Особенности водных экосистем. Классификация по происхождению

Экосистемы, как отмечалось, – широкое понятие. Это – любая совокупность живых организмов и условий среды их обитания, между которыми есть взаимодействия. Поэтому очень важно знать особенности разных экосистем. В этой главе мы познакомимся с классификацией экосистем и рассмотрим примеры некоторых естественных экосистем. Экосистемы, созданные человеком (сельскохозяйственные и промышленные), будут рассматриваться в следующей части учебника.

КЛАССИФИКАЦИЯ ЭКОСИСТЕМ ПО ФУНКЦИОНАЛЬНОЙ СТРУКТУРЕ И РОЛИ ЧЕЛОВЕКА

Экосистемы очень разнообразны (рис. 59). Их состав зависит от многих факторов, в первую очередь от климата, геологических условий и влияния человека. Они могут быть автотрофными , если главную роль играют автотрофные организмы – продуценты, или гетеротрофными , если продуцентов в экосистеме нет или их роль незначительна. Экосистемы могут быть естественными или созданными человеком – социоприродными (антропогенными , от греческих слов антропос – человек и генезис – происхождение).

Естественные (природные) экосистемы формируются под влиянием природных факторов, хотя человек может оказывать влияние на них. В лесу человек заготавливает древесину и охотится, на степном пастбище пасет скот, в водоемах ловит рыбу. Он может загрязнять атмосферу, почву, воду. Однако влияние человека в этих экосистемах меньше, чем влияние природных факторов.

Антропогенные (искусственные) экосистемы создаются человеком в процессе хозяйственной деятельности. Их примеры: сельскохозяйственные ландшафты с посевами и стадами скота, города, лесопосадки, морские «огороды» из водоросли ламинарии и «фермы» устриц или морского гребешка. В состав антропогенных экосистем могут входить сохранившиеся более мелкие естественные экосистемы (лес или озеро на территории сельскохозяйственной экосистемы, лесопарк в городе).

Существуют экосистемы, переходные между естественными и искусственными, например, экосистема естественных полупустынных пастбищ Калмыкии со стадами сельскохозяйственных животных.

И естественные, и антропогенные экосистемы различаются по источнику энергии, который обеспечивает их жизнедеятельность.

Автотрофные экосистемы находятся на энергетическом самообеспечении и разделяются на фототрофные – потребляющие солнечную энергию за счет продуцентов-фототрофов и хемотрофные – использующие химическую энергию за счет продуцентов-хемотрофов. Большая часть экосистем, в том числе и сельскохозяйственные, являются фотоавтотрофными. На управление сельскохозяйственной экосистемой человек затрачивает много антропогенной энергии (заключенной в горючем для тракторов, использованной при производстве сельскохозяйственных машин, удобрений, пестицидов и т.д.), но ее роль незначительна по сравнению с поступающей в экосистему солнечной энергией.

Естественные хемотрофные экосистемы формируются в подземных водах и на дне океанов, где из разломов плит земной коры выделяется сероводород. Антропогенные хемотрофные экосистемы человек создает из микроорганизмов в некоторых биологических очистных сооружениях для очистки воды от загрязнения неорганическими веществами.

Гетеротрофные экосистемы используют химическую энергию, которую получают вместе с углеродом от органических веществ, или энергию созданных человеком энергетических устройств.

Пример естественной гетеротрофной экосистемы – экосистема океанических глубин, куда не доходит солнечный свет. Животные и микроорганизмы, входящие в нее, существуют за счет «питательного дождя» – трупов и остатков организмов, падающих на дно из освещенной солнцем автотрофной океанической экосистемы. Существуют гетеротрофные экосистемы и высоко в горах, где микроскопические клещи питаются остатками растений, которые приносит ветер.

Антропогенные гетеротрофные экосистемы очень разнообразны. Это, во-первых, города и промышленные предприятия. Энергия в них поступает по линиям электропередачи, по трубам нефте- и газопроводов, в цистернах автомашин и железнодорожных вагонах. Поступают в город и сырье для работы промышленных предприятий, и продукты питания для горожан. Какое-то количество солнечной энергии городская экосистема получает благодаря зеленым растениям, но оно ничтожно мало по сравнению с энергией, которую город получает извне.

К гетеротрофным антропогенным экосистемам, кроме того, относятся:

биологические очистные сооружения, в которых микроорганизмы разлагают органические вещества (в том числе и установки по сбраживанию навоза и получению из него биогаза);

фабрики по разведению дождевых червей. Дождевые черви перерабатывают органическое вещество (навоз, опилки, солому) и дают биомассу, которую человек использует для откорма рыбы и птицы (а в Японии белок червя используют как добавку в пищу). Образующийся продукт переработки органики – биогумус обогащен питательными элементами и используется в любительском садоводстве и огородничестве;

плантации шампиньонов. Шампиньоны выращивают не только на специальных фабриках, но и в подвалах домов, которые нетрудно оборудовать – нужен лишь органический субстрат и тепло;

рыборазводные пруды в городах. В этих прудах остатки пищевых продуктов горожан перерабатываются в биомассу рыбы.

Контрольные вопросы

1. Чем отличаются автотрофные и гетеротрофные экосистемы? Приведите их примеры.

2. В чем заключается различие естественных и антропогенных экосистем?

3. Назовите несколько вариантов антропогенных гетеротрофных экосистем.

ЭКОСИСТЕМА ЛЕСА

Основными продуцентами в лесу являются деревья. В разных природных зонах и в разных условиях увлажнения (сухой склон или увлажненный лог) состав древостоя различается. Однако в любом случае количество деревьев в древостое регулируется конкуренцией и уже рассмотренной закономерностью самоизреживания (зависимостью плотности от смертности). В любом лесу можно видеть и процветающие деревья, и ослабленные экземпляры, которые усыхают.

Для леса характерно полное использование энергии света за счет ярусов: под пологом древостоя бывает ярус подлеска из невысоких деревьев (калина, рябина, крушина, черемуха) и подроста деревьев первого яруса. В составе подлеска могут быть и кустарники – малина, смородина, лещина и др.

Ниже яруса подлеска расположен ярус напочвенного покрова, который может состоять из трав (в широколиственных лесах) или мхов и кустарничков (брусника, черника, линнея) в тайге (рис. 60).

У растений разных ярусов – разные экологические ниши: если для нормального роста растений первого яруса требуется полное солнечное освещение, то растения напочвенного покрова довольствуются несколькими процентами света, пробившегося сквозь густой полог листьев и достигшего земли.

Растения связаны отношениями мутуализма с микоризными грибами и отношениями типа протокооперации с азотфиксирующими бактериями. Эти бактерии не образуют на корнях деревьев (за исключением ольхи черной и облепихи) клубеньки, а живут вокруг корней, получая от них выделяемые в почву органические кислоты и используя ткани отмирающих корешков. За это органическое вещество бактерии-азотфиксаторы снабжают лесную экосистему азотом.

Не более 7–10% биологической продукции леса потребляется фитофагами (лосями, зайцами, оленями, косулями и множеством насекомых-листоедов), основная продукция растений пополняет запас детрита и потребляется детритофагами и редуцентами. По этой причине важную роль играет лесная подстилка, где как раз и расположен «цех» по переработке детрита в минеральные вещества армадой насекомых, простейших и грибов. Роль бактерий в разрушении детрита лесной экосистемы сравнительно невелика.

Большую роль в жизни лесной экосистемы играют птицы, среди которых есть фитофаги, питающиеся плодами и распространяющие их, зоофаги, контролирующие плотность насекомых, и хищники, подобные сове или филину, которые питаются мышами и другими млекопитающими.

Таким образом, главные особенности лесных экосистем следующие:

– преобладание жизненной формы деревьев, чем объясняется большой запас биомассы, которая превышает биологическую продуктивность в десятки раз;

– сложная пространственная организация с выраженной ярусностью, причем разные ярусы не только сформированы разными популяциями растений, но имеют свою фауну;

– преобладание детритных цепей питания: менее 10% фитомассы съедается в живом состоянии, остальная часть идет в «переработку» в состоянии детрита, которая происходит в основном в лесной подстилке.

Контрольные вопросы

1. К какой жизненной форме относятся основные продуценты леса?

2. Объясните, почему в лесу преобладают детритные, а не пастбищные пищевые цепи.

3. Как внешне проявляется дифференциация экологических ниш в лесной экосистеме?

4. Назовите основных лесных хищников.

5. Каково соотношение биологической продуктивности и биомассы в лесу?

(ДОП.) § 40. СРАВНЕНИЕ ЭКОСИСТЕМ ПРЕСНОВОДНЫХ ВОДОЕМОВ И НАЗЕМНЫХ ЭКОСИСТЕМ

Для наземных экосистем главными лимитирующими факторами, которые определяют состав и первичную биологическую продукцию, являются вода и богатство почвы элементами минерального питания. В экосистемах с густым пологом растений – широколиственных лесах, высоких зарослях тростника или двукисточника (канареечника) на берегу реки – лимитирующим фактором может быть свет.

В водных экосистемах дефицита воды нет, она всегда в избытке: если водоем пересыхает, то и его водная экосистема разрушается и сменяется другой, наземной. Лимитирующими факторами в них являются содержание в воде кислорода и элементов питания (в первую очередь фосфора и азота). Кроме того, лимитирующим фактором, как и в наземных экосистемах, может быть обеспеченность светом. Рассмотрим эти лимитирующие факторы более подробно.

Содержание кислорода в воде меняется в очень широких пределах. В реках, особенно горных с быстрым течением, содержание кислорода всегда высокое, но в небольших стоячих водоемах оно может быть низким и особенно резко снижается в небольших водоемах зимой. Слой льда изолирует воду от атмосферы и исключает перемешивание воды ветром, а организмы, прежде всего бактерии, продолжают расходовать кислород, который был в воде с осени. В результате этого происходят заморы , и от недостатка кислорода гибнет рыба.

Разные организмы по-разному устойчивы к недостатку кислорода. Такие рыбы, как карась или линь, могут выжить при самом резком понижении его содержания в воде. По этой причине именно караси и лини заселяют заморные водоемы. Для рыб горных рек, таких как хариус, форель или таймень, нужна постоянная «вентиляция» воды.

Обеспеченность светом влияет в первую очередь на растения, населяющие водоемы. Она зависит от толщины слоя воды, через которую проходит свет, и от ее прозрачности. Метровая толща воды задерживает 90% света, причем этот слой почти полностью поглощает инфракрасные лучи. Ниже точки, где света становится недостаточно для фотосинтеза, расположена глубоководная гетеротрофная часть озера. Там растений нет, и организмы живут за счет питательного «дождя» – мертвых органических остатков, падающих из освещенных слоев водоема.

Основными продуцентами водных экосистем являются организмы планктона – водоросли (зеленые и диатомовые) и цианобактерии. Планктонные организмы свободно взвешены («парят») в толще воды и либо не способны к активному перемещению, либо перемещаются медленно и на небольшие расстояния. При этом, если зеленые водоросли только фотосинтезируют и производят первичную биологическую продукцию, то некоторые цианобактерии, кроме того, способны фиксировать атмосферный азот. Они подобны бактериям-азотфиксаторам, которые в наземных экосистемах населяют почву вокруг корней растений или живут в клубеньках на корнях бобовых.

В водоемах с водой, богатой питательными элементами, особенно в мелких и зарастающих, большую роль играют и крупные растения, называемые макрофитами (от макрос – большой и фитон – растение). На дне мелких озер иногда растут харовые водоросли, напоминающие маленькие елочки.

