Конспект урока гармонические колебания. План-конспект урока по физике

Учитель физики :

При решении любой проблемы мы можем идти двумя путями: индуктивным и дедуктивным. Индуктивный путь предполагает возможность обобщения при анализе решения частных задач, дедуктивным методом мы сможем идти от общих принципов к частным.

Какой метод предпочтительнее в нашем случае?

Обсудите вопрос в парах и выскажите свой мнение.

Итак, по результатам обсуждения можно сделать вывод, что в данном случае нам необходимо использовать индуктивный метод; мы должны получить общие для любого колебания приемы, позволяющие описать состояние колебательной системы в произвольный момент времени.

Поэтому начнем обсуждение с частной задачи.

Задача 1.

Заряд на обкладках конденсатора меняется по закону:

πt+

В какие моменты времени в течение периода сила тока в контуре составляет от максимального значения? Чему в эти моменты времени равно напряжение? Какую долю от максимального оно в эти моменты времени составляет? Емкость конденсатора в контуре равна 2 мкФ.

Предложите схему решения задачи, попытайтесь найти разные подходы к решению. (Работа ведется в парах)

Итак, давайте соберем воедино результаты вашего обсуждения. (На доске собираются идеи, предложенные различными парами, обсуждаются и в результате формируется два подхода к решению задачи: аналитический и графический).

Какие действия необходимы для реализации аналитического решения?

Учитель математики:

Изучая физические закономерности, связывающие изменения заряда и силы тока в контуре, вы пришли к выводу, что

( t )= i ( t ) , поэтому, необходимо вспомнить, как найти производную тригонометрической функции.
-Давайте вспомним формулы производных тригонометрических функций, производной сложной функций.
-Найдите производные следующих функций (Слайд №6)

Учитель физики:

Итак, математические закономерности поиска производной сложной тригонометрической функции применим к решению нашей задачи.

Запишите уравнение изменения силы тока самостоятельно.

Представьте полученные результаты для общего обсуждения.

Итак, уравнение изменения силы тока выглядит следующим образом:

i(t)= - 0,03πsin(πt+3π).

Используя то, что сила тока в искомый момент времени составляет от максимального значения, равного 0,03π, составим уравнение

0,03πsin(πt+3π).

Учитель математики:

Уравнение данного типа является тригонометрическим.

Какие виды тригонометрических уравнений вы знаете, каковы способы их решения?
-Решите предложенные уравнения самостоятельно
(Слайд № 8)

Можно ли аналогично решить уравнение из задачи?

Учитель физики:

- Решим наше тригонометрическое уравнение, найдем искомые моменты времени. (К доске вызывается ученик).

Для поиска напряжения на конденсаторе в данный момент времени необходимо получить уравнение зависимости u ( t ). Зная связь заряда конденсатора и напряжения, получите уравнение и найдите искомое значение напряжения. (Задания выполняются самостоятельно на листе Приложения).

Составим алгоритм решения, опираясь на возможности математического анализа.

1.Запишем уравнения

изменения силы тока от времени, используя математическую связь между изменением заряда и силы тока.

2.Зная, что сила тока в искомый момент времени составляет 1/6 от максимального значения, составим и решим тригонометрическое уравнение и найдем соответствующие моменты времени.

3.Запишем уравнение изменения напряжения и вычислим его в ранее найденные моменты времени.

Подобная схема решения может использоваться для анализа любого колебательного процесса.

В качестве домашнего задания вам предлагается задача 2:

Точка совершает гармонические колебания с периодом в 2 секунды, амплитудой 50 мм, начальная фаза равна нулю. Найти скорость и ускорение точки в момент времени, когда смещение точки от положения равновесия равно 25 мм.

Перейдем ко второму способу решения исходной задачи - графическому.

Учитель математики:

Что нужно знать, чтобы построить график данной функции?

График какой функции является исходным ?

Какие преобразования графика нужно совершить, чтобы построить график функции

I (t)= - 0,03πsin(πt+3π)?

Как построить графики функций, изображенные на слайде № 10?

Учитель физики:

Воспользуемся графиком функции, отражающим изменения заряда и силы тока со временем(Слай №12. Какую информацию по условию задачи подскажут графики? Ответьте на вопрос задачи самостоятельно, используя лист Приложения.

Совпадают ли полученные ответы?

Какой из методов предпочтительнее и почему?

Нет ли еще одного варианта решения? Подумайте над этим вопросом дома.

Индуктивный метод часто используют, когда необходимо проанализировать и сравнить данные эксперимента или наблюдения. На одном из предыдущих уроков мы проводили лабораторную работу по исследованию зависимости периода колебаний математического маятника от его длины. В качестве дополнительного задания вы строили график зависимости координаты колеблющегося маятника от времени x ( t )=0,1 cost . Давайте воспользуемся этим графиком для ответа на следующие вопросы:

За какую часть периода тело, совершающее гармонические колебания, пройдет путь:

от среднего положения до крайнего

первую половину пути

вторую половину пути

Можно ли оценить эти промежутки времени экспериментально?

