План японии по покорению космоса. Космическая программа японии

aslan wrote in April 12th, 2017

Мало кто знает, что для советской экспедиции на Луну была полностью готова и испытана только одна компонента — космический лунный скафандр «Кречет». Еще меньше людей знают, как он устроен.


С развитием реактивной авиации всерьез встали проблемы защиты и спасения экипажа при высотных полетах. С падением давления человеческому организму становится все труднее усваивать кислород, обычный человек без особых проблем может находиться на высоте не более 4−5 км. На больших высотах необходимо добавление кислорода во вдыхаемый воздух, а с 7−8 км человек вообще должен дышать чистым кислородом. Выше 12 км легкие и вовсе теряют возможность усваивать кислород — для поднятия на большую высоту требуется компенсация давления.

На сегодняшний день существует всего два типа компенсации давления: механическая и создание вокруг человека газовой среды с избыточным давлением. Типичным примером решения первого типа служат высотные компенсационные летные костюмы — например, ВКК-6, применяемые пилотами «МиГ-31». В случае разгерметизации кабины такой костюм создает давление, сдавливая тело механическим путем. В основе такого костюма лежит довольно остроумная идея. Тело пилота опутывают ленточки, напоминающие восьмерку.

В меньшее отверстие пропущена резиновая камера. В случае разгерметизации в камеру подается сжатый воздух, она увеличивается в диаметре, сокращая, соответственно, диаметр кольца, опутывающего пилота. Однако такой метод компенсации давления является экстремальным: тренированный летчик в компенсирующем костюме может провести в разгерметизированной кабине на высоте не более 20 минут. Да и создать равномерное давление на все тело таким костюмом невозможно: некоторые участки тела оказываются перетянутыми, некоторые — вообще несдавленными.

Другое дело — скафандр, по сути, представляющий собой герметичный мешок, в котором создано избыточное давление. Время пребывания человека в скафандре практически не ограничено. Но и он имеет свои недостатки — ограничение подвижности летчика или космонавта. Что такое рукав скафандра? Практически это аэробалка, в которой создано избыточное давление (в скафандрах обычно поддерживается давление в 0,4 атмосферы, что соответствует высоте 7 км). Попробуйте согнуть накачанную автомобильную камеру. Трудновато? Поэтому один из самых охраняемых секретов производства скафандров — технология производства специальных «мягких» шарниров. Но обо всем по порядку.

«Воркута»
Первые скафандры, до войны изготавливаемые в ЛИИ им. Громова, создавались в исследовательских целях и использовались в основном для экспериментальных полетов на стратосферных воздушных шарах. После войны интерес к скафандрам возобновился, и в 1952 году в подмосковном Томилине было открыто специальное предприятие по изготовлению и разработке таких систем — Завод № 918, ныне НПП «Звезда». В течение 50х годов предприятие разработало целую линейку экспериментальных скафандров, но только один из них, «Воркута», созданный под перехватчик «Су-9», был выпущен малой серией.

Практически одновременно с выпуском «Воркуты» предприятию было выдано задание на разработку скафандра и системы спасения для первого космонавта. Первоначально КБ Королева выдало «Звезде» техзадание на разработку скафандра, целиком замкнутого на систему жизнеобеспечения корабля. Однако за год до полета Гагарина было получено новое задание — на обычный защитный костюм, рассчитанный на спасение космонавта только при его катапультировании и приводнении.

Противники скафандров вероятность разгерметизации корабля считали чрезвычайно малой. Еще через полгода Королев опять поменял решение — на этот раз в пользу скафандров. За основу были взяты уже готовые авиационные скафандры. Времени на состыковку с бортовой системой корабля уже не осталось, поэтому был принят автономный вариант системы жизнеобеспечения скафандра, размещаемый в катапультном кресле космонавта.

Оболочка для первого космического скафандра СК-1 была во многом позаимствована от «Воркуты», но шлем был сделан полностью заново. Задача ставилась предельно жестко: скафандр должен был спасти космонавта обязательно! Никто не знал, как поведет себя человек во время первого полета, поэтому система жизнеобеспечения строилась так, чтобы спасти космонавта, даже если он потеряет сознание, — многие функции были автоматизированы. Например, в шлеме был установлен специальный механизм, управляемый датчиком давления. И если в корабле оно резко падало, специальный механизм мгновенно захлопывал прозрачное забрало, полностью герметизируя скафандр.

Послойно
Скафандры состоят из двух основных оболочек: внутренней герметичной и внешней силовой. В первых советских скафандрах внутренняя оболочка изготавливалась из листовой резины методом элементарного склеивания. Резина, правда, была специальной, для ее производства применялся высококачественный натуральный каучук. Начиная со спасательных скафандров «Сокол» герметичная оболочка стала резинотканевой, однако в скафандрах, предназначенных для выхода в открытый космос, альтернативы листовой резине пока не предвидится.

«Лунный» скафандр астронавтов - участников миссий Apollo.

Внешняя оболочка — тканевая. Американцы для нее используют нейлон, мы — отечественный аналог, капрон. Она защищает резиновую оболочку от повреждений и держит форму. Лучшей аналогии, чем футбольный мяч, придумать сложно: кожаный внешний чехол защищает внутреннюю резиновую камеру от бутс футболистов и обеспечивает неизменные геометрические размеры мяча.

Провести продолжительное время в резиновом мешке никакой человек не сможет (кто имеет армейский опыт марш-бросков в прорезиненном общевойсковом защитном комплекте, поймет это особенно хорошо). Поэтому в каждом скафандре в обязательном порядке присутствует система вентиляции: по одним каналам подводится ко всему телу кондиционированный воздух, по другим — отсасывается.