Основные консументы в водных экосистемах также имеют микроскопические размеры – это зоопланктон. При этом в составе зоопланктона есть и совсем маленькие животные, например, одноклеточные инфузории, и более крупные ракообразные размером до нескольких миллиметров.

Кроме зоопланктона водная толща заселена активно перемещающимися организмами, которые составляют нектон , – рыбами. Среди рыб есть и фитофаги, и зоофаги, и эврифаги, причем очень часто «вкусы» рыб меняются с возрастом. В младенчестве рыбы могут быть растительноядными, а в зрелом возрасте – плотоядными.

К консументам водных экосистем относят птиц и других животных, которые питаются в этих экосистемах. Это различные виды уток, чаек, голенастых, куликов, поганок. Все они питаются рыбой и мелкими животными, обитающими на мелководье. В водных экосистемах живут и промысловые звери: бобр, выдра, норка, ондатра. Наконец, в водоемах живут земноводные (тритоны, жерлянки, лягушки) и пресмыкающиеся (черепаха болотная, водяной уж).

В пищевых цепях в наземных экосистемах – обычно не более трех звеньев (например, клевер – заяц – лисица). В водных экосистемах таких звеньев может быть четыре, пять или даже шесть. Кроме растительноядного планктона, представленного ветвистоусыми рачками, есть еще и хищный планктон – рачки-циклопы. До трех звеньев пищевой цепи могут составлять рыбы (плотва – окунь – щука).

Кроме фитопланктона, зоопланктона и нектона, в состав водных экосистем входит бактериопланктон . При этом, если в наземных экосистемах бактерии в основном играют роль редуцентов и снабжают элементами питания растения, то в водных экосистемах до 40% бактериопланктона в живом состоянии становятся пищей инфузорий. То есть с бактерий начинается детритная пищевая цепь, в составе которой нет растений.

Важную роль в жизни водной экосистемы играет донное население, составляющее бентос . В неглубоких водоемах в составе бентоса непременно присутствуют растения, которые корнями прикрепляются ко дну. Однако, основное население бентоса – это животные и бактерии.

Если в наземной экосистеме основной запас детрита расположен в почве, то в водной экосистеме – в донных отложениях органического вещества – сапропеля. В сапропеле захораниваются и загрязняющие вещества, попавшие в водную экосистему.

Биологическая продуктивность в водных экосистемах меняется в самых широких пределах и в озерах со слабо минерализованной водой может быть равной продуктивности пустынь или разреженных зарослей растений на скалах (не свыше 0,25 кг/м 2 поверхности водоема). В озерах с водой, обогащенной элементами питания, продуктивность может достигать 1–2 кг/м 2 поверхности в год, что соответствует продуктивности широколиственного леса.

Водные экосистемы очень динамичны. Они меняются в течение суток и по сезонам года. Во второй половине лета эвтрофные озера «цветут» – в них массово развиваются микроскопические одноклеточные водоросли и цианобактерии. К осени биологическая продуктивность фитопланктона снижается, а макрофиты опускаются на дно.

Изменяется экосистема от года к году в зависимости от особенностей климата и соответственно количества и качества воды, которая поступает в озеро весной и теряется из озера летом. В сухие годы озера могут мелеть. Обедняется состав рыбного населения при заморах.

О том как происходит сукцессия эвтрофикации и восстановительная сукцессия в водоемах вы уже знаете.

В заключение отметим три главных отличия «зеленых каруселей» водных экосистем от наземных:

– более полное выедание организмов в пищевых цепях. Если в наземных экосистемах в живом состоянии животные поедают не более 10% биомассы растений, то в водной экосистеме выедание фитопланктона зоопланктоном может достигать 40%. Всем этим и объясняется более высокая скорость круговорота органического вещества в водной экосистеме. Оборот органического вещества происходит всего за несколько месяцев, в то время как для луга он составляет 3–5, а для леса – десятки лет;

– биологическая продукция больше запаса биомассы. Вследствие того, что основные «работники» автотрофного и гетеротрофного цехов водной экосистемы живут недолго (бактерии – несколько часов, водоросли – несколько дней, мелкие ракообразные – несколько недель), в каждый конкретный момент времени запас органического вещества в воде (биомасса) может быть меньше, чем биологическая продукция водоема за весь вегетационный период. В наземных экосистемах, наоборот, запас биомассы выше, чем продукция (в лесу – в 50 раз, на лугу и в степи – в 2–5 раз);

– биомасса животных может быть больше биомассы растений. Это связано с тем, что организмы зоопланктона живут дольше, чем водоросли и цианобактерии. В наземных экосистемах такого не бывает, и биомасса растений всегда больше биомассы фитофагов, а биомасса зоофагов меньше биомассы фитофагов.

На рис. 61 и 62 показаны потоки энергии в лесной и пресноводной экосистемах.

Контрольные вопросы

1. Какие растения являются основными продуцентами в водных экосистемах?

2. Какие факторы лимитируют биологическую продуктивность водных экосистем?

3. Как отличаются водные и наземные экосистемы по протяженности пищевых цепей?

4. Почему в водных экосистемах круговорот веществ происходит быстрее, чем в наземных?

5. Каково соотношение биологической продуктивности и биомассы в водных экосистемах?

6. Каково соотношение биомасс растений и животных в водных экосистемах?

Справочный материал

Вода – удивительное вещество с очень высокой теплоемкостью, что позволяет ей поглощать и удерживать тепло. Теплоемкость воды в 10 раз выше, чем железа. Этим объясняется сглаженность колебаний температуры воды при резких изменениях температуры воздуха. По этой же причине водоемы как среда обитания организмов сравнительно мало отличаются в разных природных зонах и на разных материках. И потому сходство живого населения водных экосистем в разных климатических условиях больше, чем у наземных экосистем этих же территорий.

Вода – прекрасный растворитель многих веществ, поэтому в ней содержится достаточно элементов питания для растений. Но, к сожалению, в ней может быть много веществ, которые для растений и других организмов пресноводных экосистем не только не полезны, но и вредны, например, хлоридов, сульфатов или соды, которые попадают в водоемы с промышленными стоками. В этих случаях живое население водоемов обедняется.

Вода обладает высоким поверхностным натяжением. Эта способность у нее выше, чем у спирта и многих других жидкостей. Поверхностная пленка воды устойчива к давлению, и потому по ней бегают водомерки, питающиеся упавшими на воду мелкими насекомыми. При низких температурах вода переходит в твердое состояние – лед.

На содержание питательных элементов, особенно кислорода, влияет режим перемешивания воды. В неглубоких озерах и в глубоких озерах, расположенных в районах, где дуют сильные ветры, происходит частое перемешивание глубоких и поверхностных слоев воды. В этом случае холодные и богатые элементами питания воды из глубины поднимаются к поверхности, а более теплые воды верхнего слоя, обогащенные кислородом, опускаются вглубь. Однако в большинстве глубоких озер перемешивание воды происходит редко, и потому вода близ дна холодная. Это знает всякий, кто купался в таком озере и нырял на большую глубину, где даже в самую жаркую погоду температура воды остается низкой.

Прозрачность воды можно определить простым способом: опустить в воду белый диск диаметром 30 см (диск Секки) и определить глубину, на которой он виден. В светлых водах диск виден на глубине до 30–50 м, в мутных – до 5–10 м.

На жесткой кремневой оболочке многих диатомовых водорослей есть специальные скульптурные «украшения» – шипики, которые снижают вероятность быть съеденной. У некоторых водорослей имеются плотные оболочки, и потому они не перевариваются и проходят через пищеварительную систему фитофага без повреждений.

Макрофиты (сосудистые растения водных экосистем) входят в несколько экологических групп:

плавающие растения, не имеющие корней, удерживающих их на одном месте. Самые важные растения этой группы – ряски. К плавающим растениям относятся и водокрас лягушачий, телорез, водный папоротник сальвиния;

прикрепленные водные растения прибрежий озер и речных плесов – кубышка желтая, кувшинка белая с листовыми пластинками, плавающими на поверхности воды, и рдесты, заполняющие водную толщу;

прикрепленные полуводные растения, обитающие в прибрежных мелководьях (сусак зонтичный, частуха подорожниковая, стрелолист, камыш озерный, рогозы широколистный и узколистный).

В малых озерах, остающихся в пойме после паводка, три звена пищевой цепи может быть представлено одним видом – щукой: совсем маленькие щучки становятся жертвами более крупных щурят, а те в свою очередь – попадают в зубы крупным щукам. Это случается тогда, когда в водоеме количество щук оказывается больше, чем других видов рыб, которые могут быть для них кормом.

Характер бентосного населения во многом зависит от особенностей дна. В реках дно может быть каменистым (горные участки) песчаным или даже илистым (на плесах). В озерах дно, как правило, илистое или покрыто слоем сапропеля. Чем жестче дно, тем беднее состав бентоса.

Слой сапропеля на дне озер может достигать нескольких метров. Это – ценное органическое удобрение и кормовая добавка в рацион скота, однако при его заготовке следует быть очень осторожными, чтобы не разрушить водную экосистему.

(ДОП.) § 41. ХЕМОТРОФНЫЕ ЭКОСИСТЕМЫ ОАЗИСОВ РИФТОВЫХ ЗОН ОКЕАНА

К хемотрофным относятся экосистемы подземных нефтяных вод, в которых бактерии-продуценты окисляют серу, железо, аммиак и др. Однако самыми удивительными являются экосистемы глубоководных геотермальных оазисов рифтовых зон (мест разломов плит литосферы) океана. Эти «оазисы» были открыты только в конце 70-х гг. в зоне подводного хребта Тихого океана, где из расщелин горной породы выделяются горячие воды, насыщенные сероводородом и сульфидами железа, цинка, меди и других тяжелых металлов. Температура этих вод достигает 300 о С, однако они не кипят вследствие высокого давления. Остывая при контакте с морской водой, эти подводные гейзеры формируют конусовидные образования высотой до 15 м, которые называются «черными курильщиками». У оснований «черных курильщиков» и формируется хемотрофная экосистема (рис. 63).

Продуцентами этих экосистем являются серобактерии, образующие скопления – бактериальные маты. За счет симбиоза с ними живут и основные организмы этой экосистемы – вестиментиферы (черви длиной 1–2,2 м, заключенные в длинные белые трубки из хитиноподобного вещества, серобактерии живут в клетках этого животного). В составе этой экосистемы много видов животных-хищников (крабы, моллюски, некоторые глубоководные рыбы). Позднее подобные «оазисы жизни» были обнаружены и в других океанах. Биологическая продукция таких экосистем в десятки тысяч раз превышает продукцию типичных бентосных гетеротрофных экосистем. Биомасса только вестиментифер может достигать 10–15 кг/м 2 .

Однако эти экосистемы существуют недолго и разрушаются после того, как прекратится деятельность подводных гейзеров.

Контрольные вопросы

1. Какой источник энергии поддерживает жизнь экосистем рифтовых зон?

2. К какой систематической группе животных относятся организмы, преобладающие в этих экосистемах?

3. Что такое «черные курильщики»?

(ДОП.) § 42. БИОМЫ

Самой крупной единицей классификации экосистем является биом. Биомы наземных экосистем выделяются по преобладающей жизненной форме растений и совпадают с природными зонами. Биомы водных экосистем выделяются по особенностям условий среды, которые определяют состав экосистем.

