 = -183°С)
В лабораторных условиях чистый азот можно получить разлагая нитрит аммония или смешивая при нагревании растворы хлорида аммония и нитрита натрия:
NH 4 NO 2 N 2 + 2H 2 O; NH 4 Cl + NaNO 2 NaCl + N 2 + 2H 2 O.

Физические свойства:

Природный азот состоит из двух изотопов: 14 N и 15 N. При обычных условиях азот - газ без цвета, запаха и вкуса, немного легче воздуха, плохо растворяется в воде (в 1 л воды растворяется 15,4 мл азота, кислорода - 31 мл). При температуре -195,8°C азот переходит в бесцветную жидкость, а при температуре -210,0°C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54°C устойчива форма с кубической решеткой, выше - с гексагональной.
Энергия связи атомов в молекуле азота очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Молекула N 2 диамагнитна. Это свидетельствует о том, что связь между атомами азота тройная.
Плотность газообразного азота при 0°C 1,25046 г/дм 3

Химические свойства:

При обычных условиях азот - химически малоактивное вещество из-за прочной ковалентной связи. В обычных условиях реагирует только с литием, образуя нитрид: 6Li + N 2 = 2Li 3 N
С повышением температуры активность молекулярного азота увеличивается, при этом он может быть может быть и окислителем (с водородом, металлами), и восстановителем (с кислородом, фтором). При нагревании, повышенном давлении и в присутствии катализатора азот взаимодействует с водородом образуя аммиак: N 2 + 3H 2 = 2NH 3
С кислородом азот соединяется только в электрической дуге с образованием оксида азотa(II): N 2 + O 2 = 2NO
В электрическом разряде возможна и реакция со фтором: N 2 + 3F 2 = 2NF 3

Важнейшие соединения:

Азот способен образовывать химические соединения, находясь во всех степенях окисления от +5 до -3. Соединения в положительных степенях окисления азот образует с фтором и кислородом, причем в степенях окисления больше +3 азот может находиться только в соединениях с кислородом.
Аммиак , NH 3 - бесцветный газ с резким запахом, хорошо растворяется в воде ("нашатырный спирт"). Аммиак обладает основными свойствами, взаимодействует с водой, галогеноводородами, кислотами:
NH 3 + H 2 O NH 3 *H 2 O NH 4 + + OH - ; NH 3 + HCl = NH 4 Cl
Один из типичных лигандов в комплексных соединениях: Cu(OH) 2 + 4NH 3 = (OH) 2 (фиол., р-рим)
Восстановитель: 2NH 3 + 3CuO 3Cu + N 2 + 3H 2 O.
Гидразин - N 2 H 4 (пернитрид водорода), ...
Гидроксиламин - NH 2 OH, ...
Оксид азота(I) , N 2 O (закись азота, веселящий газ). ...
Оксид азота(II) , NO - бесцветный газ, не имеет запаха, в воде малорастворим, относится к несолеобразующим. В лаборатории получают при взаимодействии меди и разбавленной азотной кислоты:
3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.
В промышленности получают каталитическим окислением аммиака при получении азотной кислоты:
4NH 3 + 5O 2 4NO + 6 H 2 O
Легко окисляется до оксида азота(IV): 2NO + O 2 = 2NO 2
Оксид азота(III) , ??? ...
...
Азотистая кислота , ??? ...
...
Нитриты , ??? ...
...
Оксид азота(IV) , NO 2 - ядовитый газ бурого цвета, имеет характерный запах, хорошо растворяется в воде, давая при этом две кислоты, азотистую и азотную: H 2 O + NO 2 = HNO 2 + HNO 3
При охлаждении переходит в бесцветный димер: 2NO 2 N 2 O 4
Оксид азота(V) , ??? ...
...
Азотная кислота , HNO 3 - бесцветная жидкость с резким запахом, t кип = 83°С. Сильная кислота, соли - нитраты. Один из сильнейших окислителей, что обусловлено наличием в составе кислотного остатка атома азота в высшей степени окисления N +5 . При взаимодействии азотной кислоты с металлами в качестве основного продукта выделяется не водород, а различные продукты восстановления нитрат-иона:
Cu + 4HNO 3 (конц) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;
4Mg + 10HNO 3 (оч.разб.) = 4Mg(NO 3) 2 + NH 4 NO 3 + 5H 2 O.
Нитраты , ??? ...
...

Применение:

Широко используется для создания инертной среды - наполнения электрических ламп накаливания и свободного пространства в ртутных термометрах, при перекачке жидкостей, в пищевой промышленности как упаковочный газ. Им азотируют поверхность стальных изделий, в поверхностном слое образуются нитриды железа, которые придают стали большую твердость. Жидкий азот часто используется для глубокого охлаждения различных веществ.
Важное значение азот имеет для жизни растений и животных, поскольку он входит в состав белковых веществ. В больших количествах азот применяется для получения аммиака. Соединения азота находят применение в производстве минеральных удобрений, взрывчатых веществ и во многих отраслях промышленности.

Л.В. Черкашина
ХФ ТюмГУ, гр. 542(I)

Источники:
- Г.П. Хомченко. Пособие по химии для поступающих в вузы. М., Новая волна, 2002.
- А.С. Егоров, Химия. Пособие-репетитор для поступающих в вузы. Ростов-на-Дону, Феникс, 2003.
- Открытие элементов и происхождение их названий/