По методу работы системы жизнеобеспечения скафандры делятся на два вида — вентиляционные и регенерационные. В первых, более простых по конструкции, использованный воздух выбрасывается наружу, аналогично современным аквалангам. По такому принципу были устроены первые скафандры СК-1, скафандр Леонова для выхода в открытый космос «Беркут» и легкие спасательные скафандры «Сокол».

Термос
Для длительного пребывания в космосе и на поверхности Луны потребовались регенерационные скафандры длительного пребывания — «Орлан» и «Кречет». В них выдыхаемый газ регенерируется, из него отбирается влага, воздух донасыщается кислородом и охлаждается. По сути, такой скафандр в миниатюре копирует систему жизнеобеспечения целого космического корабля. Под скафандр космонавт одевает специальный сетчатый костюм водяного охлаждения, весь пронизанный пластиковыми трубками с охлаждающей жидкостью. Проблемы обогрева в выходных скафандрах (предназначенных для выхода в открытый космос) не возникала никогда, даже если космонавт работал в тени, где температура стремительно падает до -100С.

Дело в том, что наружный комбинезон идеально выполняет функции теплозащитной одежды. Для этого впервые была применена экранно-вакуумная изоляция, работающая по принципу термоса. Под внешней защитной оболочкой комбинезона расположены пять-шесть слоев специальной пленки из особого полиэтилена, терифталата, с двух сторон которой напылен алюминий. В вакууме между слоями пленки теплообмен возможен только за счет излучения, которое переотражается обратно зеркальной алюминиевой поверхностью. Внешний теплообмен в вакууме в таком скафандре настолько мал, что считается равным нулю, и при расчете учитывается только внутренний теплообмен.

Впервые экранно-вакуумная теплозащита была применена на «Беркуте», в котором Леонов вышел в открытый космос. Однако под первые спасательные скафандры, которые работали не в вакууме, одевался ТВК (теплозащитный вентилируемый костюм), сделанный из теплого простеганного материала, в котором и были проложены вентиляционные магистрали. В современных спасательных скафандрах «Сокол» этого нет.

Помимо всего этого на космонавтов надевается хлопчатобумажное белье со специальной антибактериальной пропиткой, под которым расположен последний элемент — специальный нагрудник с закрепленными на нем телеметрическими датчиками, передающими информацию о состоянии организма космонавта.

Соколята
Скафандры были на кораблях не всегда. После успешных шести полетов «Востоков» они были признаны бесполезным грузом, и все дальнейшие корабли («Восходы» и «Союзы») проектировались на полет без штатных скафандров. Целесообразным было принято использование только внешних скафандров для выхода в открытый космос. Однако гибель в 1971 году Добровольского, Волкова и Пацаева в результате разгерметизации кабины «Союза-11» заставила снова вернуться к проверенному решению. Однако старые скафандры в новый корабль не влезали. В срочном порядке под космические нужды стали адаптировать легкий скафандр «Сокол», изначально разрабатываемый для сверхзвукового стратегического бомбардировщика Т-4.

Задача оказалась не из легких. Если при приземлении «Востоков» космонавт катапультировался, то «Восходы» и «Союзы» осуществляли мягкую посадку с экипажем внутри. Мягкая она была только относительно — удар при приземлении был ощутимый. Амортизировало удар энергопоглощающее кресло «Казбек» разработки все той же «Звезды». Формовался «Казбек» индивидуально под каждого космонавта, который лежал в нем без единого зазора. Поэтому кольцо, к которому крепится шлем скафандра, при ударе обязательно бы сломало шейный позвонок космонавта.

В «Соколе» было найдено оригинальное решение — секторный шлем, не закрывающий затылочную часть скафандра, которая делается мягкой. Из «Сокола» также убрали ряд аварийных систем и теплозащитный слой, так как в случае приводнения при покидании «Союза» космонавты должны были переодеться в специальные костюмы. Была сильно упрощена и система жизнеобеспечения скафандра, рассчитанная всего на два часа работы.

В итоге «Сокол» стал бестселлером: начиная с 1973 года их было изготовлено более 280 штук. В начале 90-х два «Сокола» были проданы в Китай, и первый китайский космонавт полетел покорять космос в точной копии русского скафандра. Правда, нелицензионной. А вот скафандры для открытого космоса китайцам никто не продал, поэтому выхода в открытый космос они пока даже не планируют.

Кирасиры
В целях облегчения конструкции и увеличения подвижности внешних скафандров существовало целое направление (прежде всего в США), изучавшее возможность создания цельнометаллических жестких скафандров, напоминающих глубоководные водолазные. Однако частичное воплощение идея нашла только в СССР. Советские скафандры «Кречет» и «Орлан» получили комбинированную оболочку — жесткий корпус и мягкие ноги и руки. Сам корпус, который конструкторы называют кирасой, сваривается из отдельных элементов из алюминиевого сплава типа АМГ. Такая комбинированная схема оказалась на редкость удачной и сейчас копируется американцами. А возникла она по необходимости.

Американский лунный скафандр был сделан по классической схеме. Вся система жизнеобеспечения располагалась в негерметичном ранце на спине астронавта. Советские конструкторы, возможно, также пошли бы по этой схеме, если бы не одно «но». Мощность советской лунной ракеты Н-1 позволяла доставить на Луну только одного космонавта, в отличие от двух американских, а облачиться в одиночку в классический скафандр не представлялось возможным. Поэтому и была выдвинута идея жесткой кирасы с дверцей на спине для входа внутрь.