В какой промежуток времени скорость тела меньше максимальной скорости в 2 раза?

Какими математическими методами нужно воспользоваться для ответов на поставленные вопросы?

Урок по физике для 11 класс по теме « Гармонические колебания. Амплитуда, период, частота. Фаза колебаний»

Цель урока: познакомить учащихся с понятие гармонических колебаний, с условиями, при выполнении которых колебания считаются гармоническими, их характеристиками, доказать, что колебания математического и пружинного маятников являются гармоническими, вывести формулу периодов этих маятников, показать невозможность изучения физики без знания математики, показать, что дифференциальное исчисление и понятие производной – являются мощнейшими инструментами изучения и исследования физических процессов и явлений.

Тип урока: урок усвоения новых знаний .

Продолжительность урока: один академический час.

Оборудование: математический и пружинный маятники, длинная бумажная лента шириною 25 см, капельница с цветными чернилами, мультимедийный проектор с доской и ПК с инсталлированными пакетом Microsoft Office и УП GRAN1.

Структура урока и ориентировочное время

Ориентировочные

затраты времени

І. Организационный момент

1 мин

ІІ.

7 мин

3.1 Мотивация учебной деятельности учащихся (сообщения темы, цели, задач урока и мотивация учебной деятельности школьников)

3.2 Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения

3.4 Решение задач

30 мин

(5 мин +

15 мин

2 мин

8 мин)

IV .Подведение итогов урока

( сообщение домашнего задания и рефлексия )

7 мин

Эпиграф для урока : «Наука едина и нераздельна»
Владимир Иванович Вернадский (1863-1945), академик Российской академии наук , , один из основателей и первый президент .

Ход урока

І. Организационный момент

ІІ. Проверка домашнего задания, воспроизведение и коррекция опорных знаний учащихся ( фронтальный опр ос ).

1. В каких единицах измеряются величины углов в СИ? (СИ

2. Что называется 1 радианом? (φ= = = рад=360 0 1 рад =

57,3 0)

3. Что называется угловой скоростью и каковы единицы ее измерения в СИ?

ω= ==2 πυ ; (СИ)

4. Как изменяются координаты точки при ее движении по окружности? (х=R =х max = х max ; y =R = y max y max )

5. Что называется производной функции f(x)? Какова формула производной?

( x )=

6. Чему равна производная ((=)

((=)

х n (() ׳ = n )

nx ( ( nx ) ׳ = n )

7. В чем заключается физический (механический) смысл производной?

а) равномерное движение: х=х ) + vt ( x ׳ ( t )=( х 0 + vt ) ׳ = v .

б) равноускоренное движение: x 0 + v 0 t + ( x ׳ ( t )= 0 + v 0 t +) ׳ = v 0 + at = v .

Вывод№1 : І-я производная координаты тела по времени равна скорости движения тела.

в) ׳׳ ( t )= 0 + v 0 t +) ׳׳ =( v 0 + at ) ׳

Вывод№2 : І І -я производная координаты тела по времени равна ускорению тела. При равномерном движении х ׳׳ ( t )= 0 + v 0 t ) ׳ =а=0 ускорение отсутствует.

ІІІ. Изучение нового материала

3.1 Мотивация учебной деятельности учащихся (сообщения темы, цели, задач урока и мотивация учебной деятельности школьников - определить вместе с учащимися, обратить внимание на смысл эпиграфа, на то, что материал урока как объект изучения будет рассмотрен не только с физической, но и с математической (алгебраической) точки зрения, где математика выступает в роли инструмента).

3.2. Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения .

3.2.1. Что называется колебанием? (периодически повторяющееся движение)

3.2.2. Чем характеризуются колебания (каковы характеристики колебаний)? (координатой, амплитудой, скоростью, периодом, частотой)

3.2.3 Следовательно, какими функциями с т. зрения математики должны описываться колебания - линейными, нелинейными (степенными, логарифмическими, тригонометрическими (периодическими))? – по логике, раз колебание –это то, что периодически повторяется, следовательно, периодическими.

3.2.4. Из вышеперечисленных функций, – какие относятся к периодическим? (тригонометрические )

3.2.5. Какие Вам известны периодические тригонометрические функции? ()

3.2.6. Как Вы думаете, во время колебаний маятника как изменяется его координата, скорость и ускорение – непрерывно или скачкообразно (дискретно)? (Координата, скорость и ускорение изменяются непрерывно )

3.2.7. А раз непрерывно, то какими из 4-х тригонометрических функций () должны описываться величины, характеризующие любой колебательный процесс? (Только т.к. они непрерывны, а имеют разрыв - продемонстрировать графики ).