Перечислим наиболее важные биомы суши :

тундры (арктические и альпийские);

листопадные леса умеренной зоны;

степи умеренной зоны;

тропические степи и саванны (растительность этих биомов вегетирует круглый год, но в период засухи их биологическая продукция резко снижается);

полувечнозеленые сезонные тропические леса (зимнезеленые леса, сбрасывающие листья летом);

тропические дождевые леса (вегетируют круглый год и являются самыми продуктивными экосистемами Земли).

Каждый биом формируется под воздействием определенного комплекса условий среды. На рис. 64 показаны экологические ареалы некоторых биомов в двух главных осях климатических факторов – среднегодовой температуры и количества осадков, а на рис. 65 – карта основных биомов мира. Однако для объяснения того, почему формируется тот или иной биом, этих показателей бывает недостаточно, важную роль играют динамика поступления осадков в течение года, максимальные и особенно минимальные температуры воздуха.

Различают всего два биома пресных вод :

биом стоячих вод,

биом проточных вод.

Экосистемы биома стоячих вод более разнообразны, так как в этом случае шире пределы изменения условий, определяющих состав биоты и ее продукцию, – глубины водоема, химического состава воды, степени зарастания водоема (включая и образующиеся вдоль побережий сплавины – сообщества на плавающем торфе). В биоме проточных вод большую роль играет скорость течения, и состав биоты перекатов и плесов различается.

В зарастающих водными растениями озерах вода богата элементами питания, обилен фитопланктон и выше вторичная биологическая продукция (включая и продукцию рыб). В глубоких озерах с мягкой водой низка и первичная, и вторичная продукция.

Различают семь основных биомов морских вод и прибрежий :

приморские скалистые побережья, достаточно бедные элементами питания;

лиманы – богатые элементами питания илистые отмели у впадения рек;

континентальный шельф – экосистемы прибрежных зон океанов с глубиной не более 200 м. Отличаются высоким биологическим разнообразием и высокой биологической продуктивностью. Это основные районы промысла морепродуктов;

фотические (автотрофные) экосистемы верхнего слоя вод открытого океана (поверхностные пелагические сообщества). Этот биом имеет низкую биологическую продуктивность, сравнимую с пустыней;

области апвеллинга. У западных побережий материков ветры постоянно отгоняют поверхностную воду от крутого берегового склона, и в этих местах из глубины поднимается вода, обогащенная элементами питания (в первую очередь фосфором и азотом). Это очень продуктивные экосистемы, которые являются районами промышленного рыболовства (особенно сельди);

морские глубоководные пелагические экосистемы (формируются при отсутствии света и потому представлены гетеротрофами, живущими за счет «питательного дождя»);

коралловые рифы – высокопродуктивные экосистемы тропических морей.

Более подробно характеристика биомов рассматривается на уроках географии.

Контрольные вопросы

1. Перечислите основные биомы наземных экосистем.

2. Чем отличаются экосистемы биомов стоячих и текучих вод.

3. Какие биомы морских вод имеют самую высокую биологическую продуктивность?

4. Какой биом морских вод представлен гетеротрофными экосистемами?

ЗАКЛЮЧЕНИЕ

Экосистемы разнообразны, в их составе – самые разные ансамбли видов в сочетании с разными условиями среды. Экосистемы, состав и функции которых определяются в основном природными факторами, называются естественными (лес, озеро, степь, океан, тундра). В антропогенных экосистемах главную роль в управлении их составом и функцией играет человек. Их примеры: сельскохозяйственные земли, территории городов и т.д.

Полностью естественных экосистем сегодня уже нет, так как влияние человека простирается не только на степи и луга, где он пасет скот, но и на отдаленные от его поселений участки океана или заоблачные ледники горных экосистем. Через атмосферу эти естественные экосистемы получают свою порцию загрязняющих веществ, на них влияет изменение климата, вызванное хозяйственной деятельностью человека.

Кроме того, экосистемы подразделяются по источнику энергии, на которой они «работают», и углерода, который используют как «сырье» для синтеза органического вещества. Автотрофные экосистемы используют энергию солнца или химических реакций минеральных веществ и неорганический углерод, гетеротрофные – готовые органические вещества и заключенную в них энергию. Органическое вещество для гетеротрофных экосистем производится в автотрофных экосистемах.

Даже экосистемы с одним типом питания и при сходном влиянии человека очень разнообразны. Так, к примеру, автотрофные естественные экосистемы леса и озера различаются не только по составу биоты, но и по многим параметрам функции. В экосистеме озера пищевые цепи более длинные, выедание организмов в пастбищных пищевых цепях более полное, быстрее протекает круговорот веществ, биомасса может быть больше биологической продуктивности, что невозможно в лесной экосистеме.

Среди хемотрофных естественных экосистем наиболее удивительны геотермальные оазисы рифтовых зон. За счет энергии окисления сероводорода бактериями и их симбиоза с червями-вестиментиферами формируется первичная биологическая продукция, за счет которой живут десятки видов других гетеротрофных организмов.

Экосистемы разных природных зон суши и разных частей океана, различающихся глубиной и богатством элементов питания, называются биомами.

Индивидуальное задание

Тема: «Сравнение экосистем леса и пруда».

Задача исследования – выявить различия биоты двух разных естественных автотрофных экосистем. Работа экспериментальная и трудоемкая, поэтому ее лучше выполнять нескольким школьникам, совместно работающим в экологическом кружке. Постарайтесь составить список видов растений, животных и других организмов (лишайников, грибов) леса и список растений и животных пруда. Для работы вам потребуется рыболовная сеть и разрешение природоохранных органов на вылов рыбы в научных целях. Потребуется микроскоп, чтобы в капле воды определить состав планктона (хотя бы до крупных групп). Конечно, вам не удастся полностью охарактеризовать состав биоты экосистем, но вы выявите достаточно много видов, для того чтобы показать различия сравниваемых экосистем. Функциональные параметры экосистем опишите на основе данных литературы.

В качестве источника материала используйте двухтомник Ю. Одума и краеведческую литературу о флоре и фауне своего района.

Глава 9. БИОСФЕРА

Самой большой экосистемой является биосфера – оболочка планеты, заселенная живыми организмами (рис. 66). Толщина биосферы немного больше 20 км (организмы обитают над поверхностью суши не выше 6 км над уровнем моря, опускаются не глубже 15 км в толщу суши и 11 км в глубь океана), но основная масса живого вещества сконцентрирована в приповерхностном слое толщиной всего несколько десятков метров: это высота лесного полога и глубина проникновения основной массы корней. В этих же пределах сконцентрированы наземные и почвенные животные и микроорганизмы. В океане наиболее обжиты растениями и животными освещаемые солнцем и прогреваемые приповерхностные 10–20 м толщи воды. В этом тонком слое биосферы сконцентрировано свыше 90% биомассы растений и животных.

По сравнению с диаметром Земли (13 тыс. км) биосфера – тонкая пленка, подобная кожице на большом яблоке.

Как мы уже говорили, истоки учения о биосфере лежат в работах А.Л. Лавуазье, Ж.Б. Ламарка, А. Гумбольдта. Термин «биосфера» предложил Э. Зюсс. Однако, учение о биосфере создал русский ученый В.И. Вернадский. Он доказал, что за 4 миллиарда лет существования на планете Земля живые организмы вызвали огромные преобразования. В атмосфере появился кислород, раковины моллюсков образовали осадочные горные породы. Под влиянием жизнедеятельности организмов в биосфере постоянно происходит круговорот воды, кислорода, углерода, азота и других веществ.

СТРУКТУРА БИОСФЕРЫ

В биосфере различают три части.

Атмосфера – газообразная оболочка Земли, состоящая из смеси разных газов, простирающаяся примерно на 100 км (строгой верхней границы атмосферы не существует). В атмосфере различаются следующие слои:

– тропосфера – нижний 12-километровый слой, влияющий на погоду; в ней содержатся взвешенные в воздухе водяные пары, перемещающиеся при неравномерном нагреве поверхности планеты. Тропосфера составляет 2/3 массы всей атмосферы;

– стратосфера – достигает высоты 50 км. Она включает озоновый слой с максимальной концентрацией озона на высоте 20–45 км. Содержание озона в этом слое примерно в 10 раз выше, чем в атмосфере у поверхности Земли. Если весь этот озон собрать и сжать до давления, равного давлению атмосферы на уровне моря, то его слой составит 3 мм. В процессе образования и разрушения озона происходит поглощение ультрафиолетового излучения. Таким образом озоновый слой защищает поверхность планеты от избытка ультрафиолетовых лучей, неблагоприятно влияющих на живые организмы;

– мезосфера – находится на высоте от 50 до 85 км;

– ионосфера – слой выше 85 км (простирается до 400 км).

С высотой меняется химический состав и физические свойства атмосферы. Главные составляющие атмосферы: азот (78%) и кислород (20,95%), аргон (0,93%), диоксид углерода (0,03%).

Гидросфера – водная оболочка Земли, включающая океаны, моря, реки, озера, подземные воды, ледники. На 94% она представлена солеными водами океанов и морей, а вклад рек в водный бюджет планеты в 10 раз меньше, чем количество водных паров в атмосфере.

Три четверти пресной воды недоступны организмам, так как законсервированы в ледниках гор и полярных шапках Арктики и Антарктиды.

Литосфера – верхняя твердая оболочка Земли, мощность которой составляет 50–200 км. Верхний слой литосферы называется земной корой .

Контрольные вопросы

1. Какова главная идея учения В.И. Вернадского о биосфере?

2. Из каких основных блоков состоит биосфера?

3. На какой высоте расположен озоновый слой и какова его роль в биосфере?

4. Какова доля пресной воды в гидросфере?

5. Какую мощность имеет литосфера?

Справочный материал

В зарубежной литературе часто вместо понятия «биосфера» используют слово «гея» (от греч. Гея – богиня Земли), которое в 70-х гг. нашего столетия предложил Дж. Лавелок.

Озон образуется при поглощении ультрафиолетового излучения молекулами, содержащими кислород. Атомы кислорода отщепляются от этих молекул и, сталкиваясь с молекулами кислорода, соединяются с ними. Это же излучение разрушает молекулы озона. Образованию озона способствуют электрические разряды и присутствие в атмосфере оксидов азота и углеводородов.

Таблица 2

Распределение водных масс в гидросфере Земли

В состав экосистемы входят живые организмы (их совокупность назвается биоценозом , или биотой, экосистемы), факторы неживой природы (абиотические) – атмосфера, вода, питательные элементы, свет и мертвое органическое вещество – детрит .

Все живые организмы по способу питания (по функциональной роли) разделяются на две группы – автотрофов (от греческих слов аутос – сам и трофо – питание) и гетеротрофов (от греческого слова гетерос - другой).

Автотрофы . Эти организмы для синтеза органического вещества используют неорганический углерод, это – продуценты экосистемы. По используемому источнику энергии они, в свою очередь, также делятся на две группы.

Фотоавтотрофы используют свет. Это зеленые растения, цианобактерии, а также многие окрашенные бактерии, имеющие хлорофилл (и другие пигменты) и усваивающие солнечную энергию. Процесс, при котором происходит ее усвоение, называется фотосинтезом.

Хемоавтотрофы используют химическую энергию окисления неорганических веществ (серы, сероводорода, аммиака, железа и др.). Это серобактерии, водородобактерии, железобактерии, нитрифицирующие бактерии и др. Хемоавтотрофы играют главную роль в экосистемах подземных вод, а также в особых экосистемах рифтовых зон дна океана, где из разломов плит выделяется сероводород, который окисляют серобактерии. В наземных экосистемах существенную роль играют роль нитрифицирующие бактерии.