Специальная система тросиков и боковой рычаг позволяли надежно закрыть за собой крышку. Вся система жизнеобеспечения располагалась в откидной дверце и работала не в вакууме, как у американцев, а в нормальной атмосфере, что упрощало конструкцию. Правда, шлем пришлось делать не поворотным, как в ранних моделях, а монолитным с корпусом. Обзор же компенсировался гораздо большей площадью остекления. Сами шлемы в скафандрах настолько интересны, что заслуживают отдельной главы.

Шлем всему голова
Шлем — важнейшая часть скафандра. Еще в «авиационном» периоде скафандры делились на два типа — масочные и безмасочные. В первом — летчик использовал кислородную маску, по которой подавалась воздушная смесь для дыхания. Во втором — шлем отделялся от остального объема скафандра своеобразным воротничком, шейной герметичной шторкой. Такой шлем играл роль большой кислородной маски с непрерывной подачей дыхательной смеси. В итоге победила безмасочная концепция, которая обеспечивала лучшую эргономику, хотя и требовала большего расхода кислорода для дыхания. Такие шлемы и перекочевали в космос.

Космические шлемы также делились на два типа — съемные и несъемные. Первый СК-1 комплектовался несъемным шлемом, а вот леоновский «Беркут» и «Ястреб» (в котором Елисеев и Хрунов в 1969 году переходили из корабля в корабль) имели съемные шлемы. Причем присоединялись они специальным герморазъемом с гермоподшипником, что давало возможность космонавту вертеть головой. Механизм поворота был довольно интересен.

На кадрах кинохроники хорошо видны шлемофоны космонавтов, которые изготавливаются из ткани и тонкой кожи. На них смонтированы системы связи — наушники и микрофоны. Так вот, выпуклые наушники шлемофона входили в специальные пазы жесткого шлема, и при повороте головы шлем начинал вращение вместе с головой, как башня танка. Конструкция была довольно громоздкой, и от нее в дальнейшем отказались. На современных скафандрах шлемы несъемные.

Обязательный элемент шлема для выхода в космос — светофильтр. У Леонова был маленький внутренний светофильтр самолетного типа, покрытый тонким слоем серебра. При выходе в космос Леонов ощутил очень интенсивное нагревание нижней части лица, а при взгляде в сторону Солнца защитные свойства серебряного светофильтра оказались недостаточными — свет был ослепительно ярким. Исходя из этого опыта, все последующие скафандры стали оборудоваться полными наружными светофильтрами с напыленным довольно толстым слоем чистого золота, обеспечивающего пропускание всего 34% света. Самая большая площадь остекления — у «Орлана».

Причем на последних моделях есть даже специальное окошко сверху — для улучшения обзора. Разбить «стекло» шлема практически невозможно: делается оно из сверхпрочного поликарбоната лексана, который также используется, например, при остеклении бронекабин боевых вертолетов. Однако и стоит «Орлан» как два боевых вертолета. Точную цену не называют, но предлагают ориентироваться на стоимость американского аналога — $12 млн.

Следует начать с самого определения слова скафандр, которое с древнегреческого дословно переводится как «судно человека» или «лодкочеловек». Первым употребил данное слово, в известном нам смысле, французский аббат и математик Ла Шапель для описания разработанного им костюма. Упомянутый костюм являлся аналогом водолазного и предназначался для комфортной переправы солдат через реку. Несколько позже были созданы авиационные скафандры для летчиков, цель которых – обеспечить спасение летчика при разгерметизации кабины и во время катапультирования. С началом космической эры сформировался новый тип скафандра – космический.

Скафандр первого космонавта («СК-1») – Юрия Гагарина, был спроектирован как раз на базе авиационного костюма «Воркута». «СК-1» являлся мягким типом скафандра, который состоял из двух слоев: термопластика и герметичной резины. Внешний слой скафандра был обличен в оранжевый чехол, для более удобного проведения поисковых работ. Кроме того, под скафандр надевался теплозащитный комбинезон. К последнему крепились трубопроводы, задача которых заключалась в вентиляции костюма, вывода влаги и углекислоты, выделяемой человеком. Вентиляция происходила при помощи специального шланга, подключаемого к скафандру внутри кабины. Также «СК-1» имел так называемое ассинтезирующее устройство – нечто вроде эластичных трусов со сменными поглощающими прокладками.

Основная цель такого скафандра – уберечь космонавта от пагубного влияния окружения в аварийной ситуации. Поэтому при разгерметизации вентиляционный шланг мгновенно отсекался, опускалось забрало шлема и запускалась подача воздуха и кислорода из баллонов. При нормальной работе корабля, время работы скафандра составляло около 12-ти суток. В случае же разгерметизации или неполадки системы жизнеобеспечения (СЖО) – 5 часов.

Современный космический скафандр

Выделяют два основных типа космических скафандров: жесткий и мягкий. И если первый может вместить внушительный функционал системы жизнеобеспечения и дополнительные защитные слои, то второй — менее громоздкий и значительно повышает маневренность космонавта.

К первому выходу человека в открытый космос (Алексей Леонов) космические скафандры разделились еще на три типа: для спасения в случае аварийной ситуации, для работы в открытом космосе (автономный), а также универсальный.

Базовой моделью российского скафандра без выхода в открытый космос является «Сокол», американского «ACES». Первая модель «Сокола» вошла в эксплуатацию в 1973-м году, и надевается космонавтами при каждом полете на кораблях «Союз».

