Факультативное занятие «Применение свойства ограниченности функций. Применение свойства ограниченности функций к решению уравнений и

Галаева Екатерина, ученица 11 класса МАОУ СОШ №149 г Нижнего Новгорода

Работа носит одновременно и прикладной и исследовательский характер. Для полноты исследования были рассмотрены следующие вопросы:

– Как отражаются свойства функции при решении уравнений и неравенств?

– Какие уравнения и неравенства решаются через определение свойств области определения, множества значений, инвариантности?

– Каков алгоритм решения?

– Рассмотрены задания с параметром, предлагаемых в материалах КИМ при подготовке к ЕГЭ.

В работе Екатерина исследовала большой круг задач и систематизировал их по внешнему виду.

Скачать:

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Решить неравенство Решение. Функция f (х) = монотонно возрастает на всей числовой прямой, а функция g (x) = монотонно убывает на всей области определения. Поэтому неравен­ство f (х) > g (x) выполняется, если х >

Спасибо за внимание!

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Применение свойств функции при решении уравнений и неравенств Выполнила работу: Галаева Екатерина МБОУ СОШ №149 Московского района Ученицы 11 «А» класса Научный руководитель: Фадеева И. А. Учитель математики

Основные направления: Изучение свойств функции: монотонность, ограниченность, область определения и инвариантность Узнать основные утверждения, которые наиболее часто используются при решении уравнений, неравенств и систем Решение задач из материалов КИМ для подготовке к ЕГЭ

Монотонность Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции. f(x 1) f(x 2) x 1 x 2 f(x 1) f(x 2) x 1 x 2

Утверждение 1. Если функция у = f (x) монотонна, то уравнение f (x) = с имеет не более одного корня. x =2 f(x) = - монотонно убывающая, значит, других решений нет. Ответ: x =2

Утверждение 2. Если функция у = f (x) монотонно возрастает, а функция у = g (x) монотонно убывает, то уравнение f (x) = g (x) имеет не более одного корня. 2 - x = lg (x +11) + 1 g (x) = 2 - x является монотонно убывающей, а функция f (x) = lg (x + 11) + 1 монотонно возрастающей на области опреде­ления значит, уравнение f (х) = g (x) имеет не более одного корня. Подбором определяем, что х =-1 . Выше изложенное утверждение обосновывает единственность решения.

а) f (х) ≤ g (x) в том и только в том случае, когда х ϵ (- ∞ ; x 0 ]; б) f (х) ≥ g (x) в том и только в том случае, когда х ϵ [х 0 ; +∞). Наглядный смысл этого утверждения очевиден Утверждение 3. Если функция у = f (х) монотонно возрастает на всей числовой прямой, функция у = g (x) монотонно убывает на всей числовой прямой и f (х 0) = g (x 0), то справедливы следующие утвер­ждения:

Решить неравенство Решение. Функция f (х) = монотонно возрастает на всей числовой прямой, а функция g (x) = монотонно убывает на всей области определения. Поэтому неравен­ство f (х) > g (x) выполняется, если х > 2. Добавим область определения неравенства. Таким образом, получим систему Ответ: (2; 5).

Утверждение 4. Если функция у = f (х) монотонно возрастает, то уравнения f (х)=х и f (f (х))=х имеют одно и то же множество кор­ней, независимо от количество вложений. Следствие. Если n - натуральное число, а функция у = f (х) моно­тонно возрастает, то уравнения f (х)=х и n раз имеют одно и то же множество корней.