Гетеротрофы. Эти организмы питаются готовыми органическими веществами, которые синтезированы продуцентами, и вместе с этими веществами получают энергию. Гетеротрофы в экосистеме являются консументами (от латинского слова консумо – потребляю), потребляющими органическое вещество, и редуцентами , разлагающими его до простых соединений. Существует несколько групп консументов.

Фитофаги (растительноядные). К ним относятся животные, которые питаются живыми растениями. Среди фитофагов есть и небольшие организмы, такие, как тля или кузнечик, и гиганты, такие, как слон. Фитофагами являются почти все сельскохозяйственные животные: корова, лошадь, овца, кролик. Главные фитофаги в водных экосистемах – это микроскопические организмы растительноядного планктона, питающиеся водорослями. Есть в этих экосистемах и крупные фитофаги, например, рыба белый амур, поедающий растения, которыми зарастают оросительные каналы. Важный фитофаг – бобр. Он питается ветками деревьев, а из стволов сооружает плотины, регулирующие водный режим территории.

Зоофаги (хищники, плотоядные). Зоофаги очень разнообразны. Это и мелкие животные, питающиеся амебами, червями или рачками. И крупные, такие, как волк. Хищники, питающиеся более мелкими хищниками, называются хищниками второго порядка. В водных экосистемах широко распространены зоофаги-фильтраторы , в составе этой группы – и микроскопические рачки и кит. Фильтраторы играют огромную роль в самоочищении загрязненных вод (рис. 30). Только планктонные морские веслоногие раки из рода каланус за несколько лет способны профильтровать воды всего Мирового океана!


Есть растения-хищники (росянка, пузырчатка), которые используют в пищу насекомых. Правда, их способ питания отличается от хищников-животных. Они «ловят» мелких насекомых, но не заглатывают их, а «переваривают», выделяя ферменты на свою поверхность. Есть хищники и среди почвенных грибов, которые «ловят» микроскопических круглых червей-нематод.

Симбиотрофы. Это бактерии и грибы, которые питаются корневыми выделениями растений. Симбиотрофы очень важны для жизни экосистемы. Нити грибов, опутывающие корни растений, помогают всасыванию воды и минеральных веществ. Бактерии-симбиотрофы усваивают газообразный азот из атмосферы и связывают его в доступные растениям соединения (аммиак, нитраты). Этот азот называется биологическим (в отличие от азота минеральных удобрений).

К симбиотрофам относятся и микроорганизмы (бактерии, одноклеточные животные), которые обитают в пищеварительном тракте животных-фитофагов и помогают им переваривать пищу. Такие животные, как корова, без помощи симбиотрофов не способны переварить поедаемую траву.

Детритофаги – организмы, питающиеся мертвым органическим веществом. Это многоножки, дождевые черви, жуки-навозники, раки, крабы, шакалы и многие другие. Значительное разнообразие видов-детритофагов связано с почвой. Многочисленны детритофаги, разрушающие древесину (рис. 31).

Организмы, которые питаются экскрементами, называются копрофагами . Некоторые организмы используют в пищу как растения, так и животных и даже детрит и относятся к эврифагам (всеядным) – медведь, лиса, свинья, крыса, курица, ворона, тараканы. Эврифагом является и человек.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мертвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Для переработки мертвого органического вещества редуцентам нужно время. Поэтому в экосистеме всегда есть запас этого вещества – детрит. Детрит – это опад листьев на поверхности лесной почвы (сохраняется 2–3 года), ствол упавшего дерева (сохраняется 5–10 лет), гумус почвы (сохраняется сотни лет), отложения органического вещества на дне озера – сапропель и торф на болоте (сохраняется тысячи лет). Наиболее долго сохраняющимся детритом являются каменный уголь и нефть.

Продуценты, фитофаги, хищники связаны в процессе «работы» экосистемы, то есть усвоении и расходовании энергии при производстве органического вещества и как бы участвуют в «эстафете» передачи энергии. Номер участника «эстафеты» – это его трофический уровень . Первый трофический уровень – продуценты, второй – фитофаги, третий – хищники первого порядка, четвертый – хищники второго порядка. В некоторых экосистемах, например в озере, количество трофических уровней может достигать 5-6.

На рис. 32 показана структура экосистемы, основу которой составляют растения – фотоавтотрофы, а в табл. 1 приведены примеры представителей разных трофических групп для некоторых экосистем.

Таблица 1

Представители разных трофических групп в некоторых экосистемах

Подводная растительность может быть не менее красивой чем наземная

Само уже название «Водные экосистемы» говорит о том, что это такой вид экологических систем, местом существования которых является водная среда. Структура, физические и химические свойства водной среды предопределяют видовой состав растительного и животного мира, особенности трофических цепей, ее сложность и устойчивость.

В зависимости от этих показателей водные экосистемы делятся на два типа: морские и пресноводные. В основе этого разделения лежит показатель количества содержащихся в воде солей. Измеряется этот показатель в промилле, то есть в тысячных долях. Он показывает, сколько грамм солей содержится в тысяче граммах воды или одном килограмме.

Кроме «солености» на водные экосистемы оказывают влияние еще два фактора. Количество поступающего солнечного света и содержание кислорода в воде.

Солнечный свет попадает на поверхность планеты, а значит, и водные пространства, неравномерно. Его количество больше к экватору и меньше к полюсам. С содержанием кислорода дело обстоит несколько по-другому. Его растворено больше в приполярных водах.

Морские

Цветовая гамма морских кораллов

К морским относятся такие экосистемы, которые сформировались в водной среде, с количеством растворенной в ней соли около 35% или промилле. Это в основном натрий и хлор. Морские экосистемы занимают почти 71% поверхности нашей планеты и входят в состав глобальной системы Мирового океана и в структуру гидросферы Земли.

Морские экосистемы – часть биосферы, производящая 32% всей чистой первичной продукции. Их можно разделить на зоны, в зависимости от глубины и береговой линии. Океанические обладают большой глубиной и площадью поверхности. Открытый океан мало заселен. В нем живут в основном киты, акулы и тунцы, а также донные беспозвоночные.

Экосистема морской флоры

Водные зоны возле берега называются приливов и отливов или прибрежные . К ним относят также:

  • лиманы;
  • солончаки;
  • коралловые рифы;
  • лагуны;
  • мангровые болота.

Животный и растительный мир здесь разнообразнее и основная масса его сосредоточена на глубинах до 100 м. от поверхности. Это:

  • коричневые водоросли;
  • кораллы;
  • моллюски;
  • иглокожие;
  • различные виды рыб;
  • млекопитающие;
  • акулы и т. д.

В придонных пластах и на дне растительность отсутствует . Там обитают некоторые виды рыб, беспозвоночные, а там, где скапливается большое количество сероводорода, существуют только хемосинтезирующие серные бактерии.

Морские экосистемы оказывают существенное влияние на формирования климата. Испарения с их поверхности – основной источник воды в атмосфере, а течения – регулятор температуры.

Разнообразие живых существ под водой

Морские экосистемы, благодаря своему большому биологическому разнообразию, являются устойчивыми ко многим видам воздействия. Они успешно противостоят занесенным человеком агрессивным видам живых организмов, природным вредителям и антропогенному влиянию.

— это мелководная линия вдоль побережья и до края континентального шельфа с теплой и богатой биогенами водой. Ее площадь менее 10% площади океана, но здесь живет 90% его биомассы. Места на побережье, где смешиваются соленые и пресные речные воды, называются эстуарии. Здесь биомасса максимальна и сравнима с тропическими лесами. Коралловые рифы располагаются также в прибрежных зонах тропических и субтропических широт с температурой воды более 20 0 С. Продуцентами в них являются красные и зеленые водоросли. Мир потребителей чрезвычайно разнообразен. Здесь проживает треть всех видов морских рыб.

Мелководье вдоль берега на прибрежной зоне

В морские экосистемы включается зона открытого океана. Хотя по площади и объему воды она превышается все другие вместе взятые, количеством и разнообразием флоры и фауны похвастаться не может. На его долю приходится лишь 10% общей биомассы. Его основная функция в другом – он поставщик первичного биологического продукта.

Пресные

Скалистая местность наполняет воду кислородом

Пресноводные экосистемы занимают всего лишь 0,8% суши и содержат 0,009% всех водных ресурсов Земли. Чистой первичной продукции в них производится только 3%. Хотя в пресных водоемах обитает около 41% видов рыб, известных науке на сегодняшний день. Основным критерием их отличия является скорость воды в них. Различают стоячие типы водных экосистем. К ним относят пруды и озера, то есть те объекты, где вода движется очень медленно. В реках и ручьях вода движется иногда с огромной скоростью, и такие типы экосистем называют проточными. Еще выделяют в отдельную категорию болота. Это места, где присутствие воды носит переменный характер, в результате чего почва бывает обводнена или насыщена водой.

Стоячие водоемы бывают глубокие и мелкие. Их экосистемы строятся в зависимости от того какое количество солнечного света и на какую глубину проникает в толщу воды. Глубоководные озера делятся на три зоны.

Вода в стоячих водоемах требует постоянной подкормки кислородом

У побережья – мелководье или литоральная зона. Далее зона открытой воды и глубоководья. В них свет проникает на определенную глубину и создает освещенную зону. В ней существуют фотосинтезирующие растения, в первую очередь водоросли, и все что ими кормиться. На глубоководье образуется неосвещенный пласт воды, придонная область и дно. К ним свет не проникает. Это пелагическая зона.

Вода наполненная кислородом, содержит в себе множество живых организмов

Неглубокими или мелкими водными объектами являются пруды. Их размеры и глубина меняется в зависимости от времени года. Растительный и животный мир прудов разнообразен. Пруды относят к водохранилищам искусственного происхождения, но не всегда они созданы человеком. Могут образоваться в результате строительной деятельности бобров или из-за крокодильих нор.

Главное отличие проточных экосистем в направлении и скорости их течения. Чем выше скорость, тем больше в воде концентрация растворенного кислорода и, соответственно, больше видовое разнообразие. Различают горные и равнинные реки. У одних источник питания происходит от деревьев, у других от водорослей. Реки и ручьи имеют зоны мелководных перекатов и глубоководных плес.

Течение наполняет горную реку кислородом

Самую большую опасность для существования проточных экосистем несут строящиеся на реках гидросооружения, регулирующие проток воды.

Принудительное торможение течения гидросооружениями

В результате такого строительства и регулирования водные экосистемы могут погибнуть.

Участки суши, покрытые водой или переувлажненные и заполненные значительным количеством неразложившихся органических, в основном растительного происхождения, остатков – это болото. Это такой участок, где слой торфа более 0,3 м, если меньше – заболоченная земля. Болота является природным накопителем избыточного углерода. Оно играет большую роль в очитке вод и нередко становится истоком рек.

У водной экосистемы структура практически не отличается от наземной. В ней сосуществуют автотрофные и гетеротрофные организмы, которые распределены по вертикальным уровням и в горизонтальной плоскости.

Структура

Автотрофные синтезируют органические соединения из неорганических. Находясь в водной среде и используя энергию солнечных лучей, они из углекислого газа вырабатывают кислород и увеличивают свою биомассу. Не всегда бурный рост биомассы положительно сказывается на развитии и существование экосистемы в целом. Увеличением своего объема, растения могут перекрыть доступ света вглубь водоема, замедлись его внутренний обмен питательными веществами и снизить содержание кислорода в воде. Отчего видовой состав экосистемы изменится в сторону увеличения количества хемосинтезирующих бактерий. Это микроорганизмы, питающиеся сероводородом.