3.2.8. Определение гармонических колебаний.

Величина Х (физическая величина) считается гармонически колеблющейся (изменяющейся), если 2-я производная от этой величины пропорциональна самой этой величине х, взятой с обратным знаком:

(*) х - диф. уравн. 2-го порядка (условие гармоничности х )

3.2.9. Докажем, что только уравнения типа: х=х max sin ω t и х=х max соs ω t

удовлетворяют уравнению (*): =(sin ω t ) = ω x max соs ω t .

=( ω x max соs ω t ) = - ω 2 x max sin ω t = - ω 2 x .

=( cos ω t) =- ω x max sins ω t.

=(- ω x max sin ω t) = - ω 2 x max cod ω t= - ω 2 x. С ледовательно :

Вывод: уравнения типа х= х=х max sin ω t sin ω t и х=х max соs ω t являются гармоническими.

3.2.10. Характеристики гармонических уравнений

х=х max sin ω t

х=х max соs ω t , х max амплитуда колебания, ω t – фаза колебаний,

ω – циклическая частота колебаний.

СИ -рад, СИ -рад/с, СИ - м (если речь о механических колеб)

Определение 1 : Амплитудой гармонических колебаний х max называется наибольшее значение колеблющейся величины, которое стоит перед знаком sin или соs в уравнении гармонических уравнений.

Определение 2 : Периодом гармонических колебаний Т называется время одного колебания

Т = ; СИ - с

Определение 3 : Частотой гармонических колебаний υ называется количество колебаний в единицу времени.

υ = ; СИ - с -1 ; Гц.

Определение 4 : Фазой гармонических колебаний φ называется физическая величина, стоящая под знаком sin или соs в уравнении гармонических уравнений и которая при заданной амплитуде однозначно определяет значение колеблющейся величины.

φ = ω t ; СИ -рад.

3.2.11. Докажем, что колебания маятников гармонические:

а) пружинный: F упр = -kx = ma; a = - x ; Т.к. a = x , то имеем :

x = - x пружинный ω 2 = ω = = ; откуда Т = 2 π - формула периода колебаний пружинного маятника.

б) математический (груз, подвешенный на невесомой и нерастяжимой нити, размерами которого по сравнению с ее длиной можно пренебречь)

F равнод = -mgsin φ = ma ; - gsin φ = a = x ; Т.к. sin φ = - g = x = - ω 2 x ; математический маятник колеблется гармонически. Т.к. ω 2 = ω = = ; откуда Т = 2 π - формула периода колебаний математического маятника.

3.2.12. Опыт с маятником-чернильницей (песочницей).

Вывод: Опыт подтверждает, что маятник колеблется гармонически (т.к. след имеет форму синусоиды).

3.3 Подведение краткого итога изучения теоретического материала.

3.4 Решение задач

3.4.1 Экспериментальное задание: экспериментально найти период колебаний пружинного маятника, его х max , записать уравнение его колебаний и найти v max и a max .(пружина с жескостью 40 Н/м, груз 400г)

Т 0,67 с υ == 1,5 Гц х =0,05cos2 π 1,5 t = 0,05 cos 3 π t .

V= (t)= - 0,15 π sin3 π t ; a=(t)=-0,45 π 2 cos3 π t

3.4.2 Задачи № 4.1.5 и 4.1.6 (Сборник задач по физике, О.И.Громцева,

Экзамен, Москва, 2015),стр.67

3.4.3 Задачи № 4.2.1 и 4.3.1. – для слабых учеников;

4.3.12 и № 12.3.2 – для средних и сильныхучеников.

IV .Подведение итогов урока (сообщение домашнего задания и рефлексия).

4.1 Д.з. § 13,14,15, стр. 65 (задачи ЕГЭ № А1, А3), стр. 68 (задачи для самостоятельного решения – две задачи на выбор ученика).

4.2 Рефлексия

.

Цель урока : сформировать у учащихся представление о гармонических колебаниях, как о гармонических изменениях координаты и других физических величин; ввести понятие амплитуды, периода, частоты, циклической частоты; получить формулу для вычисления периода свободных колебаний.

Ход урока

Проверка домашнего задания методом индивидуального опроса

1. Пояснить, используя чертеж, какие силы заставляют колебаться математический маятник.

2. Получить уравнение движение для пружинного маятника. у доски)

3. Получить уравнение движения математического маятника. (у доски)

Изучение нового материала

1. Изучив зависимость ускорения от координаты колеблющегося тела, найдем Зависимость координаты от времени.

2. Ускорение – вторая производная координаты по времени.

А = – k x/m; x“= – k x/m; где х“- вторая производная координаты по времени.

