Математический язык и его структура.

В языке все подчиняется строгим правилам, нередко похожим на математические Напри мер, отношения между фонемами напоминают математические пропорции в русском языке [б] так относится к [п], как [д] к [т] (см Артикуляционная классификация звуков) По трем членам такой «пропорции» можно «вы числить» четвертый Точно так же по одной форме слова удается обычно «вычислить» остальные его формы, если известны все формы каких либо других «похожих» слов, такие «вы числения» постоянно производят детн, когда учатся говорить (см Аналогия в грамматике) Именно благодаря своим строгим правилам язык может служить средством общения если бы их не было, людям трудно было бы понимать друг друга

Сходство этих правил с математическими объясняется тем, что математика произошла в конечном счете нз языка и сама представляет собой особого рода язык для описания колн чественных отношений н взаимного располо жения предметов Такие языки, специально предназначенные для описания каких то от дельных «частей» или сторон действительности, называют специализированными в отличне от универсальных, на которых можно говорить о чем угодно Люди создали много специали зированных языков, например систему дорож ных знаков, язык химических формул, нотную запись музыки Но среди всех этих языков математический язык ближе всего к универ сальным, потому что отношения, которые выражаются с его помощью, встречаются повсюду - ив природе, и в человеческой жиз ни, и притом это самые простые и самые важ ные отношения (больше, меньше, ближе, дальше, внутри, вне, между, непосредственно следует и т п), по образцу которых люди на учились говорить и о других, более сложных

Многие математические выражения напо минают по своему строению предложения обыч ного, естественного языка Например, в таких выражениях, как 2 < 3 или 2 + 3=5, знаки < и = играют такую же роль, как глагол (сказуемое) в предложениях естественною языка, а роль знаков 2, 3, 5 похожа на роль существительного (подлежащего) Но особен но похожи на предложения естественного язы ка формулы математической логики - наукн, в которой изучается строение точных рассуж дений, в первую очередь математических, н при этом используются математические же методы Наука эта сравнительно молода она возникла в XIX в и бурно развивалась в течение первой половины XX в Примерно в то же время воз никла и развилась абстрактная алгебра - ма тематическая наука, изучающая всевозможные отношения и всевозможные действия, которые можно производить над чем угодно (а не только над числами и многочленами, как в элементарной алгебре, которую изучают в школе)

С развитием этих двух наук, а также некото рых других, тесно связанных с ними разделов математики стало возможным применение математических средств для исследования строения естественных языков, и начиная с середины нынешнего столетня математические средства действительно применяются для этой цели Готовых методов, пригодных для линг вистических приложений, в математике не было, нх пришлось создать заново, н образцом для них послужили прежде всего методы ма тематической логики и абстрактной алгебры Так возникла новая наука - математическая лингвистика И хотя это математическая дис циплина, разрабатываемые ею понятия и ме тоды находят применение в языкознании н играют в нем все большую роль, становясь постепенно одним из его главных инструмен тов

Для чего же используются в языкознании математические средства? Язык можно пред ставить себе как своеобразный механизм, с помощью которого говорящий преобразует имеющиеся в его мозгу «смыслы» (т е свои мыслн, чувства, желания н т п) в «тексты» (т е цепочки звуков или письменных знаков), а затем преобразует «тексты» обратно в «смыс лы» Эти-то преобразования удобно изучать математически Для нх изучения служат фор мальные грамматики - сложные математи ческне системы, совсем не похожие на обычные грамматики, чтобы но настоящему понять, как они устроены, и научиться нми пользовать ся, желательно сначала познакомиться с мате матической логикой Но среди применяемых в языкознании математических методов есть н довольно простые, например различные спо собы точного описания синтаксического строе ния предложения с помощью графов

Графом в математике называют фигуру, состоящую из точек - их называют узлами графа, - соединенных стрелками Графами пользуются в самых разных науках (н не толь ко в науках), причем роль узлов могут играть какие угодно «предметы», например, родословное дерево - это граф, узлы которого - люди. При использовании графов для описания строения предложения проще всего брать в качестве узлов слова и проводить стрелки от подчиняющих слов к подчиненным. Например, для предложения Волга впадает в Каспийское море получаем такой граф:

Волга впадает в Каспийское море.

В формальных грамматиках принято считать, что сказуемое подчиняет себе не только все дополнения и обстоятельства, если они есть, но и подлежащее, потому что сказуемое - «смысловой центр» предложения: все предложение в целом описывает некоторую «ситуацию», и сказуемое, как правило, есть имя этой ситуации, а подлежащее и дополнения - имена ее «участников». Например, предложение Иван купил у Петра корову за сто рублей описывает ситуацию «покупки» с четырьмя участниками - покупателем, продавцом, товаром и ценой, а предложение Волга впадает в Каспийское море - ситуацию «впадения» с двумя участниками. Считают, кроме того, что существительное подчинено предлогу, потому что глагол управляет существительным через предлог. Уже такое простое математическое представление, казалось бы немного добавляющее к обычному, «школьному» разбору предложения, позволяет подметить н точно сформулировать много важных закономерностей.

Оказалось, что для предложений без однородных членов и не сложносочиненных построенные таким образом графы являются деревьями. Деревом в теории графов называют такой граф, в котором: 1) существует узел, н притом только один - называемый корнем,- в который не входит нн одна стрелка (в дереве предложения корнем, как правило, служит сказуемое); 2) в каждый узел кроме корня входит ровно одна стрелка; 3) невозможно, двигаясь из какого-нибудь узла в направлении стрелок, вернуться в этот узел. Деревья, построенные для предложений так, как сделано в примере, называются деревьями синтаксического подчинения. От вида дерева синтаксического подчинения зависят некоторые стилистические особенности предложения. В предложениях так называемого нейтрального стиля (см. Функциональные стили языка) соблюдается, как правило, закон проективности, состоящий в том, что если в дереве синтаксического подчинения все стрелки проведены сверху от той прямой, на которой записано предложение, то никакие две из них не пересекаются (точнее - можно провести их так, чтобы никакие две не пересекались) и ни одна стрелка не проходит над корнем. За исключением небольшого числа особых случаев, когда в предложении имеются некоторые специальные Ьлова н словосочетания (например, сложные формы глаголов: Здесь будут играть дети), несоблюдение закона проективности в предложении нейтрального стнля - верный признак недостаточной грамотности:

«Собрание обсудило выдвинутые предложения Сидоровым».