В глубинах океана, эти бактерии являются источником питания других живых организмов. Например, гигантских трубчатых червей. В других водных объектах, они не находят своего потребителя. Потому довольно быстро превращают водоем в болото, а затем в торфяные залежи.

На дне океана может обитать множество живых существ

Автотрофными организмами питаются гетеротрофные. Для них это источник энергии и «материал для строительства» собственной биомассы.

Моря экосистема отличается от пресноводной тем, что морские организмы или эвриганные не живут в пресной воде, а стеногалинные, то есть нетерпимые к соли, наоборот. Хотя, есть и исключения из этого правила. Некоторые виды рыб основное время жизни проводят в океанской воде, но на нерест приходят в пресные реки. Например: лососевые или черноморский судак. Есть также некоторые виды акульих и крокодилов, которые прекрасно себя чувствуют как в соленой, так и в пресной воде.

Загрязнение

Загрязнение водных экосистем это любое изменение свойств воды:

  • химическое;
  • физическое;
  • биологическое.

При этом загрязняющие вещества могут находиться в твердом, жидком и газообразном состоянии.

Источниками загрязнения являются любые объекты и процессы, в результате которых в воду сбрасываются или попадают иным способом загрязняющие вещества. К которым можно отнести сверхнормативную концентрацию природных элементов и искусственно синтезированных веществ.

Чистая горная река, которых осталось уже очень мало

Загрязнение водных экосистем можно разделить на типы.

Первый – механическое загрязнение. Это повышение содержания в воде механических примесей. Его можно отнести к поверхностному виду.

Второй – химический, веществами органического или неорганического происхождения.

Третий – бактериологический или биологический. Это загрязнение патогенными микроорганизмами, грибами и водорослями. И последний на сегодня – радиоактивный. Это и природное радиоактивное излучение и последствия работы ядерных реакторов.

Авария: утечка нефти в открытое море

Насчитывается более 400 веществ, которые могут вызвать загрязнение воды. К химическим загрязнителям относят нефть и нефтепродукты, поверхностно-активные вещества, фенол, нафтеновые кислоты, пестициды, неорганические соли, кислоты и щелочи, мышьяк, соединения ртути, свинца и кадмия. Этот тип загрязнения стоек и распространяется на большие расстояния.

К бактериальным загрязнителям относят только вирусов более 700 видов.

Радиоактивные загрязнители остаются в воде дольше всех остальных. Это стронций-90, уран, радий-226, цезий и так далее.

Они концентрируются в мельчайшем планктоне и по пищевой цепи с эффектом накопления передаются дальше.

Прилив выбрасывает мусор на берег

Механические загрязнители – песок, шлам, ил, твердые бытовые и промышленные отходы и тому подобное. Изменяет свойства и структуру воды повышение ее температуры, технологическими водами тепловых и электрических станций.

Загрязнение воды происходит в результате следующих процессов:

  • сброса неочищенных сточных вод;
  • смыв ядохимикатов с сельскохозяйственных полей;
  • выбросы газа и дыма;
  • утечка нефти и нефтепродуктов.

Особенности

Морская фауна

Морские экосистемы или пресноводные, как и наземные, строятся по присущим им правилам формирования. Основным является то, что в экосистеме столько видов живых организмов, сколько необходимо для усвоения и переработки поступающей энергии Солнца. Особенности водных экосистем в том, что они обладают внутренней сложностью и нелинейностью связей, подвержены различным внешним воздействиям и незамкнуты, большое количество гетеротрофных организмов и быстрый биотический кругооборот, высокая устойчивость, резистентность и адаптивность, регулирование популяции осуществляется за счет ограничения ресурсов или активностью хищников.

Кроме того, Мирового океана экосистема консервирует внутри себя значительные объемы излишнего углекислого газа. Это глобальная система, обладающая признаками непрерывности.

Видео — Вода источник жизни. Среда обитания

Воду считали простым элементом до тех пор, пока в 1781 — 1784 гг. Генри Кавендиш (Cavendish , 1731 — 1810) не показал, что она образуется при сгорании водорода, и Антуан Лавуазье (Lavoiser , 1743-1794) не определил её состав. Существование водных экосистем, да и в целом, полностью зависит от уникальных свойств воды как одного из главных минералов Земли.

Вода бесцветна и прозрачна в тонких слоях и выглядит голубовато-зеленой (бирюзовой) в толстых. Благодаря этому фотосинтез может идти в достаточно глубоких слоях воды.

Молекулы воды сильно электрически поляризованы (рис. 1), и поэтому ей свойственны чрезвычайно мощное взаимное притяжение молекул, очень высокая диэлектрическая проницаемость, и она является уникальным и почти универсальным растворителем для солей. Её молекулы притягивают, окружают и отделяют ионы от кристаллов солей, образуя комплексы гидратированных ионов. Например, положительные ионы металлов притягивают отрицательные («кислородные») концы молекул воды, создавая и удерживая вокруг себя слой из них не только в растворе, но даже в кристаллах после выпаривания. Вода обладает очень сильным поверхностным натяжением и способностью подниматься по капиллярам. Всё это делает воду уникальным средством для транспортировки питательных веществ как внутри живых организмов, так и вне них.

Вода имеет парадоксальную зависимость плотности от температуры (рис. 1). Закон «все тела при нагревании расширяются» вблизи точки замерзания для неё неверен. Максимум плотности жидкой воды — при 4 °С. Более того, при замерзании, то есть переходе в кристаллическое состояние, вода не уменьшает, а почти на 1/10 увеличивает свой объём. Благодаря этому образующийся на водоёмах лёд не опускается на дно, а остаётся на поверхности, предохраняя водоёмы от промерзания. Без этого свойства вся вода Земли, скорее всего, быстро собралась бы в полярные ледяные шапки, и жизнь стала бы невозможна.

Теплоёмкость воды, её теплоты испарения и плавления очень велики. Вследствие большой теплоёмкости воды океаны и моря, медленно накапливая и отдавая тепло, существенно уменьшают перепады температуры и смягчают климат планеты. Испаряясь с поверхности океанов, вода запасает энергию в виде теплоты парообразования и впоследствии отдаёт её при образовании облаков и выпадении осадков. Таким образом, климато- образующее влияние воды невозможно переоценить.

Рис. 1. Структура молекулы воды и зависимость плотности льда и воды or температуры. Рядом с молекулой воды показан в том же масштабе отрезок длиной в 1 А (ангстрем) = 10) -10 м

Вода была колыбелью жизни на Земле, и водные экосистемы составляют большую часть .

Пять основных факторов влияют на биоту водных экосистем:

  • солёность, то есть процентное содержание (по весу) растворенных в воде солей, главным образом NaCl, КСI и MgSO 4 ;
  • прозрачность, характеризуемая относительным изменением интенсивности светового потока с глубиной;
  • концентрация растворенного кислорода;
  • доступность питательных веществ, прежде всего соединений химически связанного азота и фосфора;
  • температура воды.

Морская экосистема

Морские экосистемы характеризуются высокой соленостью, а материковые воды (воды суши) — низкой. По степени солёности можно выделить и промежуточные биотопы: эстуарии (приустьевые зоны), где воды рек смешиваются с морской водой, и прибрежные болота. Некоторые внутренние моря, например Балтийское море и его заливы, по своим свойствам являются скорее эстуариями, чем истинными морями.

В морских экосистемах, занимающих примерно 71 % поверхности Земли, основным продуцентом является фитопланктон, состоящий из микроскопических водорослей и бактерий (рис. 2). Для успешной жизнедеятельности фитопланктон нуждается в освещении, поэтому в принципе размещается в верхнем эвфотическом слое воды на глубинах не более 200 метров. Основным лимитирующим фактором в этом слое оказывается наличие питательных веществ, прежде всего связанного азота, фосфора и минеральных веществ. Из этого слоя питательные вещества оседают вглубь в результате нескольких процессов: «дождь» мёртвых организмов, миграция зоопланктона по вертикали, диффузия растворённого органического вещества. Тем самым обеспечивается питание глубоководной биоты. В распределении питательных веществ по акватории океанов велика роль океанических течений, переносящих смытые с континентов вещества в зоны открытого моря. В этой связи в океанах можно выделить две зоны: континентальный шельф и пелагическую зону (пелагиаль), то есть область открытого моря. Континентальный шельф представляет собой сравнительно мелкое подводное продолжение материковых плит и занимает не более 1/10 поверхности океана. Однако удельная, на единицу площади поверхности, биологическая продуктивность шельфа в несколько раз выше, чем у открытого моря. Высокой продуктивности шельфа способствуют два обстоятельства, приводящие к обогащению его вод питательными веществами. Во-первых, именно сюда стекают континентальные воды, несущие смытые с суши минеральные и органические вещества. Во-вторых, когда ветер отгоняет теплые поверхностные слои воды от берега, на глубине возникает противотечение, и холодные глубинные воды поднимаются к поверхности вдоль береговой линии континента, принося с собой ранее осевшие питательные вещества (рис. 3). Это явление называют апвеллинг.

Рис. 2. Структура океанических экосистем

Области активного вертикального перемешивания и повышенной продуктивности есть и далеко от берегов, например, возле экватора, в зоне пассатов. Огромные центральные области океанов вблизи Северного и Южного тропиков, где вертикальное перемешивание вод очень слабо, можно уподобить сухим степям не только по географической широте, но и по их малой биопродуктивности. Напротив, в умеренных и субполярных широтах сезонные колебания температуры и течения способствуют перемешиванию, и биопродуктивность океана возрастает.

Эстуарии, лиманы, прибрежные заболоченные территории являются одними из наиболее продуктивных экосистем. На первый, обывательский взгляд эти земли бесполезны и только являются рассадником всевозможных кровососущих насекомых. Поэтому до сих пор существует тенденция к их «улучшению» путём дорогостоящих мелиоративных работ. На самом деле их роль огромна, и они нуждаются в строгой охране. Во-первых, здесь нерестится более 70 % наиболее ценных в промысловом отношении рыб и других морских организмов. Поэтому «освоение» этих территорий приводит к огромному экономическому ущербу за счёт истощения рыбных промыслов. Во-вторых, они блестяще выполняют функции бесплатных и очень эффективных очистных сооружений для стекающих с континента загрязненных вод, предохраняя от гибели чувствительные прибрежные и шельфовые морские экосистемы. В-третьих, они служат местами обитания для гигантского количества птиц и животных, в том числе редких видов.

Рис. 3. Формирование апвеллинга. Вместе с холодными придонными водами к поверхности поднимаются скопившиеся у дна питательные вещества, что вызывает быстрый рост биоты

Болотные экосистемы

Прибрежные болотные системы занимают только около 5 % всей площади болот. Основная часть болот располагается внутри континентов, и они являются пресноводными экосистемами, играющими ключевую роль в естественном регулировании водотока рек умеренного пояса. Болотные экосистемы находятся в неразрывной связи с лесными биогеоценозами. Почвы болот почти постоянно покрыты водой, поэтому растительные остатки здесь не перегнивают до конца, и вместо гумуса на дне болот образуется торф. По мере роста слоя торфа болото зарастает сфагновым мхом. И торф, и мох обладают уникальной способностью впитывать, накапливать и сохранять влагу. В периоды избыточного увлажнения, — во время таяния снегов и затяжных дождей, — они собирают воду, а в сухие периоды постепенно отдают её ручьям, мелким речкам и проточным озёрам, поддерживая уровень воды в реках и, самое главное, уровень грунтовых вод на огромных пространствах. При этом болота служат мощными естественными фильтрами для накопленной в них воды, практически полностью очищая сё от естественных и антропогенных загрязнителей, таких как остатки удобрений, фекалии, ядохимикаты и даже остатки нефтепродуктов. На Европейской территории России именно верховые болота питают крупнейшие реки — Волгу, Дон, Днепр, Западную и Северную Двину. Проведение мелиоративных работ, осушение болот и добыча торфа как естественного удобрения или топлива в конечном счёте оказываются, как правило, абсолютно неоправданными, так как ведут к гибели лесов и разрушению водного режима.

