Определение вариационного ряда. Вариационный ряд и его характеристики

Вариационный ряд – это ряд числовых значений признака.

Основные характеристики вариационного ряда: v – варианта, р – частота ее встречаемости.

Виды вариационного ряда:

    по частоте встречаемости варианты: простой – варианта встречается один раз, взвешенный – варианта встречается два и более раз;

    по расположению варианты: ранжированный – варианты расположены в порядке убывания и возрастания, неранжированный – варианты записаны без определенного порядка;

    по объединению вариант в группы: сгруппированный – варианты объединены в группы, несгруппированный – варианты необъединены в группы;

    по величине варианты: непрерывный – варианты выражены целым и дробным числом, дискретный – варианты выражены целым числом, сложный – варианты представлены относительной или средней величиной.

Вариационный ряд составляется и оформляется с целью расчета средних величин.

Форма записи вариационного ряда:

8. Средние величины, виды, методика расчета, применение в здравоохранении

Средние величины – совокупная обобщающая характеристика количественных признаков. Применение средних величин :

1. Для характеристики организации работы лечебно-профилактических учреждений и оценки их деятельности:

а) в поликлинике: показатели нагрузки врачей, среднее число посещений, среднее число жителей на участке;

б) в стационаре: среднее число дней работы койки в году; средняя длительность пребывания в стационаре;

в) в центре гигиены, эпидемиологии и общественного здоровья: средняя площадь (или кубатура) на 1 человека, средние нормы питания (белки, жиры, углеводы, витамины, минеральные соли, калории), санитарные нормы и нормативы и т.д.;

2. Для характеристики физического развития (основных антропометрических признаков морфологических и функциональных);

3. Для определения медико-физиологических показателей организма в норме и патологии в клинических и экспериментальных исследованиях.

4. В специальных научных исследованиях.

Отличие средних величин от показателей:

1. Коэффициенты характеризуют альтернативный признак, встречающийся только у некоторой части статистического коллектива, который может иметь место или не иметь место.

Средние величины охватывают признаки, присущие всем членам коллектива, но в разной степени (вес, рост, дни лечения в больнице).

2. Коэффициенты применяются для измерения качественных признаков. Средние величины – для варьирующих количественных признаков.

Виды средних величин:

    средняя арифметическая, ее характеристики – среднее квадратическое отклонение и средняя ошибка

    мода и медиана. Мода (Мо) – соответствует величине признака, который чаще других встречается в данной совокупности. Медиана (Ме) – величина признака, занимающая срединное значение в данной совокупности. Она делит ряд на 2 равные части по числу наблюдений. Средняя арифметическая величина (М) – в отличие от моды и медианы опирается на все произведенные наблюдения, поэтому является важной характеристикой для всего распределения.

    другие виды средних величин, которые применяются в специальных исследованиях: средняя квадратическая, кубическая, гармоническая, геометрическая, прогрессивная.

Средняя арифметическая характеризует средний уровень статистической совокупности.

Для простого ряда, где

∑v – сумма вариант,

n – число наблюдений.

для взвешенного ряда, где

∑vр – сумма произведений каждой варианты на частоту ее встречаемости

n – число наблюдений.

Среднее квадратическое отклонение средней арифметической или сигма (σ) характеризует разнообразие признака

- для простого ряда

Σd 2 – сумма квадратов разности средней арифметической и каждой варианты (d = │M-V│)

n – число наблюдений

- для взвешенная ряда

∑d 2 p – сумма произведений квадратов разности средней арифметической и каждой варианты на частоту ее встречаемости,

n – число наблюдений.

О степени разнообразия можно судить по величине коэффициента вариации
. Более 20% - сильное разнообразие, 10-20% - среднее разнообразие, менее 10% - слабое разнообразие.

Если к средней арифметической величине прибавить и отнять от нее одну сигму (М ± 1σ), то при нормальном распределении в этих пределах будет находиться не менее 68,3% всех вариант (наблюдений), что считается нормой для изучаемого явления. Если к 2 ± 2σ, то в этих пределах будет находиться 95,5% всех наблюдений, а если к М ± 3σ, то в этих пределах будет находиться 99,7% всех наблюдений. Таким образом, среднее квадратическое отклонение является стандартным отклонением, позволяющим предвидеть вероятность появления такого значения изучаемого признака, которое находится в пределах заданных границ.

Средняя ошибка средней арифметической или ошибка репрезентативности. Для простого, взвешенного рядов и по правилу моментов:

.