В языке художественной литературы, особенно в поэзин, нарушения закона проективности допустимы; там онн чаще всего придают предложению какую-либо особую стилистическую окраску, например торжественности, приподнятости:

Еще одно последнее сказанье

И летопись окончена моя.

(А.С. Пушкин)

или, наоборот, непринужденность, разговорность:

Какой-то Повар, грамотей, С поварни побежал своей В кабак (он набожных был правил)

(И.А. Крылов)

Стилистическая окраска предложения связана также С наличием в дереве синтаксического подчинения гнезд - последовательностей стрелок, вложенных друг в друга и не имеющих общих концов (число стрелок, образующих гнездо, называется его глубиной). Предложение, у которого дерево содержит гнезда, ощущается как громоздкое, тяжеловесное, причем глубина гнезда может служить «мерой громоздкости». Сравним, например, предложения:

Приехал собирающий нужные для новой книги сведения писатель (в дереве которого есть гнезда глубины 3) и

Приехал писатель, сооирающии сведения, нужные для новой книги (в дереве которого нет гнезд, точнее - нет гнезд глубины, большей 1).

Исследование особенностей деревьев синтаксического подчинения может дать много интересного для изучения индивидуального стиля писателей (например, нарушения проективности встречаются у А. С. Пушкина реже, чем у И. А. Крылова).

С помощью деревьев синтаксического подчинения изучают синтаксическую омонимию - явление, состоящее в том, что предложение или словосочетание имеет два разных смысла - или больше, - но не за счет многозначности входящих в него слов, а за счет различий в синтаксическом строении. Например, предложение Школьники из Костромы поехали в Ярославль может означать либо «костромские школьники поехали откуда-то (не обязательно из Костромы) в Ярославль», либо «какие-то (не обязательно костромские) школьники поехали из Костромы в Ярославль». Первому смыслу отвечает дерево Школьники из Костромы поехали в Ярославль, второму - Школьники из Костромы поехали в Ярославль.

Существуют и другие способы представления синтаксического строения предложения с помощью графов. Если представить его строение с помощью дерева, составляющими узлами будут служить словосочетания и слова; стрелки проводятся от более крупных словосочетаний к содержащимся в них более мелким и от словосочетаний к содержащимся в них словам.

Применение точных математических методов дает возможность, с одной стороны, глубже проникнуть в содержание «старых» понятий языкознания, с другой - исследовать язык в новых направлениях, которые прежде трудно было бы даже наметить.

Математические методы исследования языка важны не только для теоретического языкозна ния, но и для прикладных лингвистических за дач, в особенности для тех, которые связаны с автоматизацией отдельных языковых процессов (см Перевод автоматический), автоматическим поиском научных и технических книг и статей по заданной теме и т. п. Технической базой для решения этих задач служат электронные вычислительные машины. Чтобы решит! какую-либо задачу на такой^ машине, нужно сначала составить программу, четко н недвусмысленно определяющую порядок работы машины, а для составления программы необходимо представить исходные данные в ясном и точном виде. В частности, для составления программ, с помощью которых решаются лингвистические задачи, необходимо точное описание языка (или хотя бы тех его сторон, которые важны для данной задачи) - н именно математические методы дают возможность построить такое описание

Не только естественные, но и искусственные языки (см Искусственные языки) можно исследовать с помощью средств, разрабатываемых математической лингвистикой. Некоторые искусственные языки можно этими средствами описывать полностью, что не удается и, надо полагать, никогда не удастся для естественных языков, устроенных несравненно сложнее. В частности, формальные грамматики используются при построении, описании и анализе входных языков вычислительных машин, на которых записывается вводимая в машину информация, и при решении многих других задач, связанных с так называемым общением между человеком и машиной (все этн задачи сводятся к разработке некоторых искусственных языков)

Уходят в прошлое времена, когда языковед мог обходиться без знания математики С каждым годом эта древняя наука, соединяющая в себе черты наук естественных и гуманитарных, становится все более необходимой ученым, занимающимся теоретическим исследованием языка и практическим применением результатов этого исследования. Поэтому в наше время каждый школьник, который хочет основательно познакомиться с языкознанием или собирается сам заниматься им в будущем, должен уделять изучению математики самое серьезное внимание.

Математика - это язык.

Давид Гилберт

Математика - это язык. Язык нужен для коммуникации, чтобы передать смысл, возникший у одного человека к другому человеку. Для этого служат предложения этого языка, составленные по определенным правилам.Почему люди учат разные языки, что это им дает кроме возможности общаться в других странах? Ответ - каждый язык имеет слова, не существующие в других языках, поэтому позволяет описывать (и видеть) такие явления, которые никогда человек бы не увидел, если бы не знал этого языка. Знание еще одного языка позволяет получить еще одно, отличное от других, видение мира. (У эскимосов в языке существует 20 разных слов для обозначения снега, в отличие от русского, где всего одно. Хотя, например, в русском есть такое слово «наст» для обозначения корки, образующейся на снегу после оттепели, за которой сразу наступили заморозки. Есть, вероятно, и другие слова, описывающие особые состояния снега).

Математика как язык науки

Представляя собой тип формального знания, математика занимает особое место в отношении наук фактуального профиля. Она оказывается хорошо приспособленной для количественной обработки любой научной информации, независимо от ее содержания. Более того, во многих случаях математический формализм оказывается единственно возможным способом выразить физические характеристики явлений и процессов, поскольку их естественные свойства и особенно отношения непосредственно не наблюдаемы. Скажем, каким образом в физических терминах описать тяготение, эффекты электромагнетизма и т.п.? Их можно представить только математически как определенные числовые соотношения в законах, фиксируемых количественными показателями. Современная наука в лице квантовой механики и чуть ранее теория относительности лишь прибавили абстрактности теоретическим объектам, вполне лишая их наглядности. Только и остается апеллировать к математике. Заявил же однажды Л. Ландау, что современному физику вовсе не обязательно знать физику, ему достаточно знать математику.