«Сокол»

Конструкция современной версии скафандра («СОКОЛ КВ-2») включает два склеенных слоя: силовой – снаружи, и герметичный – внутри. К гермооболочке подведены трубопроводы для осуществления вентиляции. Трубопровод для подведения кислорода подключен только к шлему скафандра. Габариты скафандра зависят напрямую от параметров человеческого тела, но имеют требования к космонавту: рост 161-182 см, обхват груди – 96-108 см. В целом значительных нововведений в этой модели не было и скафандр отлично справляется с поставленной целью – сохранение безопасности космонавта во время космической транспортировки.

«Орлан-МК»

Советский космический скафандр, предназначенный для ведения работ в открытом космосе. Модель МК применяется на МКС с 2009-го года. Данный скафандр является автономным и способен поддерживать безопасную работу космонавта в открытом космосе в течение семи часов. В конструкцию «Орлан-МК» входит небольшой компьютер, который позволяет видеть состояние всех систем скафандра во время внекорабельной деятельности (ВКД), а также рекомендации в случае неполадок какой-либо из систем. Шлем скафандра имеет золотое напыление для уменьшения вредного влияния солнечных лучей. Стоит отметить, что в шлеме имеется даже специальная система для продувки ушей, которые закладывает при изменении давления внутри скафандра. Ранец, расположенный позади скафандра, содержит механизм снабжения кислородом. Вес «Орлан-МК» составляет 114 кг. Время работы вне корабля – 7 часов.

О стоимости такого скафандра можно лишь предполагать: в диапазоне от 500 тыс. долларов до 1.5 млн долларов.

«A7L»

Настоящие испытания для разработчиков скафандров начались с момента начала подготовки высадки астронавтов на Луну. Для осуществления поставленной задачи был разработан скафандр «A7L». Кратко говоря о конструкции данного скафандра, следует упомянуть несколько особенностей. «A7L» состоял из пяти слоев, имел теплоизоляцию. Внутренний гермокостюм имел несколько разъемов для СЖО, внешняя прочная оболочка включала два слоя: противометеорный и огнестойкий. Сама оболочка была сделана из 30-ти различных материалов для обеспечения вышеупомянутых характеристик. Заметным компонентом «A7L» являлся носимый на спине ранец, который содержал основные компоненты СЖО. Примечательно, что во избежание перегрева астронавта, а также запотевания гермошлема, внутри скафандра циркулировала вода, которой передавалось тепло, выделяемое телом человека. Нагретая вода поступала в ранец, где охлаждалась посредством сублимационного холодильника.

«EMU»

Extravehicular Mobility Unit или «EMU» — американский костюм для внекорабельной деятельности, который наряду с «Орлан-МК» используется космонавтами для выхода в открытый космос. Является полужестким костюмом, по большей части схожем с российской разработкой. Среди некоторых отличий:

  • Литровый контейнер с водой, подключенный трубкой к шлему;
  • Усиленный корпус, способный выдерживать температуры в диапазоне от –184 °с до +149°с;
  • Время работы в открытом космосе – 8 часов;
  • Несколько меньшее давление внутри скафандра – 0,3 атм., в то время как у «Орлан МК» — 0,4 атм.;
  • Имеется видеокамера;
  • Наличие вышеперечисленных особенностей сказалось на весе костюма, который составляет около 145 кг.

Стоимость одного такого скафандра составляет 12 млн долларов.

Одежда космонавтов будущего

Недалеко заглядывая, скажем о введение в эксплуатацию новой модификации скафандра «Орлан-МКС» в 2016-м году. Основными особенностями данной модели является автоматическая терморегуляция, в зависимости от сложности выполняемой космонавтом работы в данный момент, и автоматизация подготовки скафандра для выполнения выхода в открытый космос.

НАСА также занимается разработкой новых скафандров. Один из таких прототипов уже проходит тестирование – «Z-1». Несмотря, что «Z-1» внешне очень схож со скафандром Базза Лайтера из мультфильма «История игрушек», его функционал имеет некоторые значительные инновации:

  • Наличие универсального порта в задней части скафандра позволит подключать к нему как автономную СЖО, в виде ранца, так и систему жизнеобеспечения, предоставляемую кораблем;
  • Повышенная подвижность астронавта в скафандре достигнута за счет: новая технология «вставок» в местах сгиба частей тела, мягкая конструкция костюма, а также относительно небольшой вес – около 73-х кг, в сборке для ВКД. Мобильность астронавта в «Z-1» настолько высока, что позволяет ему наклониться и достать до пальцев ног, присесть на колено, а то и вовсе сесть в позу похожую на позу «лотоса».

Но с «Z-1» уже на начальных этапах возникли проблемы – его громоздкость не позволяет находиться в нем астронавтам на борту некоторых космических кораблей. Поэтому НАСА, помимо «Z-1» и уже анонсированной модификацией — «Z-2», сообщает о работе над еще одним прототипом, особенности которого пока не раскрываются.

Нельзя не отметить, что в данной области возникают и инновационные смелые предложения, наиболее известное из которых — «Biosuit». Дэва Ньюмен — профессор Аэронавтики одного из лучших вузов мира (Массачусетского технологического) работала над концепцией такого костюма более 10-ти лет. Особенностью «Biosuit» является отсутствие пустого пространства в костюме для наполнения его газами с целью создания внешнего давления на тело. Последнее – производится механическим образом при помощи сплава титана и никеля, а также полимеров. То есть скафандр сам стягивается, создавая давление на тело. Будучи разделен на сегменты, «Biosuit» «не боится» проколов скафандра в том или ином места, так как место прокола не приведет к разгерметизации всего костюма, и может быть просто заклеено. Кроме того, данная технология значительно понизит вес скафандра и предотвратит травмы астронавтов, возникающие в результате работы в тяжелом костюме. Что еще остается в процессе разработки – так это шлем, который, к сожалению, по указанной технологии создать скорее всего не удастся. А посему, вероятно, в будущем нас ожидает некий симбиоз скафандра «Biosuit» и «EMU».