Экосистема пресного водоема

В реках и пресноводных водоёмах основными лимитирующими факторами для живых организмов являются концентрации растворенного кислорода и питательных веществ — связанного азота, фосфора и минеральных солей.

Развитие основных продуцентов — фитопланктона и укоренённых водных растений зависит от количества питательных веществ. Так как для фотосинтеза нужен свет, фитопланктон концентрируется в верхнем слое воды. Поэтому продуктивность всей экосистемы зависит от поступления в этот слой питательных веществ. Они либо смываются дождями и талыми водами с берегов, либо поднимаются наверх вследствие активного перемешивания воды, когда взмучивается ил, то есть осевшие на дно органические остатки. Зоопланктон (микроскопические черви и ракообразные, инфузории, бактерии, одноклеточные жгутиконосцы) питается фитопланктоном и в свою очередь служит пищей для рыб и насекомых. Для жизнедеятельности консументов, — зоопланктона и рыб, — требуется кислород, поступление которого также зависит от скорости и глубины перемешивания воды. Таким образом, перемешивание воды является важнейшим фактором, так как от него зависит и поступление питательных веществ для фитопланктона, и концентрация кислорода.

Типичная экосистема пресноводного водоёма умеренных широт показана на рис. 4. В мелководной прибрежной зоне — литорали обитают многочисленные продуценты — как свободно плавающие, так и укоренённые водные растения. Здесь много насекомых и их личинок, здесь обитают лягушки, черепахи, водоплавающие птицы и млекопитающие. Здесь же охотничьи угодья аистов и цапель. Пелагиаль - это поверхностный слой открытых вод, где обитают планктонные организмы и поедающие планктон рыбы. Профундаль - слабо освещенная зона, где живут хищные и придонные рыбы. Бенталь - дно, покрытое илом. Здесь обитают многочисленные детритофаги и редуценты — моллюски, черви, раки и личинки насекомых. В нижней части рис. 4 показаны характерные зависимости температуры от глубины. Весной и осенью, когда эти зависимости сменяют друг друга, происходит активное вертикальное перемешивание воды, и верхние слои обогащаются питательными веществами, а профундаль — кислородом. Перемешивание имеет такой сезонный характер в большинстве равнинных водоёмов умеренного климатического пояса. Весной, при таянии льда и снега холодные тяжёлые воды стремятся опуститься на дно, а относительно более тёплые, придонные — подняться наверх. Аналогичный процесс происходит и осенью. Отсюда — весеннее «цветение» воды в прудах, озёрах и водохранилищах. Летом и зимой слои холодной и теплой воды располагаются устойчиво (устойчивая термическая стратификация ), и перемешивание почти отсутствует. Ледяной покров также препятствует растворению кислорода.

Рис. 4. Типичная экосистема пресноводного водоёма умеренных широт

При быстром течении и активном перемешивании воды кислород имеется в достаточном количестве, и все трофические уровни приходят в равновесие. Это ситуация, типичная для рек с быстрым течением. Крупные озёра, в которых соблюдаются такие условия, представляют собой особую ценность как резервуары чистой пресной воды. К ним относятся, прежде всего, Байкал, а также Ладожское и Онежское озера.

Большинство водных экосистем обладают огромным запасом устойчивости и высокой способностью к самоочищению. Однако уровень антропогенных воздействий, которым они подвергаются, непомерно высок.

Для пресноводных водоёмов большую опасность представляет собой смыв удобрений с окружающих водоём полей и попадание неочищенных фекальных вод от скотоферм. При слабом перемешивании и избытке питательных веществ масса фитопланктона быстро растёт. Одновременно растёт и численность консументов — зоопланктона и рыб, потребляющих кислород, а также скорость окисления органических остатков бактериями. В результате возникает дефицит кислорода, ограничивающий численность консументов. Водоём зарастает синезелёными водорослями. Такая сукцессия называется эвтрофикацией. При особо крупных масштабах загрязнения эвтрофикация может угрожать даже таким большим водоёмам, как Балтийское морс.

Особая роль в очистке воды принадлежит двустворчатым фильтрующим моллюскам. Именно они очищают воду от избытка органических загрязнителей, попадающих в водоёмы со сточными водами. При попадании в воду токсичных веществ моллюски первые «принимают удар на себя» и погибают, после чего экосистема теряет способность к самоочищению от органических загрязнений. Поэтому эффект от совместного и одновременного загрязнения водоёмов и рек органическими и токсичными веществами оказывается гораздо худшим, чем просто сумма этих воздействий (синэргетический эффект).

Другая грозная опасность — загрязнение воды нефтепродуктами. Образуемая ими маслянистая мономолекулярная пленка на поверхности волы препятствует газообмену между водой и атмосферой и, прежде всего, поступлению в воду кислорода и углекислого газа. Эта опасность угрожает не только пресноводным, но и морским акваториям. Достаточно заметить, что разлитие одной тонны нефтепродуктов приводит к 100%-ному загрязнению нескольких квадратных километров водной поверхности. Отсюда ясно, почему аварии крупных нефтеналивных танкеров, перевозящих до 100 тысяч тонн нефти, ведут к тяжелым экологическим катастрофам. Не меньшую опасность представляет собой массовое рутинное загрязнение водоёмов от сброса отработанных масел, промывки нефтеналивных ёмкостей и тому подобных действий, которые безусловно должны рассматриваться как серьёзное правонарушение.

Раздел II . Экологические системы

Тема 2. Понятия об экосистемах

2.1. Общая характеристика экосистемы

Термин “экосистема” предложил английский ученый – ботаник - эколог А. Тенсли в 1935г., хотя мысль о взаимосвязи и единстве организмов и среды их обитания высказывалось еще древними учеными. Лишь в конце прошлого века стали появляться публикации, включающие понятие, идентичные термину ”экосистема” , пришел одновременно в американской, западноевропейской и русской научной литературе . Так, немецкий ученый К. Мебиус в 1877г. ввел термин “биоценоз”, через 10 лет американский биолог С. Фербе опубликовал свой классический труд об озере как водной экосистеме. в своих трудах отмечал единство живых организмов с материнской породой преобразования почв. Природа функционирует как целостная система независимо от того, о какой среде идет речь – пресноводной, морской, наземной и подземной. Но только в середине XX века была разработана общая теория систем, началось развитие нового, количественного направления экологии экосистемы. Основоположниками этого направления были Ф. Хабчинсон, Р. Маргалеф, К. Уатт, П. Петтэн, Г. Одум.

Экосистема - включает в себя все организмы (биотическое сообщество), совместно функционирующие на конкретной территории, которые взаимодействуют с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями.

2.2. Состав экосистемы

В состав экосистемы входят живые организмы (их совокупность можно назвать биоценозом или биотой экосистемы), неживые (абиотичекие) факторы – атмосфера, вода, питательные элементы, свет и мертвое органическое вещество – детрит.

Все живые организмы по способу питания разделяются на две группы -автотрофов (от греческих слов аутос – сам и трофо – питание) и гетеротрофов (от греческого слова гетерос – другой).

Автотрофы используют неорганический углерод и синтезируют огранические вещества из неорганических, это - продуценты экосистемы. По источнику энергии они, в свою очередь, также делятся на две группы.

Фотоавтотрофы – для синтеза органических веществ используют солнечную энергию. Это зеленые растения, имеющие хлорофилл (и другие пигменты) и усваивающие солнечный свет. Процесс, при котором происходит его усвоение, называется фотосинтезом.

Хемоавтотрофы – для синтеза органических веществ используют химическую энергтю. Это серобактерии и железобактерии, получающие энергию при окислении соединений серы и железа. Хемоавтотрофы играют значительную роль только в экосистемах подземных вод. Их роль в наземных экосистемах сравнительно невелика.

Фитофаги (растительноядные). К ним относятся животные, которые питаются живыми растениями. Среди фитофагов есть и небольшие животные, такие, как тля или кузнечик, и гиганты, такие, как слон. Фитофаги – почти все сельскохозяйственные животные: коровы, лошади, овцы, кролики. Есть фитофаги среди водных организов, например, рыба белый амур, поедающий растения, которыми зарастают оросительные каналы. Важный фитофаг – бобер. Он питается ветками деревьев, а из стволов сооружает плотины, регулирующие водный режим территории.

Зоофаги (хищники, плотоядные). Зоофаги разнообразны. Это и мелкие животные, питающиеся амебами , червями или рачками. И крупные, такие, как волк. Хищники, питающиеся более мелкими хищниками, называются хищниками второго порядка. Есть растения – хищники (росянка, пузырчатка), которые используют в пищу насекомых.

Симбиотрофы .Это бактерии и грибы, которые питаются корневыми выделениями растений. Симбиотрофы очень важны для жизни экосистемы. Нити грибов, опутывающие корни растений, помогают всасыванию воды и минеральных веществ. Бактерии, симбиотрофы усваивают газообразный азот из атмосферы и связывают его в доступные растениям соединения (аммиак , нитраты). Этот азот называется биологическим (в отличие от азота минеральных удобрений).

К симбиотрофам относятся и микроорганизмы (бактерии, одноклеточные животные), которые обитают в пищеварительном тракте животных – фитофагов и помогают им переваривать пищу. Такие животные, как корова, без помощи симбиотрофов не способны переварить поедаемую траву.

Детритофаги – организмы, питающиеся мертвым органическим веществом. Это многоножки, дождевые черви, жуки – навозники, раки, крабы, шакалы и многие другие.

Некоторые организмы используют в пищу как растения, так и животных и даже детрит и относятся к эврифагам (всеядным) – медведь, лиса, свинья, крыса, курица, ворона, таракан. Эврифагом является и человек.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мертвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Органические вещества, созданные автотрофами служат пищей и источником энергии для гетеротрофов: консументы – фитофаги поедают растения, хищники первого порядка – фитофагов, хищники второго порядка – хищников второго порядка и т. д. Такая последовательность организмов называется пищевой цепью , ее звенья расположены на разных трофических уровнях (представляют разные трофические группы).

Для переработки трупов редуцентам нужно время. Поэтому в экосистеме всегда есть детрит – запас мертвого органического вещества. Детрит – это опад листьев на поверхности лесной почвы (сохраняются 2-3 года), ствол упавшего дерева (сохраняется 5-10 лет), гумус почвы (сохраняется сотни лет), отложения органического вещества на дне озера – сапропель – и торф на болоте (сохраняется тысячи лет). Наиболее долго сохраняющимся детритом являются каменный уголь и нефть.

Таблица 2.1.

Представители разных трофических групп некоторых экосистем.

Трофическая Лес Водоем Сельскохозяйственные

группа угодья

Продуценты Ель, береза, Рдест, кувшинка, Пшеница, рожь, картофель,

Консументы - Лось, заяц, Ондатра, толсто - Человек, корова, овца, мышь,

фитофаги белка лобик, дафния полевка, долгоносик, тля

Консументы - Волк, лиса Чайка, окунь, язь, Человек, скворец, божья

зоофаги хорь щука, сом корова

Консументы - Жук – мерт - Перловица, Личинки жуков и мух,

детритофаги воед, кивсяк, мотыль, дождевой червь

дождевой дафния

В таблице 2.1. приведены примеры представителей разных трофических групп для некоторых экосистем.