Рассмотренное обстоятельство и выдвигает математику на роль языка науки. Пожалуй, впервые отчетливо это прозвучало у Г. Галилея, одного из решающих персонажей в создании математического естествознания, господствующего вот уже более трехсот лет. Галилей писал: "Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, который сначала научился постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики".

По мере роста абстрактности естествознания эта идея находила все более широкую реализацию, а на склоне XIX в. столетия уже вошла в практику научного исследования в качестве своего рода методологической максимы. Именно так прозвучали слова известного американского физика-теоретика Д. Гиббса, когда однажды при обсуждении вопроса о преподавании английского языка в школе, он, по обыкновению молчавший на подобных совещаниях, неожиданно произнес: "Математика - тоже язык". Дескать, что вы тут все об английском да об английском, математика - также язык. Выражение стало крылатым. И вот уже вослед тому английский физикохимик, лауреат Нобелевской премии (полученной, кстати сказать, вместе с нашим Н. Семеновым) Ханшельвуд объявляет, что ученые должны знать математику как родной язык.

Характерно рассуждение замечательного отечественного исследователя В. Налимова, работавшего в области наукометрии, теории математического эксперимента, предложившего вероятностные модели языка. Хорошая наука, пишет он, говорит на языке математики. Мы, люди, почему-то устроены так, что воспринимаем Мироздание через пространство, время и число. Это значит, что мы подготовлены к тому, чтобы обращаться к математике, подготовлены эволюцией живого, то есть априорно. Пытаясь приоткрыть тайную подоплеку математической власти над ученым, Налимов замечает далее: "Меня часто обвиняют, что я применяю математику в исследовании сознания, языковедения, биологической эволюции. Но разве там есть математика как таковая? Вряд ли. Математикой я пользуюсь как Наблюдатель. Так мне удобнее мыслить, иначе я не могу. Пространство, время, число и логика - это прерогатива Наблюдателя".

Ситуация порой складывается в науке так, что без применения соответствующего математического языка понять характер физического, химического и т.п. процесса невозможно. Не случайно признание П. Дирака, что каждый новый шаг в развитии физики требует все более высокой математики. Такой факт. Создавая планетарную модель атома, известный английский физик XX в. Э. Резерфорд испытал математические трудности. Вначале его теорию не приняли: она не звучала доказательно, и виной тому явилось незнание Резерфордом теории вероятности, на основе механизма которой только и возможно было понять модельное представление атомных взаимодействий. Осознав это, выдающийся уже к тому времени ученый, обладатель Нобелевской премии, записался в семинар математика профессора Лэмба и в течение двух лет вместе со студентами прослушал курс и отработал практикум по теории вероятности. На ее основе Резерфорд смог описать поведение электрона, придав своей структурной модели убедительную точность и получив признание.

Напрашивается вопрос, что же содержится в объективных явлениях такое математическое, благодаря чему они и поддаются описанию на языке математики, на языке количественных характеристик? Это однородные единицы вещества, распределяемые в пространстве и времени. Те науки, которые дальше других прошли путь к выделению однородности, и оказываются лучше приспособленными для использования в них математики. В частности, более всего - физика. В. Ленин, отмечая серьезные успехи естествознания и прежде всего физического знания на рубеже XIX-XX столетий, видел одну из причин именно в том, что природу удалось приблизить "к таким однородным элементам материи, законы движения которых допускали математическую обработку".

Вслед за физикой идут химические дисциплины, где также оперируют атомами и молекулами, и куда методом "парадигмальной прививки" перетекают из физики многие однородные единицы вещества и поля вместе с соответствующими приемами исследований. Все более утверждается математическая химия. Много слабее математический язык вошел пока в биологию, поскольку единицы субстрата здесь еще не выделены, кроме генетики. Еще менее подготовлены к этому гуманитарные разделы научного знания. Прорыв наблюдается только в языкознании с созданием и успешным развитием математической лингвистики, а также в логике (математическая логика). Науки об обществе, конечно, трудно подвержены количественному анализу в силу специфики явлений и процессов, здесь протекающих, поскольку отмечены неповторимостью и уникальностью. Интересную попытку выявить однородные элементы в исторических процессах предпринял Л. Толстой. В романе "Война и мир" писатель вводит понятие "дифференциал исторического действия" и поясняет, что лишь допустив бесконечно малую единицу - дифференциал истории, то есть "однородные влечения людей", а затем научившись их интегрировать (брать суммы этих бесконечно малых), можно надеяться на постижение истории.

Однако подобная однородность оказывается весьма условной, поскольку "влечения людей" всегда окрашены индивидуальной уникальностью, психологически вариативны, что будет накладывать трудно учитываемые возмущения на постулируемую однородность. Вообще каждое событие в истории общества достаточно своеобразно и не поддается нивелированию в однородные единицы. Хорошая тому иллюстрация - одно рассуждение А. Пуанкаре. Как-то он прочитал у известного английского историка XIX в. Т. Карлейля констатацию: "Здесь прошел Иоанн Безземелный, и этот факт мне дороже, чем все исторические теории". Пуанкаре по сему поводу заметил: "Это язык историка. Физик бы так не сказал. Физик сказал бы: "Здесь прошел Иоанн Безземельный, и мне это совершенно безразлично, потому что больше он здесь не пройдет". Возражение математика Пуанкаре понятно: физику нужна повторяемость, лишь тогда он сможет выводить законы. Наоборот, неповторимость события - тот материал, который питает историческое описание.