Для расчета средних величин необходимо: однородность материала, достаточное число наблюдений. Если число наблюдений меньше 30, в формулах расчета σ и m используют n-1.

При оценке полученного результата по размеру средней ошибки пользуются доверительным коэффициентом, которые дает возможность определить вероятность правильного ответа, то есть он указывает на то, что полученная величина ошибки выборки будет не больше действительной ошибки, допущенной вследствие сплошного наблюдения. Следовательно, с увеличением доверительной вероятности увеличивается ширина доверительного интервала, что, в свою очередь повышает доверительность суждения, опорность полученного результата.

Особое место в статистическом анализе принадлежит определению среднего уровня изучаемого признака или явления. Средний уровень признака измеряют средними величинами.

Средняя величина характеризует общий количественный уровень изучаемого признака и является групповым свойством статистической совокупности. Она нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и выдвигает на первый план основное, типичное свойство изучаемого признака.

Средние величины широко используются:

1. Для оценки состояния здоровья населения: характеристики физического развития (рост, вес, окружность грудной клетки и пр.), выявления распространенности и длительности различных заболеваний, анализа демографических показателей (естественного движения населения, средней продолжительности предстоящей жизни, воспроизводства населения, средней численности населения и др.).

2. Для изучения деятельности лечебно-профилактических учреждений, медицинских кадров и оценки качества их работы, планирования и определения потребности населения в различных видах медицинской помощи (среднее число обращений или посещений на одного жителя в год, средняя длительность пребывания больного в стационаре, средняя продолжительность обследования больного, средняя обеспеченность врачами, койками и пр.).

3. Для характеристики санитарно-эпидемиологического состояния (средняя запыленность воздуха в цехе, средняя площадь на одного человека, средние нормы потребления белков, жиров и углеводов и т. д.).

4. Для определения медико-физиологических показателей в норме и патологии, при обработке лабораторных данных, для установления достоверности результатов выборочного исследования в социально-гигиенических, клинических, экспериментальных исследованиях.

Вычисление средних величин выполняется на основе вариационных рядов. Вариационный ряд – это однородная в качественном отношении статистическая совокупность, отдельные единицы которой характеризуют количественные различия изучаемого признака или явления.

Количественная вариация может быть двух типов: прерывная (дискретная) и непрерывная.

Прерывный (дискретный) признак выражается только целым числом и не может иметь никаких промежуточных значений (например, число посещений, численность населения участка, число детей в семье, степень тяжести болезни в баллах и др.).

Непрерывный признак может принимать любые значения в определенных пределах, в том числе и дробные, и выражается лишь приближенно (например, вес – для взрослых можно ограничиться килограммами, а для новорожденных – граммами; рост, артериальное давление, время, потраченное на прием больного, и т. д.).



Цифровое значение каждого отдельного признака или явления, входящего в вариационный ряд, называется вариантой и обозначается буквой V . В математической литературе встречаются и другие обозначения, например x или y.

Вариационный ряд, где каждая варианта указана один раз, называется простым. Такие ряды используются в большинстве статистических задач в случае компьютерной обработки данных.

При увеличении числа наблюдений, как правило, встречаются повторяющиеся значения вариант. В этом случае создается сгруппированный вариационный ряд , где указывается число повторений (частота, обозначается буквой «р »).

Ранжированный вариационный ряд состоит из вариант, расположенных в порядке возрастания или убывания. Как простой, так и сгруппированный ряды могут быть составлены с ранжированием.

Интервальный вариационный ряд составляют с целью упрощения последующих вычислений, выполняемых без использования компьютера, при очень большом числе единиц наблюдения (более 1000).

Непрерывный вариационный ряд включает значения вариант, которые могут выражаться любыми значениями.

Если в вариационном ряде значения признака (варианты) заданы в виде отдельных конкретных чисел, то такой ряд называют дискретным .

Общими характеристиками значений признака, отражаемого в вариационном ряду, являются средние величины. Среди них наиболее применяемые: средняя арифметическая величина М, мода Мо и медиана Me. Каждая из этих характеристик своеобразна. Они не могут подменить друг друга и лишь в совокупности достаточно полно и в сжатой форме представляют собой особенности вариационного ряда.

Модой (Мо) называют значение наиболее часто встречающейся варианты.

Медиана (Me) – это значение варианты, делящей ранжированный вариационный ряд пополам (с каждой стороны медианы находится половина вариант). В редких случаях, когда имеется симметричный вариационный ряд, мода и медиана равны между собой и совпадают со значением средней арифметической.