Подводя итоги, хочется отметить, что стремительное развитие технологий приводит к столь же стремительному развитию космической техники, инструментов и снаряжения. Тормозным фактором развития скафандров может быть лишь финансирование, так как данное снаряжение стоит миллионы долларов.

Читателям предлагается первый материал из увлекательного цикла ознакомительных статей о космической программе Японии.

Этой статьей, уважаемые читатели нашего сайта, мы открываем цикл материалов о японской космической программе. «О чем?!» – наверняка спросите вы. И будете совершенно правы – о японской программе освоения космоса известно не так много, а точнее, не слишком широкому кругу людей.

Конечно, любой школьник (по крайней мере, пока) знает, кто такой Юрий Гагарин и чем он знаменит. Некоторые даже вспомнят, когда именно и на каком корабле проходил его полет. Американцы до сих пор свято помнят имя своего первого астронавта (даже те из них, кто не знает, кто такой Гагарин) – Алана Шепарда, несмотря на то, что полет его, строго говоря, был с уборбитальным. Ну и конечно, в США все чтут легендарного командира экипажа «Аполлона-11», первого человека, ступившего (пока не доказано обратное) на поверхность Луны. Наконец, совсем недавно стал модным термин «тайконавт» вместе с именем первого китайца на орбите – Яна Ливэя.

Совсем недавно мы отмечали даже 50-летие орбитального полета первых четвероногих астронавтов – собак Белки и Стрелки. Скажите, уважаемые читатели, а слышали ли вы хоть об одном японском астронавте? Меня, например, всегда удивлял тот факт, что, несмотря на то, что почти любой человек с уверенностью назовет Японию одной из стран-лидеров в области высоких технологий, едва ли один из ста слышал что-то о космической программе этой страны. Казалось бы, кому, как не японцам с их технологиями покорять космос? Могу уверить вас, что в Японской космической программе немало интересного – у Страны восходящего солнца есть свои ракеты-носители, аппараты гордых детей Аматэрасу летали к Луне и астероидам, планируются полеты к Венере и Марсу. Японцы создали солнечную яхту и имеют свой «дом» на МКС. Обо всем этом мы расскажем вам. Сегодня же мы решили начать не с кораблей и спутников, «камней, палок и железок», а с людей, посланников Японии в космосе. Итак, сегодня мы представим вам самых примечательных японских астронавтов… и тех, кто почти ими стал.

Гагарин восходящего солнца

Итак, Юрий Гагарин, первый космонавт СССР и всего мира:

Алан Шепард, первый американский астронавт:

Ян Ливэй, первый китайский тайконавт:

А это – самый первый астронавт от Японии и первый японец в космосе, Тоёхиро Акияма (秋山豊寛):

Самое удивительное заключается в том, что первый японский астронавт… астронавтом не был вовсе! Он родился в самый разгар Второй мировой войны, в 1942 году, и вряд ли мог себе представить, какое будущее его ожидает: что космический корабль Советского Союза, тогдашнего врага Японии, разгромившего в 1945 г. Квантунскую армию, не просто доставит его на орбиту много десятков лет спустя, а сделает первым японским астронавтом. Дорога к космосу началась для Акиямы в 1966 г. – именно в этом году он поступил на работу в телерадиокорпорацию ТВS (Tokyo Broadcasting System). В ней он хорошо продвигался по службе, занимая все более значительные должности, и в 1989 прошел отбор по программе коммерческого космического полета, контракт на который ТВS заключила с Советским Союзом, чтобы отметить 40-летие своего основания. Таким образом, Акияма стал еще и первым профессиональным журналистом в космосе, причем не только в Японии, но и в мире!

С октября 1989 года он тренировался в центре подготовки космонавтов им. Ю.Гагарина, а 2 декабря 1990 года на корабле «Союз ТМ-11» стартовал в космос. Командиром экипажа был В.М.Афанасьев, бортинжинером – М.Х.Манаров, оба – советские космонавты.

Корабль стыковался со станцией «Мир», на ней японец провел около 5 дней. За это время он вел прямые репортажи с орбиты и даже ставил научные эксперименты… с японскими древесными лягушками! Всего его полет продолжался 7 суток, 21 час и 54 минуты. К сожалению, выяснилось, что журналисты не очень подходят для космического полета: несмотря на подготовку, во время полета у Акиямы были проблемы с вестибулярным аппаратом, т.н. космическая болезнь.

Не менее интересно сложилась и его карьера после полета. В 1991 году он снимал в Казахстане репортаж о судьбе Аральского моря. В 1995 г. ушел из своей корпорации в знак протеста против ее коммерциализации. После этого первый японский астронавт… организовал ферму по выращиванию грибов и риса в префектуре Фукусима! Воистину, Японии достался самый нестандартный первый астронавт в мире.

Терешкова по-японски

Во времена первых космических полетов считалось, что космос – дело не женское. Даже полет Валентины Терешковой мало что изменил – прекрасная половина человечества украсила собой космическое пространство в массовом порядке намного позже.

А что же с японцами, а точнее, с японками? Первой дочерью Аматэрасу в космосе стала Тиаки Мукаи (向井千秋):

В сравнении с Терешковой, побывавшей на орбите в 1963 году, и даже первой «космической» американкой Салли Райд (она летала в космос в 1983 году), Тиаки существенно «припозднилась»: она добралась до космоса только в 1994 году. Летала она на американских «шаттлах», причем целых два раза – второй раз в 1998 году. Общий ее налет составил довольно солидные 8 суток 21 час и 44 минуты. Кстати, в первый раз она летала в космос на печально знаменитом шаттле «Колумбия», погибшем 1 февраля 2003 года.