Отметим, что понимание однородности как условия применимости математического описания явлений пришло в науку довольно поздно. До известного времени считали невозможным отвлечься от предметных значений, чтобы перейти к числовым характеристикам. Так, еще Г. Галилей, один из основателей математического естествознания, не хотел принимать скорость равномерного прямолинейного движения в форме. Он полагал, что действие деления пути на время физически некорректно, поскольку необходимо было делить километры, метры, и т.п. на часы, минуты, и т.п. То есть считал, недопустимым проводить операцию деления с качественно неоднородными величинами. Для Галилея уравнение скорости имело чисто содержательное значение, но отнюдь не математическое отношение величин. И лишь столетия спустя академик Петербургской академии наук Л. Эйлер, вводя в научный обиход формулу, разъяснил, что мы делим этим не путь на время и, следовательно, не километры или метры на часы, либо минуты, а одну количественную размерность на другую, одно отвлеченное числовое значение на другое. Как замечает М. Розов, Эйлер указанным актом совершил знаково-предметную инверсию, переведя содержательное описание в алгебраически-отвлеченное 63 . То есть Эйлер принимает качественно данные километры, метры, часы, минуты и т.п. в качестве абстрактной меры за единицы измерения и тогда имеем уже, скажем, не 10 метров, а 10 отвлеченных единиц, которые делим, положим, не на 2 секунды, а на две столь же абстрактные единицы. Таким приемом нам удается качественно разнородные предметы, имеющие пространственную и временную определенность инвертировать в однородность, что и позволяет применить математический количественный язык описания.

Шаповалова Анна

В работе рассказывается о развитии и универсальности языка математики.

Скачать:

Предварительный просмотр:

Секция Математика

«Язык математики»

Доклад.

Выполнила Шаповалова Анна

Научный руководитель

Романчук Галина Анатольевна

учитель математики высшей квалификационной категории .

Введение.

Увидев в кабинете высказывание Г.Галилея «Книга природы написана языком математики» я заинтересовалась: а что же это за язык?

Оказывается, Галилей придерживался мнения о том, что природа сотворена по математическому плану. Он писал: “Философия природы написана в величайшей книге,… но понять ее сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она начертана. А написана эта книга на языке математики”.

И вот, что бы найти ответ на вопрос о математическом языке, я изучила много литературы, материалов из интернета.

В, частности, нашла в Интернете «Историю математики» Стройка Д.Я., где узнала этапы развития математики и математического языка.

Я постаралась ответить на вопросы:

  1. как возник математический язык;
  2. что собой представляет математический язык;
  3. где он распространен;
  4. действительно ли он универсален.

Я думаю, это будет интересно не только мне, т.к. все мы пользуемся языком математики.

Поэтому целью моей работы стало изучение такого явления как «математический язык» и его распространение.

Естественно, что объектом исследования будет математический язык.

Я сделаю анализ применения математического языка в различных областях науки (естествознании, литературе, музыке); в повседневной жизни. Докажу, что этот язык действительно универсален.

Краткая история развития математического языка.

Математика удобна для описа ния самых разнообразных явлений реального мира и тем самым может выполнять функцию языка.

Исторически составные части математики - арифметика и геометрия - выросли, как известно, из нужд практики, из необходимости индуктивного решения различных практических задач земледелия, мореплавания, астрономии, сбора налогов, возврата долгов, наблюдения за небом, распределения урожая и т.п. При создании теоретических основ математики, основ математики как научного языка, формального языка наук, различных теоретических построений стали важными элементами различные обобщения и абстракции, исходящие из этих практических задач, и их инструментарий.

Язык современной математики - результат ее длительного развития. В период своего за рождения (до VI в. до н. э.) математика не имела собственного языка. В процессе формирования письменности появились математические знаки для обозначения некоторых натуральных чисел и дробей. Математический язык античного Рима включает дошедшую до наших дней систему обозначения целых чисел был скуден:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI,..., L,..., C,..., D,..., M.

Единица I символизирует зарубку на посохе (не латинскую букву I - это позднее переосмысление). Усилие, уходящее на каждую зарубку, и занимаемое ею место на, скажем, пастушеской палке, заставляет переходить от просто системы обозначения чисел

I, II, III, IIII, IIIII, IIIIII, . . .

к более сложной, экономной системе скорее «имен», чем символов:

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.

В русском языке числа записывались буквами с особым знаком «титло»

Первые девять букв алфавита обозначали единицы, следующие 9 – десятки, и последние 9 – сотни.

Для обозначения больших чисел славяне придумали свой оригинальный способ: десять тысяч – тьма, десять тем – легион, десять легионов – леодр, десять леодров- ворон, десять – ворон – колода. И более сего несть человеческому уму разумевати, т.е. для больших чисел нет названий.

В следующем периоде развития элементарной математики (VI в. до н. э. -XVII в. н. э.) основным языком науки был язык геометрии. С помощью отрезков, фигур, площа дей и объемов изображались объекты, доступ ные математике того времени. Именно поэтому знаменитые "Начала" Евклида (III в. до н. э.) впоследствии воспринимались как геометри ческий труд, хотя большая их часть - это изло жение на геометрическом языке начал алгебры, теории чисел и анализа. Однако возможности геометрического языка оказались недостаточ ными для обеспечения дальнейшего развития математики, что привело к возникновению сим волического языка алгебры.

Проникновением в науку теоретико-мно жественной концепции (конец XIX в.) начинается период современной математики. Построение математики на теоретико-множественном бази се вызвало кризис ее основ (начало XX в.), так как в теории множеств были обнаружены противоре чия. Попытки преодоления кризиса стимулиро вали исследования проблем теории доказа тельства, которые в свою очередь потребовали разработки новых, более точных средств выра жения логического компонента языка. Под вли янием этих потребностей и получил дальнейшее развитие появившийся в середине XIX века язык математической логики. В настоящее время он проникает в различные разделы математики и становится составной частью ее языка.

Основой развития математики в XX веке стал сформировавшийся формальный язык цифр, символов, операций, геометрических образов, структур, соотношений для формально-логического описания действительности, - то есть сформировался формальный, научный язык всех отраслей знания, в первую очередь, естественнонаучных. Этот язык успешно используется в настоящее время и в других, "не естественнонаучных" областях.

Язык математики - это искусственный, формальный язык, со всеми его недостатками (например, малой образностью) и достоинствами (например, сжатостью описания).

Разработка искусственного языка символов и формул была величайшим достижением науки, в значительной мере определившим дальнейшее развитие математики. В настоящее время стано вится очевидным, что математика - это не толь ко совокупность фактов и методов, но и язык для описания фактов и методов самых разных облас тей науки и практической деятельности.