Наиболее типичной характеристикой значений вариант является средняя арифметическая величина(М ). В математической литературе она обозначается .

Средняя арифметическая величина (M, ) – это общая количественная характеристика определенного признака изучаемых явлений, составляющих качественно однородную статистическую совокупность. Различают среднюю арифметическую простую и взвешенную. Средняя арифметическая простая вычисляется для простого вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в данный вариационный ряд. Вычисления проводятся по формуле:

,

где: М - средняя арифметическая простая;

ΣV - сумма вариант;

n - число наблюдений.

В сгруппированном вариационном ряду определяют взвешенную среднюю арифметическую. Формула ее вычисления:

,

где: М - средняя арифметическая взвешенная;

ΣVp - сумма произведений вариант на их частоты;

n - число наблюдений.

При большом числе наблюдений в случае ручных вычислений может применяться способ моментов.

Средняя арифметическая имеет следующие свойства:

· сумма отклонений вариант от средней (Σd ) равна нулю (см. табл. 15);

· при умножении (делении) всех вариант на один и тот же множитель (делитель) средняя арифметическая умножается (делится) на тот же множитель (делитель);

· если прибавить (вычесть) ко всем вариантам одно и то же число, средняя арифметическая увеличивается (уменьшается) на это же число.

Средние арифметические величины, взятые сами по себе, без учета вариабельности рядов, из которых они вычислены, могут не в полной мере отражать свойства вариационного ряда, в особенности когда необходимо сопоставление с другими средними. Близкие по значению средние могут быть получены из рядов с различной степенью рассеяния. Чем ближе друг к другу отдельные варианты по своей количественной характеристике, тем меньше рассеяние (колеблемость, вариабельность) ряда, тем типичнее его средняя.

Основными параметрами, которые позволяют оценить вариабельность признака, являются:

· Размах;

· Амплитуда;

· Среднее квадратическое отклонение;

· Коэффициент вариации.

Приблизительно о колеблемости признака можно судить по размаху и амплитуде вариационного ряда. Размах указывает на максимальную (V max) и минимальную (V min) варианты в ряду. Амплитуда (A m) является разностью этих вариант: A m = V max - V min .

Основной, общепринятой мерой колеблемости вариационного ряда являются дисперсия (D ). Но наиболее часто применяется более удобный параметр, вычисляемый на основе дисперсии - среднее квадратическое отклонение (σ ). Оно учитывает величину отклонения (d ) каждой варианты вариационного ряда от его средней арифметической (d=V - M ).

Поскольку отклонения вариант от средней могут быть положительными и отрицательными, то при суммировании они дают значение «0» (Sd=0 ). Чтобы избежать этого, величины отклонения (d ) возводятся во вторую степень и усредняются. Таким образом, дисперсия вариационного ряда является средним квадратом отклонений вариант от средней арифметической и вычисляется по формуле:

.

Она является важнейшей характеристикой вариабельности и применяется для вычисления многих статистических критериев.

Поскольку дисперсия выражается квадратом отклонений, ее величина не может использоваться в сопоставлении со средней арифметической. Для этих целей применяется среднее квадратическое отклонение , которое обозначается знаком «Сигма» (σ ). Оно характеризует среднее отклонение всех вариант вариационного ряда от средней арифметической величины в тех же единицах, что и сама средняя величина, поэтому они могут использоваться совместно.

Среднее квадратическое отклонение определяют по формуле:

Указанная формула применяется при числе наблюдений (n ) больше 30. При меньшем числе n значение среднего квадратического отклонения будет иметь погрешность, связанную с математическим смещением (n - 1). В связи с этим, более точный результат может быть получен с помощью учета такого смещения в формуле расчета стандартного отклонения:

стандартное отклонение (s ) – это оценка среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии.

При значениях n > 30 среднее квадратическое отклонение (σ ) и стандартное отклонение (s ) будут одинаковыми (σ =s ). Поэтому в большинстве практических пособий эти критерии рассматриваются как разнозначные. В программе Excel вычисление стандартного отклонения может быть выполнено функцией =СТАНДОТКЛОН(диапазон). А с целью расчета среднего квадратического отклонения требуется создать соответствующую формулу.