Решить уравнение. Ответ: Решение. П ри x ≥1 правая часть уравнения не меньше 1, а левая часть меньше 1. Следовательно, если уравнение имеет корни, то любой из них меньше 1. При x ≤0 правая часть уравнения неположительная, а левая часть положитель­на, в силу того что. Таким образом, любой корень данного уравнения принадлежит интервалу (0; 1) Умножив обе части данного уравнения на х, и разделив на x числитель и знаменатель левой части, получим

Откуда = . Обозначив через t , где t 0, получим уравнение = t . Рассмотрим возрастающую на своей области определения функцию f (t)= 1+ . Полученное уравнение можно записать в виде f (f (f (f (t))))= t , и по следствию утверждения 4 оно имеет то же множество решений, что и уравнение f (t)= t , т.е. уравнение 1 + = t , откуда. Единственным положительным корнем этого квадратного относительно уравнение является. Значит, откуда, т.е. , или. Ответ:

Утверждение 1. Если max f (x) = с и min g (x) = с, то уравнение f (x)= g (x) имеет то же множество решений, что и система Ограниченность Максимальное значение левой части равно 1 и минимальное значение правой части 1 , значит, решение уравнения сводиться к системе уравнений: , из второго уравнения находим возможный претендент x=0 , и убеждаемся, что он является решением и первого уравнения. Ответ: x=1 .

Решить уравнение Решение. Так как sin3x≤1 и cos4x≤1, левая часть данного уравнения не превосходит 7. Равной 7 она может быть в том и только том случае, если откуда где k , n ϵ Z . Остается установить, существуют ли такие целые k и n , при которых последняя система имеет решения. Ответ: Z

В задачах с неизвестными x и параметром a под областью определения понимают множество всех упорядоченных пар чисел (x ; a) , каждая из которых такова, что после подстановки соответствующих значений x и a во все входящие в задачу соотношения они будут определены. Пример 1. При каждом значение параметра a решите неравенство Решение. Найдем область определения этого неравенства. Из которых видно, что система Не имеет решений. Значит, область определения неравенства не содержит никаких пар чисел x и a , а поэтому неравенство не имеет решений. Область определения Ответ:

Инвариантность, т.е. неизменность уравнения или неравенства относительно замены переменной каким-либо алгебраическим выражением от этой переменной. Простейшим примером инвариантности является четность: если – четная функция, то уравнение инвариантно относительно замены x и – x , поскольку = 0. Инвариантность

Найти корни уравнения. Решение. Заметим, что пара инварианта относительно замене. Заменив в равенстве, получим. Умножив обе части данного равенства на 2 и вычтя из полученного равенства почленно равенство, находим 3 , откуда. Теперь осталось решить уравнение, откуда Корнями уравнения являются числа. Ответ: .

Найти все значения a , для каждого из которых уравнение имеет более трех различных решений. Решение задач с параметром Свойство монотонности

|x|= положительно X= |x|= Для существования двух корней числитель должен быть положителен. Поэтому При корни первого и второго уравнения совпадают, что не отвечает требованию условия: наличие более трех корней. Ответ: .

Найти все значения a , при каждом из которых уравнение имеет два корня. Преобразуем уравнение к виду И рассмотрим функцию f(x)= определенную и непрерывную на всей числовой прямой. График этой функции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида y= kt+l . f(x)= При любом раскрытие модуля первого выражения k не превосходит 8, поэтому возрастание и убывание функции f(x) будет зависеть от раскрытия второго модуля. При x f(x) будет убывать, а при x возрастать. То есть, при x=3 функция будет принимать наибольшее значение. Для того чтобы уравнение имело два корня, необходимо, чтобы f(3) Свойство монотонности

f(3)=12- |9-| 3+a || | 9-| 3+a || 9- | 3+a | - | 3+a | | 3+a | | 3+a | 3+a a Ответ: a

Найти все значения параметра а, при каждом из кото­рых для любого действительного значения х выполнено неравенство Перепишем неравенство в виде, введем новую переменную t = и рассмотрим функцию f (t) = , опреде­ленную и непрерывную на всей числовой прямой. График этой функ­ции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида, где к

Так как, то t ϵ [-1; 1]. В силу монотонного убывания функции у = f (t) достаточно проверить левый край данного отрезка. З. А истинным является Значит, что возможно, только если числа и и v одного знака либо какое-нибудь из них равно нулю. , = () () 0. Разложив квадрат­ные трехчлены на множители, получим неравенство (, из которого находим, что а ϵ (-∞; -1] U {2} U [ 4; +∞). Ответ: (-∞; - 1] U {2} U }