Распространение математического языка

Таким образом, математический язык - это совокупность всех средств, с помощью которых можно выразить математическое содержание. К таким средствам относятся логико-математи ческие символы, графические схемы, геометри ческие чертежи, система научных терминов вместе с элементами естественного (обычного) языка.

Математический язык в отличие от естест венного является символическим, хотя и естест венный язык тоже пользуется определенными символами - буквами и знаками препинания. В использовании символов в математическом и естественном языках имеются существенные различия. В математическом языке один знак обозначает то, что в естественном языке обозначается словом. Этим достигается значительное сокра щение "длины" языковых выражений.

Применение математического языка в естествознании.

«... Все законы выводятся из опыта. Но для выражения их нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком неопределен для выражения столь богатых содержанием точных и тонких соотношений. Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться". "Механизм математического творчества, например, не отличается существенно от механизма какого бы то ни было иного творчества". (А.Пуанкаре).

Математика - наука о количественных отношениях действительности. "Подлинно реалистическая математика представляет собой фрагмент теоретической конструкции одного и того же реального мира."(Г.Вейль) Она является междисциплинарной наукой. Результаты ее используются в естествознании и общественных науках. Роль математики и языка, которым она говорит, в современном естествознании проявляется в том, что новая теоретическая интерпретация какого-либо явления считается полноценной, если удается создать математический аппарат, отражающий основные закономерности этого явления. Во многих случаях математика играет роль универсального языка естествознания, специально предназначенного для лаконичной точной записи различных утверждений.

В естествознании все шире использует математический язык для объяснения природных явлений, это:

  1. количественный анализ и количественная формулировка качественно установленных фактов, обобщений и законов конкретных наук;
  2. построение математических моделей и даже создание таких направлений, как математическая физика, математическая биология и т.д.;

Рассматривая математический язык, отличающийся от естественного языка, где, как правило, используют понятия, которые характеризуют определенные качества вещей и явлений (поэтому их часто называют качественными). Именно с этого начинается познание новых предметов и явлений. Следующий шаг в исследовании свойств предметов и явлений - образование сравнительных понятий, когда интенсивность какого-либо свойства отображается с помощью чисел. Наконец, когда интенсивность свойства или величины может быть измерена, т.е. представлена в виде отношения данной величины к однородной величине, взятой в качестве единицы измерения, тогда возникают количественные, или метрические, понятия.

Давайте вспомним мультфильм «38 попугаев» .Фрагмент мультфильма

Удава измеряли мартышками, слонами и попугаями. Так как величины разномерны, то удав делает вывод: «А в попугаях то я длиннее…»

Но если его длину перевести на математический язык; перевести измерения в одноимённые величины, то вывод совершенно иной: что в мартышках, что в слонах, что в попугаях длинна удава будет одинакова.

Преимущества количественного языка математики в сравнении с естественным языком состоят в следующем:

Такой язык весьма краток и точен. Например, чтобы выразить интенсивность какого-либо свойства с помощью обычного языка, нужно несколько десятков прилагательных. Когда же для сравнения или измерения используются числа, процедура упрощается. Построив шкалу для сравнения или выбрав единицу измерения, можно все отношения между величинами перевести на точный язык чисел. С помощью математического языка (формул, уравнений, функций и других понятий) можно гораздо точнее и короче выразить количественные зависимости между самыми разнообразными свойствами и отношениями, характеризующими процессы, которые исследуются в естествознании.

Здесь математический язык выполняет две функции:

1. с помощью математического языка точно формулируются количественные закономерности, характеризующие исследуемые явления; точная формулировка законов и научных теорий на языке математики дает возможность при получении из них следствий применить богатый математический и логический аппарат.

Все это показывает, что в любом процессе научного познания существует тесная взаимосвязь между языком качественных описаний и количественным математическим языком. Эта взаимосвязь конкретно проявляется в сочетании и взаимодействии естественно-научных и математических методов исследования. Чем лучше мы знаем качественные особенности явлений, тем успешнее можем использовать для их анализа количественные математические методы исследования, а чем более совершенные количественные методы применяются для изучения явлений, тем полнее познаются их качественные особенности.

Прмер. Мультфильм об уже знакомых нам персонажах: удаве, мартышке, попугае и слонёнке.

Куча орехов – это много. А «много» - это сколько?

Математический язык играет роль универсального языка, специально предназначенного для лаконичной точной записи различных утверждений. Конечно, все, что можно описать языком математики, поддается выражению на обычном языке, но тогда изъяснение может оказаться чересчур длинным и запутанным.

2. служит источником моделей, алгоритмических схем для отображения связей, отношений и процессов, составляющих предмет естествознания. С одной стороны, любая математическая схема или модель - это упрощающая идеализация исследуемого объекта или явления, а с другой - упрощение позволяет ясно и однозначно выявить суть объекта или явления.

Поскольку в математических формулах и уравнениях отражены некие общие свойства реального мира, они повторяются в разных его областях.

Вот задачи о совершенно разных вещах.

  1. В двух гаражах было 48 машин. В одном гараже в два раза больше машин, чем в другом. Сколько машин в первом гараже?
  2. На птичьем дворе гусей было в два раза меньше, чем уток. Сколько было гусей, если всего на птичьем дворе 48 птиц.

Можно таких задач придумать очень много, но все они описываются с помощью математического одной моделью:

2х+х=48., понятной всем математикам мира.

Математический язык в литературе.

Так как язык математики универсален, то не зря существует выражение «поверил алгеброй гармонию».

Вот вам примеры.

Метры и размеры стиха.

Размер стиха

Ударные слоги

Математическая зависимость

Мат. модель

Дактиль

1,4,7,10…

Ариф.прогрессия

Анапест

3,6,9,12…

Ариф.прогрессия

Амфибрахий

2,5,8,11…

Ариф.прогрессия

Ямб

2,4,6,8,10…

Ариф.прогрессия

Хорей

1,3,5,7…

Ариф.прогрессия

В литературе есть приём «эвфоника», где с помощью математического языка описывается звучность стихотворения.

Послушайте два отрывка из стихотворений.