Среднее квадратическое или стандартное отклонение позволяет определить, насколько значения признака могут отличаться от среднего значения. Предположим, существуют два города с одинаковой средней дневной температурой в летний период. Один их этих городов расположен на побережье, а другой на континенте. Известно, что в городах, расположенных на побережье, различия дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднее квадратическое отклонение дневных температур у прибрежного города будет меньше, чем у второго города. На практике это означает, что средняя температура воздуха каждого конкретного дня в городе, расположенного на континенте будет сильнее отличаться от среднего значения, чем в городе на побережье. Кроме того стандартное отклонение позволяет оценить возможные отклонения температуры от средней с требуемым уровнем вероятности.

Согласно теории вероятности, в явлениях, подчиняющихся нормальному закону распределения, между значениями средней арифметической, среднего квадратического отклонения и вариантами существует строгая зависимость (правило трех сигм ). Например, 68,3% значений варьирующего признака находятся в пределах М ± 1σ , 95,5% - в пределах М ± 2σ и 99,7% - в пределах М ± 3σ .

Величина среднего квадратического отклонения позволяет судить о характере однородности вариационного ряда и исследуемой группы. Если величина среднего квадратического отклонения небольшая, то это свидетельствует о достаточно высокой однородности изучаемого явления. Среднюю арифметическую в таком случае следует признать вполне характерной для данного вариационного ряда. Однако слишком малая величина сигмы заставляет думать об искусственном подборе наблюдений. При очень большой сигме средняя арифметическая в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности изучаемого признака или явления или о неоднородности исследуемой группы. Однако сопоставление величины среднего квадратического отклонения возможно только для признаков одинаковой размерности. Действительно, если сравнивать разнообразие веса новорожденных детей и взрослых, мы всегда получим более высокие значения сигмы у взрослых.

Сравнение вариабельности признаков различной размерности может быть выполнено с помощью коэффициента вариации . Он выражает разнообразие в процентах от средней величины, что позволяет производить сравнение различных признаков. Коэффициент вариации в медицинской литературе обозначается знаком «С », а в математической «v » и вычисляемого по формуле:

.

Значения коэффициента вариации менее 10% свидетельствует о малом рассеянии, от 10 до 20% – о среднем, более 20% – о сильном рассеянии вариант вокруг средней арифметической.

Средняя арифметическая величина, как правило, вычисляется на основе данных выборочной совокупности. При повторных исследованиях под влиянием случайных явлений средняя арифметическая может изменяться. Это обусловлено тем, что исследуется, как правило, только часть возможных единиц наблюдения, то есть выборочная совокупность. Информация обо всех возможных единицах, представляющих изучаемое явление, может быть получена при изучении всей генеральной совокупности, что не всегда возможно. В то же время с целью обобщения данных эксперимента представляет интерес величина средней в генеральной совокупности. Поэтому для формулировки общего вывода об изучаемом явлении, результаты, полученные на основе выборочной совокупности, должны быть, перенесены на генеральную совокупность статистическими методами.

Чтобы определить степень совпадения выборочного исследования и генеральной совокупности, необходимо оценить величину ошибки, которая неизбежно возникает при выборочном наблюдении. Такая ошибка называется «Ошибкой репрезентативности » или «Средней ошибкой средней арифметической». Она фактически является разностью между средними, полученными при выборочном статистическом наблюдении, и аналогичными величинами, которые были бы получены при сплошном исследовании того же объекта, т.е. при изучении генеральной совокупности. Поскольку выборочная средняя является случайной величиной, такой прогноз выполняется с приемлемым для исследователя уровнем вероятности. В медицинских исследованиях он составляет не менее 95%.

Ошибку репрезентативности нельзя смешивать с ошибками регистрации или ошибками внимания (описки, просчеты, опечатки и др.), которые должны быть сведены до минимума адекватной методикой и инструментами, применяемыми при проведении эксперимента.

Величина ошибки репрезентативности зависит как от объема выборки, так и от вариабельности признака. Чем больше число наблюдений, тем ближе выборка к генеральной совокупности и тем меньше ошибка. Чем более изменчив признак, тем больше величина статистической ошибки.

На практике для определения ошибки репрезентативности в вариационных рядах пользуются следующей формулой:

,

где: m – ошибка репрезентативности;

σ – среднее квадратическое отклонение;

n – число наблюдений в выборке.

Из формулы видно, что размер средней ошибки прямо пропорционален среднему квадратическому отклонению, т. е. вариабельности изучаемого признака, и обратно пропорционален корню квадратному из числа наблюдений.

При выполнении статистического анализа на основе вычисления относительных величин построение вариационного ряда не является обязательным. При этом определение средней ошибки для относительных показателей может выполняться по упрощенной формуле:

,

где: Р – величина относительного показателя, выраженного в процентах, промилле и т.д.;

q – величина, обратная Р и выраженная как (1-Р), (100-Р), (1000-Р) и т. д., в зависимости от основания, на которое рассчитан показатель;

n – число наблюдений в выборочной совокупности.