Турист из Японии

Космический туризм – последний писк туристической моды. Причем удовольствие это пока еще очень и очень недешевое – речь идет о миллионах долларов. Японцы, однако, и тут не ударили в грязь лицом. Вернее, почти не ударили.

Знакомьтесь, это – Дайсукэ Эномото (榎本大輔):

Как видите, на астронавта он мало похож. Собственно, так и есть: этот милый японец – предприниматель, владелец интернет-фирмы «Livedoor». Он должен был стать седьмым в истории космическим туристом, и одновременно первым – из Азии и Японии.

Он должен был лететь на российском корабле «Союз» в сентябре 2006 года. Однако в августе из-за «несоответствия медицинских показателей» от полета он был отстранен. Примечательно, что вместо него в космос отправилась Ануше Ансари – американка иранского происхождения, первая в истории женщина – космический турист.

Крайний

На самом деле, космонавты – люди весьма суеверные. Например, они никогда не говорят «последний», только «крайний». Так вот, крайним среди японцев пока является Соити Ногути (野口聡一):

Он вполне профессиональный астронавт, в первый раз в космос должен был отправиться в 2003 году, однако из-за уже упомянутой нами катастрофы шаттла «Колумбия» полет был перенесен. В итоге стартовал он 25 июля 2005 года, на шаттле «Дискавери», это был первый полет системы Space Shuttle после той трагедии.

За свои полеты Ногути не раз выходил в открытый космос и работал на Международной космической станции:

До самого последнего времени он и вернулся только недавно – 2 июня 2010 года. Это было крупным событием в Японии, корреспонденты ведущего информагентства Киодо Цусин специально ездили в Казахстан и всю ночь в дикой степи ждали возвращения спускаемого аппарата «Союза», на котором возвращался астронавт, чтобы взять у него интервью сразу после открытия люков.

На этом, дорогие посетители нашего сайта, мы прощаемся с вами. Ждите следующих наших статей о космической программе Японии!

P.S. Читайте следующие статьи данного цикла.

Японский минимализм: Японцы в космосе

Поражение во Второй мировой войне стало сущим подарком для Японии, как бы дико это ни звучало. Идеи национального превосходства ушли в прошлое вместе с милитаристским угаром, и нация смогла сосредоточиться на действительно важных вопросах - прежде всего, на эффективности. Так и появилось знаменитое японское чудо, о котором слышали все. Но вряд ли многие знают, что нечто подобное происходило и в области космических разработок. Японцы выстраивали свою космическую программу не славы ради, но исключительно для достижения утилитарных, пусть и масштабных целей.

Три сестры

Японский космический бюджет (по данным euroconsultec. com) составляет не более 12% от бюджета NASA. Тем не менее на эти деньги уже несколько десятилетий живут и процветают не одно, не два, а целых три независимых гражданских космических подразделения: космическое агентство NASDA (National Space Development Agency), институт астронавтики ISAS (Institute of Space and Astronautical Science) и научная лаборатория NAL (National Aerospace Laboratory). Причем единое руководство отсутствует и у каждого из трех подразделений есть собственные исследовательские центры и пусковые установки.

Среди специалистов распространено мнение, что именно благодаря конкуренции Япония в столь сжатые сроки и при довольно ограниченном финансировании достигла больших успехов. В последние годы, на фоне ухудшающегося экономического положения, появились разговоры о слиянии трех подразделений или хотя бы о едином руководстве ими, но «сестер» по-прежнему три и их суммарный бюджет по-прежнему находится в районе $2 млрд.

NASDA

Японское агентство космических разработок (NASDA) было образовано в 1969 году (см. врезку «Основные вехи истории NASDA»). С самого начала ставка была сделана на максимально эффективное использование средств. Технологией помогли американцы. В довольно короткие сроки Япония освоила технологию космических полетов и научилась выводить грузы на орбиту уже самостоятельно. Здесь важно заметить, что для Японии космос - не роскошь и не предмет национального престижа. И даже не военный объект. Жизнь всего населения страны зависит от погоды и стихий. Поэтому для Японии исследования в области метеорологии - вопрос буквально жизни и смерти. На этом в основном и сконцентрированы усилия ученых и инженеров.

Космический самолет «Надежда»

Все знают, что запускать ракеты очень-очень дорого. Просто неприлично
дорого. Поэтому во всем мире и фантасты и ученые придумывают самые разнообразные способы вывода грузов на орбиту. Японцы остановились на беспилотном космическом самолете. Назвав его HOPE-X («Надежда» - в переводе с английского), или H-II Orbiting Plane Experimental, они начали активно развивать технологии, составляющие этот грандиозный проект. На примере его реализации хорошо видно, насколько рачительно использовались средства налогоплательщиков и насколько продуманным был каждый этап.