Дактиль - 1,4,7,10,13…

Как хорошо ты, о море ночное,-

Здесь лучезарно, там сизо-темно...

В лунном сиянии, словно живое,

Ходит и дышит, и блещет оно.

Анапест – 3,6,9,12…

Прозвучало над ясной рекою,

Прозвенело в померкшем лугу,

Прокатилось над рощей немою,

Засветилось на том берегу.

Если взять весь звуковой состав в целом, то картина будет такова (в%):

Вот их описание с помощью математического языка.

Математический язык в музыке.

В основе музыкальной системы были два закона, которые носят имена двух великих ученых - Пифагора и Архита.

1. Две звучащие струны определяют консонанс, если их длины относятся как целые числа, образующие треугольное число 10=1+2+3+4, т.е. как 1:2, 2:3, 3:4. Причем, чем меньше число n в отношении n/(n+1) (n=1,2,3), тем созвучнее получающийся интервал.

2. Частота колебания w звучащей струны обратно пропорциональна ее длине l .

w = a/ l , (а - коэффициент, характеризующий физические свойства струны).

Интервальные коэффициенты и соответствующие им интервалы в средние века были названы совершенными консонансами и получили следующие названия: октава (w 2 / w 1 = 2/1, l 2 / l 1 =1/2); квинта (w 2 / w 1 =3/2, l 2 / l 1 = 2/3); кварта (w 2 / w 1 =4/3, l 2 / l 1 = 3/4).

(3/2) 1 = 3/2 - соль, (3/2) 2 :2 = 9/8 - ре, (3/2) 3 :2 =27/16 - ля, (3/2) 4 :2 2 = 81/64 - ми, (3/2) 5 : 2 2 = 243/128 - си, (3/2) -1 :2 =4/3 - фа.

Для построения гаммы гораздо удобнее пользоваться, оказывается, логарифмами соответствующих частот:

log 2 w 0 , log 2 w 1 ... log 2 w m

Итак, музыка, написанная математическим языком, понятна всем музыкантам независимо от их языка разговорного.

В повседневной жизни

Сами не замечая того мы постоянно оперируем математическими терминами: числа, понятия (площадь, объём), отношение.

Мы постоянно читаем на математическом языке и говорим: определяя пробег автомобиля, сообщая цену товара, время; описывая размеры комнаты и т.д.

В молодёжной среде сейчас появилось выражение «мне параллельно» - что означает «мне всё равно, меня это не касается»

А ассоциируется это с параллельными прямыми, наверно, потому что они не пересекаются, так и эта проблема «не пересекается» со мной. То есть не касается меня.

В противовес, следует ответ: «Так я сделаю, чтобы тебе было перпендикулярно».

И опять: перпендикуляр пересекается с прямой, т.е. имеется ввиду, что эта проблема будет касаться тебя – пересечётся с тобой.

Так язык математики проник в молодёжный сленг.

Универсальность.

Если вы увидите эту фразу, написанную на разных языках, вы не пойметё, о чём идёт речь, но стоит её написать на языке математики и сразу всем станет ясно.

Deux fois trios font six (французский)

Two multiply three equals six (английский)

Zwei mal drei ist secks (немецкий)

Тlур щэ пштэмэ мэхъу хы (адыгейский)

2∙3=6

Заключение.

«Если вы можете измерить и выразить в числах то, о чем вы говорите, то об этом вы кое-что знаете. Если же вы не можете сделать этого, то ваши познания скудны. Они представляют первые шаги исследования, но это не настоящее знание". Лорд Кельвин

Книга Природы написана языком математики. Всё существенное в природе может быть измерено, превращено в числа и описано математически. Математика - это язык, позволяющий создать лаконичную модель действительности; это организованное утверждение, позволяющее количественно предсказать поведение объектов любой природы. Величайшее открытие всех времен то, что информацию можно записать с помощью математического кода. Ведь формулы - это обозначения слов знаками, что ведет к огромной экономии времени, места, символов. Формула компактна, наглядна, проста, ритмична.

Математический язык потенциально одинаков для всех миров. Орбита Луны и траектория падения камня на Земле - частные случаи одного и того же математического объекта - эллипса. Универсальность дифференциальных уравнений позволяет применить их к объектам разной природы: колебания струны, процесс распространения электромагнитной волны и т.д.

Математическим языком описывают сегодня не только свойства пространства и времени, частицы и их взаимодействие, физические и химические явления, но также всё больше процессов и явлений в областях биологи, медицины, экономики, компьютерных наук; математика широко используется в прикладных сферах и инженерии.

Математические знания и навыки необходимы практически во всех профессиях, прежде всего, конечно, в тех, что связаны с естественными науками, техникой и экономикой. Математика является языком естествознания и техники и потому профессия естествоиспытателя и инженера требует серьезного овладения многими профессиональными сведениями, основанными на математике. Очень хорошо сказал об этом Галилей: ``Философия (речь идёт о натурфилософии, на нашем современном языке -о физике) написана в величественной книге, которая постоянно открыта вашему взору, но понять её может лишь тот, кто сначала научится понимать её язык и толковать знаки, которыми она написана. Написана же она на языке математики."" Но ныне несомненна необходимость применения математических знаний и математического мышления врачу, лингвисту, историку, и трудно оборвать этот список, настолько важно владение математическим языком.

Понимание и знание математического языка надо для интеллектуального развития личности. В 1267 году знаменитый английский философ Роджер Бекон сказал: ``Кто не знает языка математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества."

По мере развития познания за последние сотни лет, становилась всё более очевидной эффективность математических методов для описания окружающего мира и его свойств, включая строение, превращение и взаимодействие вещества. Были построены множества систем описания явлений тяготения, электромагнетизма, а также сил взаимодействия между элементарными частицами – всех известных науке фундаментальных сил природы; частиц, материалов, химических процессов. В настоящее время математический язык является фактически единственным эффективным языком, на котором это описание производится, что порождает естественный вопрос, не является ли данное обстоятельство следствием изначально математической природы окружающего нас мира, который таким образом сводился бы к действию чисто математических законов («вещество исчезает, остаются одни уравнения»)?