Однако, указанная формула вычисления ошибки репрезентативности для относительных величин может применяться только в том случае, когда значение показателя меньше его основания. В ряде случаев расчета интенсивных показателей такое условие не соблюдается, и показатель может выражаться числом более 100% или 1000%о. В такой ситуации выполняется построение вариационного ряда и вычисление ошибки репрезентативности по формуле для средних величин на основе среднего квадратического отклонения.

Прогнозирование величины средней арифметической в генеральной совокупности выполняется с указанием двух значений – минимального и максимального. Эти крайние значения возможных отклонений, в пределах которых может колебаться искомая средняя величина генеральной совокупности, называются «Доверительные границы ».

Постулатами теории вероятностей доказано, что при нормальном распределении признака с вероятностью 99,7%, крайние значения отклонений средней будут не больше величины утроенной ошибки репрезентативности (М ± 3m ); в 95,5% – не больше величины удвоенной средней ошибки средней величины (М ± 2m ); в 68,3% – не больше величины одной средней ошибки (М ± 1m ) (рис. 9).

P%

Рис. 9. Плотность вероятностей нормального распределения.

Отметим, что приведенное выше утверждение справедливо только для признака, который подчиняется нормальному закону распределения Гаусса.

Большинство экспериментальных исследований, в том числе и в области медицины, связано с измерениями, результаты которых могут принимать практически любые значения в заданном интервале, поэтому, как правило, описываются моделью непрерывных случайных величин. В связи с этим в большинстве статистических методов рассматриваются непрерывные распределения. Одним из таких распределений, имеющим основополагающую роль в математической статистике, является нормальное, или гауссово, распределение .

Это объясняется целым рядом причин.

1. Прежде всего, многие экспериментальные наблюдения можно успешно описать с помощью нормального распределения. Следует сразу же отметить, что не существует распределений эмпирических данных, которые были бы в точности нормальными, поскольку нормально распределенная случайная величина находится в пределах от до , чего никогда не встречается на практике. Однако нормальное распределение очень часто хорошо подходит как приближение.

Проводятся ли измерения веса, роста и других физиологических параметров организма человека - везде на результаты оказывает влияние очень большое число случайных факторов (естественные причины и ошибки измерения). Причем, как правило, действие каждого из этих факторов незначительно. Опыт показывает, что результаты именно в таких случаях будут распределены приближенно нормально.

2. Многие распределения, связанные со случайной выборкой, при увеличении объема последней переходят в нормальное.

3. Нормальное распределение хорошо подходит в качестве приближенного описания других непрерывных распределений (например, асимметричных).

4. Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивших его широкое применение в статистике.

В то же время следует отметить, что в медицинских данных встречается много экспериментальных распределений, описание которых моделью нормального распределения невозможно. Для этого в статистке разработаны методы, которые принято называть «Непараметрическими».

Выбор статистического метода, который подходит для обработки данных конкретного эксперимента, должен производиться в зависимости от принадлежности полученных данных к нормальному закону распределения. Проверка гипотезы на подчинение признака нормальному закону распределения выполняется с помощью гистограммы распределения частот (графика), а также ряда статистических критериев. Среди них:

Критерий асимметрии (b );

Критерий проверки на эксцесс (g );

Критерий Шапиро – Уилкса (W ) .

Анализ характера распределения данных (его еще называют проверкой на нормальность распределения) осуществляется по каждому параметру. Чтобы уверенно судить о соответствии распределения параметра нормальному закону, необходимо достаточно большое число единиц наблюдения (не менее 30 значений).

Для нормального распределения критерии асимметрии и эксцесса принимают значение 0. Если распределение смещено вправо b > 0 (положительная асимметрия), при b < 0 - график распределения смещен влево (отрицательная асимметрия). Критерий асимметрии проверяет форму кривой распределения. В случае нормального закона g =0. При g > 0 кривая распределения острее, если g < 0 пик более сглаженный, чем функция нормального распределения.

Для проверки на нормальность по критерию Шапиро – Уилкса требуется найти значение этого критерия по статистическим таблицам при необходимом уровне значимости и в зависимости от числа единиц наблюдения (степеней свободы). Приложение 1. Гипотеза о нормальности отвергается при малых значениях этого критерия, как правило, при w <0,8.

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.