«Летающая тарелка»

Первым шагом на пути создания HOPE-X стал эксперимент по возвращению с орбиты OREX (Orbital Re-Entry eXperiment), состоявшийся в 1994 году. Суть эксперимента заключалась в отправке небольшого объекта на орбиту и возвращении его после одного витка. Больше всего он был похож на «летающую тарелку», только очень маленькую (диаметр - 3,4 м, радиус носовой части - 1,35 м, высота - 1,46 м, вес - около 865 кг при запуске и около 761 кг к моменту возвращения). Сначала ракета H-II вывела OREX на орбиту высотой 450 км. Примерно через 100 минут после запуска устройство проходило над островом Танегасима. В этот момент согласно плану сработали тормозные двигатели и начался процесс схода с орбиты. За всем этим наблюдали наземные станции островов Танегасима и Огасавара. Покинув орбиту, OREX вошел в верхние слои атмосферы где-то в центре Тихого океана. Произошло это через 2 часа после запуска. Во время снижения носовая часть нагрелась до 15700C, что привело к потере связи с устройством, потому что плазма, образовавшаяся вокруг аппарата, отражала радиоволны. В эти моменты состояние OREX фиксировалось сенсорами и записывалось в бортовой компьютер. В момент восстановления связи устройство передало данные на станции телеметрии, расположенные на самолетах и судах. Затем OREX упал в океан примерно в 460 км от острова Рождества. Весь полет занял примерно два часа и десять минут. Все поставленные цели были достигнуты: в частности, собраны данные по аэродинамике и тепловым режимам в момент возвращения с орбиты, данные о поведении материалов обшивки, проведен анализ состояния аппарата в момент потери связи с Землей и получена навигационная информация, собранная при помощи системы глобального позиционирования GPS. Самый ценный результат - данные о поведении сверхпрочных материалов обшивки, которые планируется использовать в проекте космического самолета HOPE-X. В OREX принимала участие японская Национальная аэрокосмическая лаборатория (NAL).

До пятнадцати скоростей звука

В феврале 1996 года ракета-носитель J-I вывела на орбиту следующий аппарат - HYFLEX (Hypersonic FLight EXperiment). Целями проекта было научиться строить гиперзвуковые (то есть обладающие скоростью, в 3 раза выше скорости звука) летательные аппараты и собрать данные об их поведении.

На высоте около 110 км HYFLEX отделился от ракеты-носителя и совершил свободный полет со скоростью 3,9 км/с, временами доходившей до 15 Мах (за 1 Мах принимается скорость звука в атмосфере, или около 1200 км/ч). После прохождения «мертвой зоны» и восстановления радиоконтакта аппарат передал телеметрические данные на самолеты и суда, выбросил парашюты и попытался приводниться. Однако произошла неудача - он утонул, выполнив, тем не менее, всю программу полета. Важным аспектом эксперимента стало исследование навигационной системы и системы контроля высоты. Аппарат весил 1054 кг, площадь его поверхности составляла 4,27 кв. м, длина - 4,4 м, размах крыльев - 1,36 м, высота - 1,04 м.

Аспекты автоматической посадки

Проблема автоматической посадки так и не была решена промышленно. Такие системы существовали (например, военные Ил-76, да и «Буран» садился сам), но их надежность, мягко говоря, оставляла желать лучшего. Отработка системы беспилотной посадки на низких (относительно) скоростях ALFLEX стала следующим шагом на пути создания космического самолета. С июля по август 1996-го было проведено 13 экспериментов в рамках проекта ALFLEX. Аппарат, аналогичный будущему HOPE-X, поднимали при помощи вертолета на очень большую высоту и сбрасывали. Устройство захватывало посадочную линию и совершало автоматическую посадку. Все эксперименты завершились успешно. Длина устройства составляла 6,1 м, размах крыльев - 3,78 м, высота без шасси - 1,35 м, вес был 760 кг.

Как проходил эксперимент

Сначала ALFLEX прикреплялся к вертолету. Затем последний поднимался в воздух и следовал заданным курсом. Когда нос ALFLEX выравнивался с посадочной полосой, вертолет разгонялся до 90 узлов (примерно 166 км/ч) и отпускал устройство в свободный полет. Курс снижения составлял около 300. При отрыве от вертолета скорость аппарата была около 180 км/ч. В момент касания земли ALFLEX выпускал тормозной парашют, а также снижал скорость при помощи шасси. После каждого «забега» исследовались возможные повреждения вертолета и модуля ALFLEX. В результате были получены данные о поведении аппарата, по характеристикам аналогичного самолету HOPE-X в условиях низкоскоростного режима посадки. Опыт разработки системы автономного снижения и посадки был приобретен.

Как это было: «Фаза-1»

Собственно, поводом к написанию этой статьи послужило опубликование результатов эксперимента HSFD Phase-I («Фазы-1»). HSFD (Hish Speed Flight Demonstration) - это очередной шаг на пути строительства космического самолета. Уже создан аппарат с реактивным двигателем, способный разгоняться до 0,6 Мах (около 700 км/ч), который может сам взлетать, следовать заданным маршрутом и садиться в указанном месте.

Как раз такое устройство взлетело осенью 2002 года с острова Рождества. Аппарат разогнался, поднялся на высоту 5 км, затем спустился, спланировал и приземлился на ту же полосу. Он в точности выполнил программу полета, которая, кстати, может быть в любой момент изменена. Устройство «Фазы-1» является уменьшенной копией HOPE-X (составляет 25% от размера будущего самолета). Оно снабжено реактивным двигателем и шасси. Бортовой компьютер при помощи GPS и датчиков определяет параметры полета и управляет движением. Габариты аппарата «Фазы-1» такие: длина - 3,8 м, размах крыльев - 3 м, высота - 1,4 м. Вес - 735 кг. Площадь крыльев - 4,4 кв. м. Мощность двигателя - 4410 Н.