Список литературы:

  1. Языки математики или математика языков. Доклад на конференции в рамках «Дней науки» (организатор - Фонд «Династия», С. -Пб, 21–23 мая 2009 г.)
  2. Перловский Л. Сознание, язык и математика. "Русский журнал" [email protected]
  3. Грин Ф. Математическая гармония природы. Журнал « Новые Грани» №2 2005 года
  4. Бурбаки Н. Очерки по истории математики, М.: ИЛ, 1963.
  5. Стройк Д.Я «История математики» - М.: Наука, 1984.
  6. Эвфоника «Незнакомки» А.М.ФИНКЕЛЬ Публикация, подготовка текста и комментарии Сергея ГИНДИНА
  7. Эвфоника «Зимней дороги» А.С. Пушкина. Научный руководитель Худаева Л.Г.– учитель русского языка

Секция Математика

«Язык математики»

Выполнила Шаповалова Анна

Научный руководитель

учитель математики высшей квалификационной категории.

Введение.

Увидев в кабинете высказывание Г. Галилея «Книга природы написана языком математики» я заинтересовалась: а что же это за язык?

Оказывается, Галилей придерживался мнения о том, что природа сотворена по математическому плану. Он писал: “Философия природы написана в величайшей книге,… но понять ее сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она начертана. А написана эта книга на языке математики”.

И вот, что бы найти ответ на вопрос о математическом языке, я изучила много литературы, материалов из интернета.

В, частности, нашла в Интернете «Историю математики» , где узнала этапы развития математики и математического языка.

Я постаралась ответить на вопросы:

· как возник математический язык;

· что собой представляет математический язык;

· где он распространен;

· действительно ли он универсален.

Я думаю, это будет интересно не только мне, т. к. все мы пользуемся языком математики.

Поэтому целью моей работы стало изучение такого явления как «математический язык» и его распространение.

Естественно, что объектом исследования будет математический язык.

Я сделаю анализ применения математического языка в различных областях науки (естествознании, литературе, музыке); в повседневной жизни. Докажу, что этот язык действительно универсален.

Краткая история развития математического языка.

Математика удобна для описа­ния самых разнообразных явлений реального мира и тем самым может выполнять функцию языка.

Исторически составные части математики - арифметика и геометрия - выросли, как известно, из нужд практики, из необходимости индуктивного решения различных практических задач земледелия, мореплавания, астрономии , сбора налогов, возврата долгов, наблюдения за небом, распределения урожая и т. п. При создании теоретических основ математики, основ математики как научного языка, формального языка наук, различных теоретических построений стали важными элементами различные обобщения и абстракции , исходящие из этих практических задач, и их инструментарий.

Язык современной математики - результат ее длительного развития. В период своего за­рождения (до VI в. до н. э.) математика не имела собственного языка. В процессе формирования письменности появились математические знаки для обозначения некоторых натуральных чисел и дробей. Математический язык античного Рима включает дошедшую до наших дней систему обозначения целых чисел был скуден:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI,..., L,..., C,..., D,..., M.

Единица I символизирует зарубку на посохе (не латинскую букву I - это позднее переосмысление). Усилие, уходящее на каждую зарубку, и занимаемое ею место на, скажем, пастушеской палке, заставляет переходить от просто системы обозначения чисел

I, II, III, IIII, IIIII, IIIIII, . . .

к более сложной, экономной системе скорее «имен», чем символов:

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.

2. Перловский Л. Сознание, язык и математика. "Русский журнал" *****@***ru

3. Грин Ф. Математическая гармония природы. Журнал « Новые Грани» №2 2005 года

4. Бурбаки Н. Очерки по истории математики, М.: ИЛ, 1963.

5. Стройк Д. Я «История математики» - М.: Наука, 1984.

6. Эвфоника «Незнакомки» А. М.ФИНКЕЛЬ Публикация, подготовка текста и комментарии Сергея ГИНДИНА

7. Эвфоника «Зимней дороги» . Научный руководитель – учитель русского языка

Математика 7 класс.

Тема урока:"Что такое математический язык".

Федоровцева Наталья Леонидовна

Познавательные УУД: формировать умение переводить математические словесные выражения в буквенные выражения и объяснять значение буквенных выражений

Коммуникативные УУД: воспитывать любовь к математике, участвовать в коллективном обсуждение проблем, уважение друг к другу, умение слушать, дисциплинированность, самостоятельность мышления. Регулятивные УУД: умение обработать информацию и переводить задачу с родного языка на математический. Личностные УУД: формировать учебную мотивацию, адекватную самооценку, необходимость приобретения новых знаний, воспитывать ответственность и аккуратность.
Работа с текстом. На математическом языке многие утверждения выглядят яснее и прозрачнее, чем на обычном. Например, на обычном языке говорят: "От перемены мест слагаемых сумма не меняется". Слыша это, математик пишет(или говорит) а +в = в +а. Он переводит высказанное утверждение на математический, в котором используются разные числа, буквы (переменные), знаки арифметических действий, иные символы. Запись а + в = в + а экономна и удобна для применения. Возьмём другой пример. На обычном языке говорят: " Чтобы сложить две обыкновенные дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения".

Математик осуществляет «синхронный перевод» на свой язык:

А вот пример обратного перевода. На математическом языке записан распределительный закон:

Осуществляя перевод на обычный язык, получим длинное предложение: «Чтобы умножить число а на сумму чисел b и c, надо число a умножить поочередно на каждое слагаемое и полученные произведения сложить».

Во всяком языке есть письменная и устная речь. Выше мы говорили о письменной речи в математическом языке. А устная речь - это употребление специальных терминов, например: «слагаемое», «уравнение», «неравенство», «график», «координата», а также различные математические утверждения, выраженные словами.

Чтобы овладеть новым языком, необходимо изучить его буквы, слоги, слова, предложения, правила, грамматику. Это не самое веселое занятие, интереснее сразу читать и говорить. Но так не бывает, придется набраться терпения и сначала изучить основы. И, конечно, в результате такого изучения ваши представления о математическом языке будут постепенно расширяться.