2.3.Условия функционирования экосистемы

Экосистема является сложной системой. Сложные системы обладают рядом свойств, таких как эмерджентность, принцип необходимого разнообразия элементов, устойчивость, принцип неравновесности, вид обмена веществ или энергии, эволюция.

Эмерджентность (от английского emergence – неожиданно возникающий) системы – степень несводимости свойств системы к свойствам, составляющих ее элементов. Свойства системы зависят не только от составляющих ее элементов, но и от особенностей взаимодействия между ними (например, явления синергизма, когда при взаимодействии некоторых токсичных соединений получаются еще более ядовитые вещества).

Принцип необходимого разнообразия элементов сводится к тому, что любая система не может состоять из абсолютно одинаковых элементов, более того, разнообразие элементов, ее составляющих, является необходимым условием функционирования. Нижний предел разнообразия равен двум, верхний – стремится к бесконечности. Разнообразие и наличие разных фазовых состояний веществ, составляющих экосистему, определяют ее гетерогенность.

Устойчивость динамической системы и ее способность к самосохранению зависит от преобладания внутренних взаимодействий над внешними. Если внешнее воздействие на биологическую систему превосходит энергетику ее внутренних взаимодействий, то это может вызвать необратимые изменения или гибель системы. Устойчивое или стационарное состояние динамической системы поддерживается непрерывно выполняемой внешней работой, для чего необходимы приток энергии, ее преобразование в системе и отток за пределы системы.

Принцип неравновесности сводится к тому, что системы, функционирующие с участием живых организмов, являются открытыми, поэтому для них характерно поступление и отток энергии и вещества, что невозможно осуществить в условиях равновесного состояния. Следовательно, любая экосистема представляет собой открытую, динамическую, неравновесную систему.

Таблица 2.2

Поведение систем в равновесной и неравновесной областях

Неравновесное состояние Равновесное состояние

Система “адаптируется” к внешним Для перехода от одной структуры к

условиям, изменяя свою структуру другой требуются сильные возмущения

или изменения граничных условий

Множественность стационарных Одно стационарное состояние

состояний

Чувствительность к флуктуациям Нечувствительность к флуктуациям

(небольшие влияния приводят к

большим последствиям, внутренние

флуктуации становятся большими)

Все части действуют согласованно Молекулы ведут себя независимо друг

Фундаментальная неопределенность Поведение системы определяют линейные зависимости

Понятие равновесия является одним из основных положений в науке. С точки зрения такой науки, как синергетика (от греч. synergos – вместе действующий; междисциплинарная область исследований процессов самоорганизации и самодезорганизации в различных системах, в том числе в живых, например, в популяциях), имеются следующие различия между равновесной и неравновесной системами:

1. Система реагирует на внешние условия.

2. Поведение системы случайно и не зависит от начальных условий, но зависит от предыстории.

3. Приток энергии создает в системе порядок, следовательно, энтропия ее уменьшается.

4. Система ведет себя как единое целое.

Система может находиться в состоянии равновесности и неравновесности; при этом ее поведение существенно различается (табл. 2.2).

В соответствии со вторым законом термодинамики к равновесному состоянию при -

ходят все закрытые системы, то есть системы, не получающие энергии извне. При отсутствии доступа энергии извне система стремится к состоянию равновесия, при котором энтропия равна нулю. В случае когда система находится в неравновесном состоянии, создаются условия формирования новых структур, для которых необходимо следующее: 1) открытость системы; 2) неравновесное ее состояние; 3) наличие флуктуаций. Чем сложнее система, тем более многочисленны типы флуктуаций, которые могут привести ее в неустойчивое состояние. Однако в сложных системах существуют связи между частями, которые позволяют системе сохранять устойчивое состояние. Соотношением между устойчивостью, обеспечивающейся взаимосвязью между частями, и неустойчивостью из-за наличия флуктуации определяется порог устойчивости системы. Если этот порог превышается, система попадает в критическое состояние, которое называется точкой бифуркации . В данной точке система становится неустойчивой относительно флуктуаций и может перейти в новое состояние устойчивости. Это положение имеет огромное значение в эволюции экосистем. В точке бифуркации система как бы колеблется между выбором одного из нескольких путей эволюции.

Подавляющее большинство систем в природе относится к открытым, обменивающимся с окружающей средой энергией, веществом и информацией. Главенствующая роль в природных процессах принадлежит не порядку, стабильности и равновесию, а неустойчивости и неравновесности, то есть все системы флуктуируют. В точке бифуркации система не выдерживает и разрушается, и в этот момент времени невозможно предсказать, в каком состоянии она будет находиться: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень неупорядоченности.

Принцип равновесия в живой природе играет огромную роль. Смещение равновесия между видами в одну сторону может привести к исчезновению обеих видов. Например, уничтожение хищников может привести к уничтожению жертв, давление которых на окружающую среду может возрасти до такой степени, что им не хватит пищи. В природе наблюдается огромное количество равновесий, которые поддерживают общее равновесие в природе.

Равновесие в живой природе не статично, а динамично и представляет собой движение вокруг точки устойчивости. Если данная точка устойчивости не меняется, то такое состояние называется гомеостазом (от греч. homoios-тот же самый, погожий и stasis-неподвижность, состояние). Гомеостаз – способность организма или системы поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды.

Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии склонна развиваться в сторону устойчивого состояния. Гомеостаз, существующий в природе, осуществляется автоматически за счет механизмов обратной связи. Молодые системы с неустоявшимися связями, как правило, подвержены резким колебаниям и менее способны противостоять внешним возмущениям по сравнению со зрелыми системами, компоненты которых успели приспособиться друг к другу, то есть прошли эволюционные приспособления.

Естественное равновесие означает, что экосистема сохраняет свое стабильное состояние и некоторые параметры неизменными, несмотря на воздействие факторов внешней среды. Так как экосистема представляет собой открытую систему, то ее устойчивое состояние означает, что поступление вещества и поток энергии на входе и выходе сбалансированы.

Под воздействием на экосистему внешних факторов она переходит от одного состояния равновесия к другому. Такое состояние называется устойчивым равновесием. По многочисленным данным, экологическая обстановка на нашей планете не всегда была одной и той же. Более того, она испытывала резкие перемены всех ее компонентов. Это можно продемонстрировать на примере появления кислорода в атмосфере. Известно, что ультрафиолетовое излучение Солнца, губительное для живых организмов, породило химическую эволюцию, благодаря которой возникли аминокислоты. Под воздействием ультрафиолетового излучения процессы разложения водяного пара привели к образованию кислорода и создали слой озона, который препятствовал проникновению ультрафиолетовых лучей на поверхность Земли. До тех пор, пока не было атмосферного кислорода, жизнь могла развиваться только под защитой слоя воды, который был ограничен глубиной, на которую проникали солнечные лучи. Под воздействием давления отбора появились фотосинтезирующие организмы, которые синтезировали органическое вещество и кислород. Первые многоклеточные организмы появились после того, как содержание кислорода в атмосфере достигло 3% от современного содержания. Образование атмосферы, содержащей кислород, привело к новому состоянию устойчивого равновесия. Благодаря способности зеленых растений водных экосистем продуцировать кислород в количествах, превышающих их потребности, создались условия для возникновения жизни на суше и быстрого заселения организмами всей поверхности Земли. Это в свою очередь создало условия, при которых потребление и образование кислорода уравнялось и достигло отметки 20%. Затем наблюдались колебания отношений кислорода к углекислому газу, и, вероятно, на определенной стадии развития произошло повышение содержания углекислого газа в атмосфере, что послужило толчком к образованию ископаемого топлива. Далее соотношение кислорода и углекислого газа опять пришло в колебательное стационарное состояние. Бурное развитие промышленности, деградация и преобразование человеком экосистем, сжигание ископаемого топлива и в результате – избыточное образование углекислого газа может опять сделать это соотношение нестабильным.

Следовательно, равновесие - это неотъемлемый элемент функционирования природы, с которым человек должен считаться как с объективным законом природы, значение которого он только начинает осознавать.

По виду обмена веществом и энергией с окружающей средой системы классифицируют следующим образом: 1) изолированные системы (обмен невозможен); 2) замкнутые системы (обмен веществом невозможен, а обмен энергией может происходить в любой форме); 3) открытые системы (возможен любой обмен веществом и энергией).

Системы, которые взаимосвязаны потоками вещества, энергии и информации, носят название динамических . Любая живая система представляет собой динамическую открытую систему.

Принцип эволюции : возникновение, существование и развитие всех экосистем обусловлено эволюцией. Динамические самоподдерживающиеся системы эволюционируют в сторону усложнения и возникновения системной иерархии (образование подсистем). Эволюция любой экосистемы ведет к увеличению суммарного потока энергии, проходящей через нее. С увеличением разнообразия и сложности системы происходит ускорение эволюции, что выражается в более быстром прохождении ступеней, эквивалентных по качественным сдвигам (Акимова, Хаскин, 1998).

Все без исключения экосистемы и даже самая крупная – биосфера - являются открытыми, поэтому для своего функционирования они должны получать и отдавать энергию. По этой причине концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания потоков энергии на входе и выходе, то есть реальная функционирующая экосистема должна иметь вход и, в большинстве случаев, пути оттока переработанной энергии и веществ.

Масштабы изменений среды на входе и выходе сильно варьируются и зависят от:

Размеров системы: чем она меньше, тем больше зависит от внешних воздействий;

Интенсивности обмена: чем интенсивнее обмен, тем больше приток и отток;

Сбалансированности автотрофных и гетеротрофных процессов: чем сильнее нарушено это равновесие, тем больше должен быть приток энергии извне;

Стадии и степени развития системы: молодые системы отличаются от зрелых.

Энергия солнечного света поступает в экосистему, где фотоавтотрофными организмами превращается в химическую энергию, используемую для синтеза органических соединений из неорганических. Поток энергии направлен в одну сторону: часть поступающей энергии Солнца преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, которое представляет собой более концентрированную форму энергии, чем солнечный свет; большая же часть энергии проходит через систему и покидает ее. В принципе, энергия может накапливаться, затем высвобождаться или экспортироваться, как показано на схеме (рис. 2.1), но не может использоваться вторично.

В отличие от энергии элементы питания и вода, необходимые для жизни, могут использоваться многократно. После отмирания живых организмов органические вещества разлагаются и опять превращаются в неорганические соединения. В совокупности экосистему можно представить как единое целое, в котором биогенные вещества из абиотического компонента включаются в биотический и обратно, то есть происходит постоянный круговорот веществ с участием живого (биотического) и неживого (абиотического) компонентов.

Э К О С И С Т Е М А

Солнце Энергия _____ БИОТИЧЕСКИЙ __ _ Тепловая

Света КОМПОНЕНТ энергия

Поток энергии

Круговорот биогенных элементов

Рис. 2.1 Функциональная схема экосистемы

Для стабильного и длительного функционирования экосистемы особенно важное значение имеют обратные связи, обеспечивающие ее авторегуляцию и саморазвитие. Поэтому независимо от вида системы ее функционирование возможно только при наличии прямых (взаимная стимуляция роста и развития организмов) или обратных (например, угнетение развития популяции в результате давления хищника) связей.

В саморегулирующихся системах, к которым относятся и экосистемы, важная роль принадлежит отрицательным обратным связям . На принципе отрицательной обратной связи базируются все механизмы физиологических функций в любом организме и поддержание постоянства внутренней среды и внутренних взаимосвязей любой саморегулирующейся системы.

