Интересные факты о хромосомах человека. Где находятся хромосомы? Где в клетке находятся хромосомы

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

Порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на ?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов .

У всех живых организмов, от одноклеточных водорослей до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у крысы – 42, а у человека – 46 (то есть 23 пары) . Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

История открытия хромосом

Рисунок из книги В. Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W. Flemming. Zellsubstanz, Kern und Zelltheilung. 1882 г.)

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга . Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге "Zellsubstanz, Kern und Zelltheilung" (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Генрихом Вальдейером в 1888 году, «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872 году швейцарский ботаник Карл фон Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum ) и традесканции (Tradescantia ). Однако его рисунки не позволяют однозначно утверждать, что К. Нэгили видел именно хромосомы. В том же 1872 году ботаник Э. Руссов привёл свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum ) и пыльцы лилии (Lilium bulbiferum ). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления. Некоторые же исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Гофмайстер задолго до К. Нэгили и Э. Руссова, ещё в 1848-1849 годах. При этом ни К. Нэгили, ни Э. Руссов, ни тем более В. Гофмейстер не осознавали значения того, что видели.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У. Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster ): Т. Морганом , К. Бриджесом (C.B.Bridges ), А. Стёртевантом (A.H.Sturtevant ) и Г. Мёллером . На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanisms of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Хромосомы эукариот

Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

Первичная перетяжка

Хромосомная перетяжка (X. п.), в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 9, 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК . В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Количество генов Всего оснований Секвенированых оснований
4 234 247 199 719 224 999 719
1 491 242 751 149 237 712 649
1 550 199 446 827 194 704 827
446 191 263 063 187 297 063
609 180 837 866 177 702 766
2 281 170 896 993 167 273 993

Хромосома - это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек - это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой - от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео

Хромосомы (др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки(клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза).

Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Хромосомы эукариот

Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов. В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные нуклеосомами.

В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм. В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности. Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка H1 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп.

Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры. Каждая клетка тела человека содержит в точности 46 хромосом . Хромосомы всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары).

Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ). Хромосомы в клетке под микроскопом можно увидеть только во время деления - митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином .

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры - хромосомы. Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида - хроматид, соединенных друг с другом в области первичной перетяжки - центромеры.

Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур). Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования. Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям.

Наиболее частым хромосомным заболеванием у человека является синдром Дауна , обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена.

Известны трисомии по 13-й хромосоме - Синдром Патау , а также по 18-й хромосоме - синдром Эдвардса , при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития. Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера . Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.