Задания. 1. Ознакомление. Прочитайте текст самостоятельно и запишите виды математического языка. 2.Понимание. Приведите пример (не из текста) устной и письменной речи в математическом языке. 3.Применение. Проведите эксперимент, подтверждающий, что математический язык, как и любой другой язык является средством общения, благодаря которому мы можем передать информацию, описать то или иное явление, закон или свойство.

4. Анализ. Раскройте особенности математической речи.

5.Синтез. Придумайте игру для 6-го класса "Правила действий с положительными и отрицательными числами". Сформулируйте их на обычном языке и постарайтесь осуществить перевод этих правил на математический язык.

«Как часто в обыденной жизни используются математические термины?»

    В выступлениях Чубайса часто слышим мы слова
    «Объединение субъектов, и энергетика цела»,
    А какой-то строгий лидер постоянно говорит: «Разделить пора Россию, вот тогда мы будем жить» Президент Владимир Путин уверяет нас всегда: «Поворота в прошлое не будет никогда!» Вот и наши лидеры, убедились в том, Говорят нередко математическим языком.

«В медицине без математического языка не обойтись».

    В медицине градусы, параметры, давление.

Все, кто там работает, знают эти термины.

математический язык в школе

    Учителя истории, и химии, и физики
    Не могут не использовать язык математический.
    Он нужен в биологии, там корень у цветочка есть, Он нужен в зоологии, там много позвоночков есть, И наши литераторы, читая биографию Известного писателя, указывают даты все. И ваши одноклассники, спрашивая время, Не могут двух минут дожить до перемены.

в газетах используется математический язык:

    Да, если откроешь наши газеты,
    Они все-все в цифрах пестрят.
    Оттуда узнаешь, бюджет убывает, А цены растут, как хотят.

Математический язык на улице,на тренировках по футболу:

    Язык математический используют всегда
    Прохожие на улице «Как чувствуешь? Дела?»
    «Работаю всё время, пять соток сад взяла, Какое там здоровье, прожить бы года два». И тренер по футболу на пацанов кричит: «Вы набирайте скорость, мяч в центр уже летит.

    Вывод сделаем такой с сегодняшнего уроке
    Всем нам нужен язык математики, он очень убедительный.
    Чёткий и конкретный он, строгий, однозначный, Помогает в жизни всем решать свои задачи. Это делает его очень привлекательным. И, считаю, в нашей жизни он просто обязательны

Действия с отрицательными и положительными числам


Абсолютной величиной (или абсолютным значением) называется положительное число, получаемое от перемены его знака (-) на обратный (+) . Абсолютная величина -5 есть +5 , т. е. 5 . Абсолютной величиной положительного числа (а также числа 0 ) называется само это число. Знак абсолютной величины - две прямые черты, в которые заключается число, абсолютная величина которого берется. Например,
|-5| = 5,
|+5| = 5,
| 0 | = 0.
Сложение чисел с одинаковым знаком. а) При двух чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится общий их знак. Примеры. (+8) + (+11) = 19; (-7) + (-3) = -10.
6) При сложении двух чисел с разными знаками из абсолютной величины одного из них вычитается абсолютная величина другого (меньшая из большей) а ставится знак того числа, у которого абсолютная величина больше. Примеры. (-3) + (+12) = 9;
(-3) + (+1) = -2.
Вычитание чисел с разными знаками. одного числа из другого можно заменить сложением; при этом уменьшаемое берется со своим знаком, а вычитаемое с обратным.Примеры. (+7) - (+4) = (+7) + (-4) = 3;
(+7) - (-4) = (+7) + (+4) = 11;
(-7) - (-4) = (-7) + (+4) = -3;
(-4) - (-4) = (-4) + (+4) = 0;

Замечание.
При выполнении сложения и вычитания, особенно когда имеем дело с несколькими числами, лучше всего поступать так: 1) освободить все числа от скобок, при этом перед числом поставить знак « + », если прежний знак перед скобкой был одинаков со знаком в скобке, и « - », если он был противоположен знаку в скобке; 2) сложить абсолютные величины всех чисел, имеющих теперь слева знак + ; 3) сложить абсолютные величины всех чисел, имеющих теперь слева знак - ; 4) из большей суммы вычесть меньшую и поставить знак, соответствующий большей сумме.
Пример.
(-30) - (-17) + (-6) - (+12) + (+2);
(-30) - (-17) + (-6) - (+12) + (+2) = -30 + 17 - 6 - 12 + 2;
17 + 2 = 19;
30 + 6 + 12 = 48;
48 - 19 = 29.

Результат есть отрицательное число

-29 , так как большая сумма (48) получилась от сложения абсолютных величин тех чисел, перед которыми стоили минусы в выражении -30 + 17 – 6 -12 + 2. На это последнее выражение можно смотреть и как на сумму чисел -30, +17, -6, -12, +2, и как на результат последовательного прибавления к числу -30 числа 17 , затем вычитания числа 6 , затем вычитания 12 и, наконец, прибавления 2 . Вообще на выражение а - b + с - d и т. д. можно смотреть и как на сумму чисел (+а), (-b), (+с), (-d), и как на результат таких последовательных действий: вычитания из (+а) числа (+b) , прибавления (+c) , вычитании (+d) и т. д. Умножение чисел с разными знаками При двух чисел умножаются их абсолютные величины и перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные.
Схема (правило знаков при умножении):

+

Примеры. (+ 2,4) * (-5) = -12; (-2,4) * (-5) = 12; (-8,2) * (+2) = -16,4.

При перемножении нескольких сомножителей знак произведения положителен, если число отрицательных сомножителей четно, и отрицателен, если число отрицательных сомножителей нечетно.

Примеры. (+1/3) * (+2) * (-6) * (-7) * (-1/2) = 7 (три отрицательных сомножителя);
(-1/3) * (+2) * (-3) * (+7) * (+1/2) = 7 (два отрицательных сомножителя).

Деление чисел с разными знаками

При одного числа на другое делят абсолютную величину первого на абсолютную величину второго и перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные (схема та же, что для умножения).

Примеры. (-6) : (+3) = -2;
(+8) : (-2) = -4;
(-12) : (-12) = + 1.