Рассмотрим это положение на примере самоочищения водоемов . Допустим, что под влиянием внешних факторов (поступление в водоем плодородной почвы и элементов питания) началось усиленное развитие фитопланктона. Это приводит к усилению роста зоопланктона и уменьшению концентрации минеральных веществ, что способствует более быстрому выеданию фитопланктона и уменьшению его роста. Через некоторое время происходит снижение размножения животных из-за недостатка пищи. Временное увеличение биомассы гидробионтов ведет к нарастанию массы детрита, который, являясь пищей для бактерий, вызывает их усиленное размножение. Бактерии, в свою очередь, разлагают детрит и тем самым высвобождают элементы питания. Таким образом, цикл замыкается и в водоеме вновь появляются условия для усиленного развития фитопланктона. Система в целом имеет отрицательный обратный знак.

Положительные обратные связи , наоборот, не способствуют регуляции, а вызывают дестабилизацию систем, приводя их либо к угнетению и гибели, либо к ускорению роста, за которым, как правило, следуют срыв и разрушение. Например, в любом растительном сообществе плодородие почвы, урожай растений, количество отмерших растительных остатков и образовавшегося гумуса составляет контур обратных положительных связей. Такая система находится в неустойчивом равновесии, так как потеря почвы и элементов питания в результате эрозии или изъятие части урожая без возмещения выноса питательных веществ дает толчок к снижению плодородия почв и продуктивности растений. С этим явлением столкнулись наши предки в эпоху подсечно-огневого земледелия, когда в результате изъятия продукции без возмещения выноса резко снижалось плодородие почв, что вынуждало людей оставлять одни участки и осваивать новые.

В сложных экосистемах всегда имеется сочетание контуров обоих знаков. В случае наличия контуров с большим числом связей реализуется правило, которое гласит: при четном числе последовательных отрицательных связей контур приобретает положительную обратную связь (минус и минус дают плюс). Однако развитие и устойчивое функционирование экосистем в итоге определяется наличием контуров обратной связи. Для изменения поведения системы важное значение имеет добавление или изъятие связей, которые могли бы изменить знак системы.

Таким образом, составляющие экосистемы – это поток энергии, круговорот веществ, биотический и абиотический компоненты и управляющие петли обратной связи.

2.4. Роль структурных элементов экосистемы в ее функционировании

Особенности потока энергии и биогенных элементов в экосистемах определяют продуценты, консументы и редуценты.

Продуценты (от лат. Producentis – производящий, создающий) представлены автотрофными организмами, которые в зависимости от источников энергии, используемых на синтез органических веществ в клетке, разделяются на две группы: фототрофы и хемотрофы.

К фототрофам относятся наземные зеленые растения, водоросли, фототрофные бактерии, способные к осуществлению фотосинтеза. Наиболее важное значение в производстве органического вещества на планете принадлежит наземным зеленым растениям, использующим солнечную энергию за счет реакции фотосинтеза.

С химической точки зрения процесс фотосинтеза включает фиксацию части солнечного света в виде потенциальной, или “связанной”, энергии. Окислительно-восстановительные реакции фотосинтеза с участием солнечной энергии можно обобщить следующим уравнением:

nCO2 + 2nH2O_энергия солнца_____________________(CH2O)n + nO2

У зеленых растений вода окисляется с высвобождением газообразного кислорода, а диоксид углерода восстанавливается до углеводов (CH2O)n с высвобождением воды. У высших растений имеются различные биохимические пути восстановления CO2, что имеет важное значение и в экологии: с этим связаны физиологические и морфологические особенности растений, их распространение, приспособленность к различным условиям среды обитания и продуктивность.

Большинство растений фиксируют CO2 по C3-пентофосфатному пути, или циклу Кальвина. Часть растений восстанавливает диоксид углерода по циклу C4-дикарбоновых кислот. Эти растения имеют специфическое морфологическое отличие: в обкладке проходящих пучков (вокруг жилок листа) у них имеются крупные хлоропласты.

В зависимости от того, по какому циклу осуществляется синтез органических соединений, и в соответствии с характером протекающих процессов фотосинтеза выделяют C3- или C4-растения.

I Opt II Opt III Opt

https://pandia.ru/text/78/313/images/image010_64.gif" width="16" height="112">.gif" width="288" height="192 src=">

Активность (рост) Температура

Рис. 2.2 Зависимость изменений интенсивности фотосинтеза у C3- и C4- растений от освещенности и температуры (по Ю. Одуму, 1975): I – C3- растения; II – диапазон существования растений; III – C4- растения.

Сравнение реакции C3- и C4- растений на свет показывает (рис. 2.2), что у C3-растений максимальная интенсивность фотосинтеза обычно наблюдается при умеренной освещенности и температуре; высокие температуры и освещенность подавляют фотосинтез. C4- растения адаптированы к яркому свету и высокой температуре и в этих условиях значительно превосходят по продуктивности C3- растения. Они также эффективнее используют воду: на производство 1г. сухого вещества им требуется менее 400г. воды, а C3- растениям – от 400 до 1000г. Кроме того, C4-растения также не ингибируются избытком кислорода (в отличие от C3-растений).

C4-растения преобладают среди растительности пустынь и степей, в теплом и тропическом климате, в редких лесах, а также на севере, где освещенность и температура низкие. Среди них преобладают растения семейства злаковых (кукуруза, сорго), но встречаются и некоторые другие (например, сахарный тростник).

Несмотря на то, что эффективность фотосинтеза на единицу листовой поверхности у C3- растений ниже, чем у C4-растений, они создают большую часть фотосинтетической продукции на Земле. Связано это, видимо, с лучшей приспособленностью растений с таким видом фотосинтеза к существованию в смешанных сообществах, где освещенность, температура и другие факторы ближе к средним значениям.

К C3-растениям относится и подавляющее число растений, из которых человек получает продукты питания, - рис, пшеница, картофель, овощи. Они произрастают преимущественно в умеренной зоне северного полушария.

В отличие от зеленых растений донором электронов у пурпурных и зеленых серобактерий при фотосинтезе служат неорганические соединения серы, и кислород при этом не выделяется:

CO2 + H2S ____свет___________(CH2O)n + S

Цианобактерии, подобно высшим растениям и водорослям, выделяют при фотосинтезе молекулярный кислород.

В глобальном плане вклад фототрофных микроорганизмов в синтез органического вещества невелик. Но они могут жить в условиях, неблагоприятных для большинства зеленых растений, и играют важную роль в круговороте некоторых веществ. Например, зеленые и пурпурные серобактерии играют значительную роль в круговороте серы. Фототрофные микроорганизмы встречаются в осадках или водах – там, куда практически не проникает свет. Бактериальный фотосинтез может быть полезен в загрязненных и эвтрофных водах. По этой причине к нему сейчас усиливается интерес. Но он не может заменить фотосинтез растений, от которого зависит жизнь сложных аэробных организмов на Земле.

Хемотрофы – микроорганизмы, ассимилирующие органические соединения путем хемосинтеза. Процесс синтеза органического вещества осуществляется за счет энергии, получаемой путем окисления аммиака, сероводорода и других веществ. К хемосинтезирующим организмам относятся серобактерии (например, виды Thiobacillus, окисляющие сероводород), нитрифицирующие бактерии (виды родов Nitrosomonas, Nitrosospira, Nitrosococcus, превращающие аммиак в нитриты, а затем в нитраты), и др. Хемотрофы играют небольшую роль в первичном продуцировании органического вещества, но они имеют важное значение в круговороте химических элементов на планете.

Для функционирования экосистемы не менее важное значение имеет не только синтез органического вещества, но и его разложение, которое осуществляется гетеротрофами.

Гетеротрофные организмы – организмы, использующие в качестве энергии и источника питания органические вещества, синтезированные другими организмами. К ним относятся все животные, грибы, большинство бактерий и бесхлорофильные наземные растения и водоросли. В экосистемах гетеротрофные организмы разделяют на консументы и редуценты.

Консументы (от лат. Consumo – потребляю) – потребители органического вещества, произведенного автотрофами. Подразделяются на консументов первого порядка (растительноядные животные), второго, третьего и т. д. (хищники).

Редуценты (от лат. Reducentis – возвращающий, восстанавливающий) – организмы, питающиеся мертвым органическим веществом и подвергающие его минерализации до более или менее простых соединений, которые затем используются продуцентами. К редуцентам относятся главным образом бактерии и грибы. В зависимости от того какие организмы разлагают органическое вещество и в каких условиях, выделяют два процесса: дыхание (аэробное и анаэробное) и брожение .

Аэробное дыхание протекает в присутствии атмосферного кислорода, который служит акцептором электронов (окислителем).

Аэробное дыхание можно сравнить с процессом, обратным фотосинтезу, то есть оно направлено на разложение синтезированного органического вещества до углекислого газа и воды с высвобождением энергии. С помощью этого процесса высшие растения и многие виды животных получают энергию для поддержания жизнедеятельности построения новых клеток собственного организма. Однако процесс аэробного дыхания может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами.

Анаэробное дыхание служит основой жизнедеятельности главным образом сапрофитов (бактерии, дрожжи, плесневые грибы, простейшие), хотя этот процесс может встречаться и в некоторых тканях высших растений. Например, метановые бактерии разлагают органические соединения, образуя метан (CH4) путем восстановления органического углерода.

Брожение - процесс анаэробного ферментативного расщепления органического вещества различными микроорганизмами, при котором высвободившаяся энергия используется для биосинтеза различных жизненно важных аминокислот, белков. При брожении окисляемое органическое соединение само служит окислителем (акцептором электронов).

Примером брожения являются процессы, протекающие с участием дрожжей. Они имеют практическую ценность для человека, участвуют в процессах почвообразования (разложение растительных остатков).

Многие группы бактерий способны и к аэробному, и к анаэробному дыханию, но конечные продукты этих двух реакций различны и количество высвобождающейся энергии при анаэробном дыхании значительно меньше.

Несмотря на то, что анаэробные сапрофаги играют малозаметную роль в сообществе, они важны для экосистемы, так как только они способны к дыханию в лишенных света бескислородных слоях почвы и подводных осадков. Они перехватывают энергию и вещества, которые затем диффундируют вверх и становятся доступными для аэробов.

Восстановленные органические и неорганические соединения, синтезированные микроорганизмами в анаэробных условиях, служат запасом углерода для фиксирования энергии в процессе фотосинтеза. Позже в аэробных условиях эти восстановленные соединения используются как субстрат аэробными хемолитотрофами и гетеротрофами. Следовательно, анаэробные и аэробные организмы тесно взаимосвязаны и функционально дополняют друг друга.

По видовому разнообразию гетеротрофы значительно превосходят автотрофов и могут существовать в самых разнообразных условиях. В совокупности гетеротрофы способны разлагать все вещества, синтезируемые автотрофами, в том числе и многие соединения, синтезированные человеком с помощью различных технологий. Их роль в биосфере заключается в разложении синтезированного органического вещества до более простых соединений, благодаря чему поддерживается круговорот химических элементов в природе.

Общей чертой всех экосистем является взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, разделены в пространстве: автотрофные процессы наиболее активно протекают в верхнем ярусе, куда проникает солнечный свет, гетеротрофные – в нижнем ярусе, где в почвах и осадках накапливаются органические вещества.

Следует отметить, что основные функции компонентов экосистемы частично не совпадают по времени. Это обусловлено тем, что между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами существует определенный временной разрыв. Например, основной процесс в пологе леса – фотосинтез. После фотосинтеза органического вещества лишь небольшая его часть