Если колебания свободные, то координата х со временем изменяется так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

3. Гармонические колебания

Координата х меняется со временем периодически. Нам известны две периодические функции: синус и косинус

Косинус при возрастании аргумента от нуля меняется медленно, приближаясь к нулю его изменения, происходят все быстрее.

Пружинный маятник, выведенный из положения равновесия, ведет себя точно так же. Синус и косинус обладают свойством, что вторая производная этих функций пропорциональна самим функциям, взятым с противоположным знаком.

На основании этого можно утверждать, что координата тела, совершающего свободные колебания, изменяется со временем по закону косинуса или синуса.

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

4. Амплитуда колебаний

Модуль наибольшего смещения тела от положения равновесия называют Амплитудой гармонических колебаний.

Амплитуда – характеристика колебательного движения; она показывает как смещено тело от положения равновесия.

5. Решение уравнения движения, описывающего свободные колебания. Запишем решение уравнения; х“= – k x/m; — X= xm QUOTE ·t; Первая производная будет иметь вид: Xʹ= – QUOTE xm QUOTE ·t;

Вторая производная будет равна: X“= – QUOTE xm QUOTE ·t = – k x/m; то есть мы, получили первоначальное уравнение. Решением этого уравнения будет также и функция; QUOTE ·t

Из опытов получили

А= – k x/m a= – g x/L

Для пружинного для математического маятника маятника

ОБОЗНАЧИМ

Имеем уравнения движения

А= – ω02x Подчиняются одной закономерности a= – ω02x

A ~x x~x“ x “= – ω02x – решением этого дифференциального уравнения

Является: X = xm QUOTE . График зависимости координаты от времени представляет собой Косинусоиду. Гармонические колебания происходят по этому закону.

6. Период и частота гармонических колебаний

Период – время одного колебания.

УРОК 2/24

Тема. Гармонические колебания

Цель урока: ознакомить учащихся с понятием гармонических колебаний.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Механические колебания.

2. Основные характеристики колебаний.

3. Свободные колебания. Условия возникновения свободных колебаний

Демонстрации

1. Свободные колебания груза на пружине.

2. Запись колебательного движения

Изучение нового материала

1. Уравнение колебательного движения груза на пружине.

2. Гармонические колебания

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Во многих колебательных системах при малых отклонений от положения равновесия модуль вращательной силы, а значит, и модуль ускорения прямо пропорционален модулю смещения относительно положения равновесия.

Покажем, что в таком случае смещение зависит от времени по закону косинуса (или синуса). С этой целью проанализируем колебания груза на пружине. Выберем за начало отсчета точку, в которой находится центр масс груза на пружине в положении равновесия (см. рисунок).

Если груз массой m смещен от положения равновесия на величину х (для положения равновесия х = 0), то на него действует сила упругости Fx = - kx , где k - жесткость пружины (знак «-» означает, что сила в любой момент времени направлена в сторону, противоположную смещению).

Согласно второму закону Ньютона Fx = m ах. Таким образом, уравнение, описывающее движение груза имеет вид:

Обозначим ω2 = k / m . Тогда уравнение движения груза будет иметь вид:

Уравнение такого вида называется дифференциальным уравнением. Решением этого уравнения является функция:

Таким образом, за вертикального смещения груза на пружине от положения равновесия он будет совершать свободные колебания. Координата центра масс при этом изменяется по закону косинуса.

Убедиться в том, что колебания происходят по закону косинуса (или синуса) можно на опыте. Ученикам целесообразно показать запись колебательного движения (см. рисунок).

Ø Колебания, при которых смещение зависит от времени по закону косинуса (или синуса), называются гармоническими.

Свободные колебания груза на пружине представляют пример механических гармонических колебаний.

Пусть в некоторый момент времени t 1 координата колеблющегося груза равна x 1 = xmax cosωt 1 . Согласно определению периода колебаний, в момент времени t 2 = t 1 + T координата тела должна быть такой же, как и в момент времени t 1 , то есть х2 = х1 :

Период функции cosωt равен 2, следовательно, ωТ = 2, или

Но поскольку Т = 1/ v , то ω = 2 v , то есть циклической частота колебаний ω является количество полных колебаний, совершаемых за 2 секунд.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Приведите примеры гармонических колебаний.

2. Тело выполняет незатухающие колебания. Которые из величин, характеризующих это движение, постоянные, а какие меняются?

Второй уровень

Как изменяются сила, действующая на тело, его ускорение и скорость во время осуществления им гармонических колебаний?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Напишите уравнение гармонического колебания, если его амплитуда 0,5 м, а частота 25 Гц.

2. Колебания груза на пружине описывают уравнением х = 0,1 sin 0,5 . Определите амплитуду, круговую частоту и частоту колебаний.