Как это будет: «Фаза-2»

Ничуть не менее интересной будет вторая фаза эксперимента HSFD. Аппарат будет такой же, как в «Фазе-1». Только вместо ракетного двигателя у него будет огромный парашют, а вместо шасси - надувные мешки, вроде подушек безопасности в автомобилях. Сначала устройство подцепят за хвостовую часть к небольшому воздушному шару. Он «донесет» аппарат до огромного аэростата, который в свою очередь вытащит его в стратосферу. Затем на высоте примерно 30 км челнок отстрелится и полетит вниз. Разогнавшись до околозвуковых скоростей, он соберет разнообразные аэродинамические данные, затем выберет направление и при помощи парашютов выйдет на посадку. Поскольку у него нет никаких двигателей, аппарат «Фазы-2» спланирует и использует для посадки только парашют и надувные мешки. Этот эксперимент планируется провести в 2003 году.

Если «Фаза-2» окончится так же успешно, как и все предыдущие эксперименты, следующим шагом станет TSTO (Two-Stage To Orbit), это будет что-то похожее на «Буран», но принципиально беспилотное, то есть там даже не предусмотрена возможность пилотируемых полетов. А следующим шагом станет уже полноценный космический самолет - устройство, способное взлетать с обычного аэродрома, долетать до орбиты и возвращаться. Когда это будет - совершенно неясно, но нынешние темпы японской программы внушают уверенность в том, что когда-нибудь это обязательно произойдет.

Основные факты в развитии космоса:

1969 Июнь 61-я сессия Парламента одобрила закон о создании NASDA.
Октябрь NASDA получает прописку - Космический центр на острове Танегасима, два филиала в Токио - «Кодиара» и «Митака» и две станции слежения - «Кацура» и «Окинава».
1970 Октябрь Начато создание ракеты N-I. Это трехступенчатый носитель, построенный по американской технологии Тop-Delta.
1972 Июнь Основан Космический центр в городе ученых Цукуба.
1975 Сентябрь Ракета N-I вывела на орбиту первый японский спутник «Кику-1», который проработал в космосе до 28 апреля 1982 года.
1976 Сентябрь Начато создание ракеты N-II, тоже трехступенчатой и тоже по американской технологии Тop-Delta.
1977 Февраль Запуск первого японского геостационарного спутника «Кику-2». Осуществлен ракетой № 3 серии N-I.
1978 Октябрь Основан Центр наблюдения Земли.
1979 Август Открыт музей в Космическом центре «Танегасима».
1980 Июль Основан Центр изучения реактивного движения в городе Какуда.
1981 Февраль Начало запусков ракет N-II и разработки ракет H-I.
Сентябрь Завершение серии запусков ракет N-I (всего было запущено 7 спутников). Начало строительства в Центре «Танегасима»
пусковой площадки для ракет H-I.
1985 Август Отобраны трое кандидатов на роль специалиста по полезной нагрузке для полета на шаттле. Ими стали Мамору Мори,
Такао Дой и Тиаки Наито. Начало предварительных разработок космической станции.
Сентябрь Начало строительства в Центре «Танегасима» пусковой площадки для ракет H-II.
1986 Август Начало разработки ракет серии H-II и запусков ракет серии H-I.
1987 Февраль Завершение серии запусков ракет N-II (всего было запущено 8 спутников).
1988 Сентябрь Подписано межправительственное соглашение (IGA) о разработке и совместном использовании космической станции. Страны-участницы: Япония, США, Канада и некоторые европейские. Окончание строительства полигона на острове Танегасима, где впоследствии испытывался ракетный двигатель LE-7.
1989 Июнь IGA утверждено японским парламентом.
Октябрь Празднование 20-летия NASDA.
1990 Апрель Отбор специалиста по полезной нагрузке для шаттла.
1991 Июль Начало процесса отбора кандидатов на роль первого японского астронавта (любопытно, что первый японец, побывавший в космосе, Акияма Тоёхиро, не имел отношения к NASDA, а летал с русскими космонавтами в 1990 году по инициативе
телекомпании TBS, в которой работал редактором и ведущим международных новостей).
1992 Февраль Завершение серии запусков ракет H-I (всего запущено 9 спутников).
Апрель Принято решение о кандидатуре первого космонавта. Им стал Мамору Мори.
Сентябрь Во время полета на шаттле Мори провел 34 эксперимента в рамках проекта «Fuwatto′92» - разработки в области создания новых материалов в условиях микрогравитации.
Октябрь Отбор второго специалиста по полезной нагрузке для продолжения исследований в области микрогравитации.
1993 Апрель Начало разработки ракет серии J-I.
1994 Февраль Начало запусков ракет серии H-II. Запущено устройство OREX (эксперимент по возвращению с орбиты) и VEP (система оценки полезной нагрузки).
Июль Второй международный эксперимент по изучению микрогравитации.
Август Запуск спутника «Кику-6» при помощи ракеты H-II № 2 (окончился неудачей из-за отказа БДУ, бортовой двигательной
установки, также называемой маневровыми двигателями).
1995 Март Ракета H-II № 3 выводит на орбиту SFU (возвращаемый исследовательский спутник) и геостационарный метеорологический спутник GMS-3.
1996 Январь Шаттл возвращает на Землю модуль SFU.
Февраль Ракета J-I № 1 выводит на орбиту гиперзвуковой тестовый модуль HYFLEX.
Июль-август Выполнено 13 экспериментальных полетов в рамках проекта автоматической посадки ALFLEX.
1996 Август Четвертая ракета серии H-II выводит на орбиту спутники «Мидори» в рамках проекта наблюдения за окружающей средой ADEOS.
1997 Ноябрь Впервые японский астронавт, Такао Дой, совершает выход в открытый космос.
1998 Февраль Пятая ракета H-II выводит на орбиту радиоретрансляционный спутник COMETS.
1999 Ноябрь Неудачный старт восьмой ракеты серии H-II.
2001 Август Запуск первой ракеты серии H-IIA.