​ Вариационный ряд – ряд, в котором сопоставлены (по степени возрастания или убывания) варианты и соответствующие им частоты

​Варианты – отдельные количественные выражения признака. Обозначаются латинской буквой V . Классическое понимание термина "варианта" предполагает, что вариантой называется каждое уникальное значение признака, без учета количества повторов.

Например, в вариационном ряду показателей систолического артериального давления, измеренного у десяти пациентов:

110, 120, 120, 130, 130, 130, 140, 140, 160, 170;

вариантами являются только 6 значений:

110, 120, 130, 140, 160, 170.

​Частота – число, показывающее, сколько раз повторяется варианта. Обозначается латинской буквой P . Сумма всех частот (которая, разумеется, равна числу всех исследуемых) обозначается как n .

    В нашем примере частоты будут принимать следующие значения:
  • для варианты 110 частота Р = 1 (значение 110 встречается у одного пациента),
  • для варианты 120 частота Р = 2 (значение 120 встречается у двух пациентов),
  • для варианты 130 частота Р = 3 (значение 130 встречается у трех пациентов),
  • для варианты 140 частота Р = 2 (значение 140 встречается у двух пациентов),
  • для варианты 160 частота Р = 1 (значение 160 встречается у одного пациента),
  • для варианты 170 частота Р = 1 (значение 170 встречается у одного пациента),

Виды вариационных рядов:

  1. простой - это ряд, в котором каждая варианта встречается только по одному разу (все частоты при этом равны 1);
  2. взвешенный - ряд, в котором одна или несколько вариант встречаются неоднократно.

Вариационный ряд служит для описания больших массивов чисел, именно в этой форме изначально представляются собранные данные большинства медицинских исследований. Для того, чтобы охарактеризовать вариационный ряд, рассчитываются специальные показатели, в том числе средние величины, показатели вариабельности (так называемой, дисперсии), показатели репрезентативности выборочных данных.

Показатели вариационного ряда

1) Средняя арифметическая - это обобщающий показатель, характеризующий размер изучаемого признака. Средняя арифметическая обозначается как M , представляет собой самый распространенный вид средней. Средняя арифметическая рассчитывается как отношение суммы значений показателей всех единиц наблюдения к числу всех исследуемых. Методика расчета средней арифметической различается для простого и взвешенного вариационного ряда.

Формула для расчета простой средней арифметической:

Формула для расчета взвешенной средней арифметической:

M = Σ(V * P)/ n

​ 2) Мода – еще одна средняя величина вариационного ряда, соответствующая наиболее часто повторяющейся варианте. Или, если выразиться по другому, это варианта, которой соответствует наибольшая частота. Обозначается как Мо . Мода рассчитывается только для взвешенных рядов, так как в простых рядах ни одна из вариант не повторяется и все частоты равны единице.

Например, в вариационном ряду значений частоты сердечных сокращений:

80, 84, 84, 86, 86, 86, 90, 94;

значение моды составляет 86, так как данная варианта встречается 3 раза, следовательно ее частота - наибольшая.

3) Медиана – значение варианты, делящей вариационный ряд пополам: по обе стороны от нее находится равное число вариант. Медиана также, как и средняя арифметическая и мода, относится к средним величинам. Обозначается как Me

4) Среднее квадратическое отклонение (синонимы: стандартное отклонение, сигмальное отклонение, сигма) - мера вариабельности вариационного ряда. Является интегральным показателем, объединяющим все случаи отклонения вариант от средней. Фактически, отвечает на вопрос: насколько далеко и как часто варианты распространяются от средней арифметической. Обозначается греческой буквой σ ("сигма") .

При численности совокупности более 30 единиц, стандартное отклонение рассчитывается по следующей формуле:

Для малых совокупностей - 30 единиц наблюдения и менее - стандартное отклонение рассчитывается по другой формуле:

(определение вариационного ряда; составляющие вариационного ряда; три формы вариационного ряда; целесообразность построения интервального ряда; выводы, которые можно сделать по построенному ряду)

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.



Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

Где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

По этому ряду уже можно сделать несколько выводов. Например, средний элемент вариационного ряда (медиана) может быть оценкой наиболее вероятного результата измерения. Первый и последний элемент вариационного ряда (т.е. минимальный и максимальный элемент выборки) показывают разброс элементов выборки. Иногда если первый или последний элемент сильно отличаются от остальных элементов выборки, то их исключают из результатов измерений, считая, что эти значения получены в результате какого-то грубого сбоя, например, техники.