Презентация на тему "Поперечность световых волн. Поляризация света"

Явления интерференции и дифракции света подтверждают его волновую природу. В начале XIX века, Т. Юнг и О. Френель создав волновую теорию света, считали световые волны продольными, т.е. подобными звуковым волнам. Для этого им пришлось ввести некую гипотетическую среду, названную эфиром , в которой и происходило распространение продольных световых волн. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде). Однако уже в то время существовали факты, противоречащие продольности световых волн.

Еще в средние века моряки привозили из Исландии необычные прозрачные камни, которые позже назвали исландским шпатом . Необычность их заключалась в том, что если кусочек исландского шпата положить на какую-либо надпись, то сквозь него надпись будет видеться раздвоенной.

В 1669 году датский ученый Бартолин сообщил интересные результаты своих опытов с кристаллами исландского шпата. При прохождении сквозь такой кристалл луч расщепляется на два (рис. 2.6.1). Эти лучи получили названия обыкновенный луч и необыкновенный луч , а само явление - двойное лучепреломление .

Обыкновенный луч подчиняется обычному закону преломления, а необыкновенный луч не подчиняется этому закону. Лучи раздваивались даже при их нормальном падении на кристалл исландского шпата. Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие сквозь кристалл. Бартолин обнаружил также, что в кристалле существует некоторое направление, вдоль которого падающий луч не раздваивается. Однако объяснения этим явлениям он дать не мог.

Несколько лет спустя это открытие Бартолина привлекло к себе внимание Гюйгенса, который вводит понятие оптической оси кристалла (Бартолин фактически ее открыл).

Оптической осью кристалла называется выделенное направление в кристалле, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь.

В 1809 году французский инженер Э. Малюс провел опыт с кристаллами турмалина (прозрачными кристаллами зеленоватой окраски). В этом опыте свет последовательно пропускался через две одинаковые пластинки из турмалина. Если вторую пластинку поворачивать относительно первой, то интенсивность света, прошедшего через вторую пластинку изменялась от максимального значения до нуля (рис. 2.6.2). Зависимость интенсивности света I от угла j между оптическими осями обеих пластинок имеет вид:

(закон Малюса ), (2.6.1)

где I 0 – интенсивность падающего света.

Рис. 2.6.3 а . Рис. 2.6.3 б .

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных световых волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны.

Чтобы понять, как ведет себя поперечная волна, рассмотрим волну, бегущую по шнуру в вертикальной плоскости. Если на пути этой волны поставить ящик с вертикальной щелью (рис. 2.6.3 а ), то волна свободно проходит через щель. В случае если щель в ящике расположена горизонтально, то волна сквозь нее уже не проходит (рис. 2.6.3 б ). Такая волна называется также плоско-поляризованной , т.к. колебания в ней происходят в одной (вертикальной) плоскости.

Опыты с кристаллами исландского шпата и турмалина позволили доказать, что световая волна является поперечной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века Максвелл пришел к выводу о том, что свет – это электромагнитная волна. Этот вывод был сделан на основе совпадения скорости распространения электромагнитных волн, которая получается из теории Максвелла, с известным значением скорости света. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

В электромагнитной теории света исчезли также затруднения, связанные с необходимостью введения особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Принято плоскость, в которой колеблется вектор , называть плоскостью колебаний , а плоскость, в которой происходят колебания вектора , плоскостью поляризации . Поскольку во всех процессах взаимодействия света с веществом основную роль играет вектор напряженности электрического поля , то его называют световым вектором . Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такая волна называется линейно-поляризованной или плоско-поляризованной .

Линейно-поляризованный свет испускается лазерами. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), не поляризован. Это связано с тем, что атомы излучают свет отдельным цугами независимо друг от друга. В результате чего вектор в результирующей световой волне беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными.

Световая волна, у которой направления колебаний светового вектора, хаотически меняются во времени, называется естественным или неполяризованным светом .

Естественный свет, пройдя через кристалл исландского шпата или турмалина, поляризуется. Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления для двух взаимно перпендикулярно поляризованных волн различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 2.6.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными .

Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет неба частично или полностью поляризован. Поляризация отраженного света впервые наблюдалась Малюсом, когда он смотрел сквозь кристалл исландского шпата на отражение заходящего солнца в окнах Люксембургского дворца в Париже. Малюс установил, что отраженный свет в той или иной степени поляризован. Степень поляризации отраженного пучка зависит от угла падения: при нормальном падении отраженный свет полностью не поляризован, а при падении под углом, который называется углом полной поляризации или углом Брюстера, отраженный луч поляризован на все 100 %. При отражении под углом Брюстера отраженный и преломленный лучи перпендикулярны между собой (рис. 2.5.4). Отраженный луч плоско-поляризован параллельно поверхности.

Т.к. , и , то угол Брюстера находится по формуле .

Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию света, а глаза некоторых насекомых, например, пчел, воспринимают ее.


| | | | | | 7 |

Сегодня на уроке мы познакомимся с явлением поляризации света. Изучим свойства поляризованного света. Познакомимся с экспериментальным доказательством поперечности световых волн.

Явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Но каких волн - продольных или поперечных?

Длительное время основатели волновой оптики Юнг и Френель считали световые волны продольными, т. е. подобными звуковым волнам. В то время световые волны рассматривались как упругие волны в эфире, заполняющем пространство и проникающем внутрь всех тел. Такие волны, казалось, не могли быть поперечными, так как поперечные волны могут существовать только в твердом теле. Но как могут тела двигаться в твердом эфире, не встречая сопротивления? Ведь эфир не должен препятствовать движению тел. В противном случае не выполнялся бы закон инерции.

Однако постепенно набиралось все больше и больше экспериментальных фактов, которые никак не удавалось истолковать, считая световые волны продольными.

Опыты с турмалином

А сейчас, рассмотрим подробно только один из экспериментов, очень простой и исключительно эффектный. Это опыт с кристаллами турмалина (прозрачными кристаллами зеленой окраски).

Если направить нормально на такую пластину пучок света от электрической лампы или солнца, то вращение пластины вокруг пучка никакого изменения интенсивности света, прошедшего через нее, не вызовет (рис.1.). Можно подумать, что свет только частично поглотился в турмалине и приобрел зеленоватую окраску. Больше ничего не произошло. Но это не так. Световая волна приобрела новые свойства.

Эти новые свойства обнаруживаются, если пучок заставить пройти через второй точно такой же кристалл турмалина (рис.2(а)), параллельный первому. При одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок еще более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным, то обнаружится удивительное явление - гашение света. По мере увеличения угла между осями интенсивность света уменьшается. И когда оси перпендикулярны друг другу, свет не проходит совсем. Он целиком поглощается вторым кристаллом.

Световая волна с колебаниями по всем направлениям, перпендикулярным направлению распространения, называется естественной .

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным .

Поляризация света - это одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).

Поляризаторы - приборы дающие возможность получить поляризованный свет.

Анализаторы - приборы с помощью которых можно проанализировать является ли свет поляризованным или нет.

Схема действия поляризатора и анализатора

Поперечность световых волн

Из описанных выше опытов следует два факта:

во-первых , что световая волна, идущая от источника света, полностью симметрична относительно направления распространения (при вращении кристалла вокруг луча в первом опыте интенсивность не менялась).

во-вторых , что волна, вышедшая из первого кристалла, не обладает осевой симметрией (в зависимости от поворота второго кристалла относительно луча получается та или иная интенсивность прошедшего света).

Интенсивность света, вышедшего из первого поляризатора:

Интенсивность света прошедшего второй поляризатор:

Интенсивность света прошедшего через два поляризатора:

Сделаем вывод: 1. Свет - поперечная волна. Но в падающем от обычного источника пучке волн присутствуют колебания всевозможных направлений, перпендикулярных направлению распространения волн.

2. Кристалл турмалина обладает способностью пропускать световые волны с колебаниями, лежащими в одной определенной плоскости .

Модель линейной поляризации световой волны

Поляроиды

Не только кристаллы турмалина способны поляризовать свет. Таким же свойством, например, обладают так называемые поляроиды. Поляроид представляет собой тонкую (0.1 мм) пленку кристаллов герапатита, нанесенную на целлулоид или стеклянную пластинку. С поляроидом можно проделать те же опыты, что и с кристаллом турмалина. Преимущество поляроидов в том, что можно создавать большие поверхности, поляризующие свет.

К недостаткам поляроидов относится фиолетовый оттенок, которым они придают белому свету.

Дифракция и интерференция света подтверждает волновую природу света. Но волны могут быть продольными и поперечными. Рассмотрим следующий опыт.

Поляризация света

Пропустим пучок света через прямоугольную пластину турмалина, одна из граней которой параллельна оси кристалла. Никаких видимых изменений не произошло. Свет лишь частично погасился в пластине и приобрел зеленоватую окраску.

картинка

Теперь после поместим еще одну пластину после первой. Если оси обоих пластин будут сонаправлены, ничего не произойдет. Но если второй кристалл начать вращать, то свет будет гаситься. Когда оси будут перпендикулярны, света вообще не будет. Он целиком поглотиться второй пластиной.

картинка

Сделаем два вывода:

1. волна света симметрична относительно направления распространения.

2. После прохождения первого кристалла волна перестает обладать осевой симметрией.

С точки зрения продольных волн объяснить это не удастся. Следовательно, свет – поперечная волна. Кристалл турмалина является поляроидом. Он пропускает световые волны, колебания которых происходят в одной плоскости. Это свойство хорошо проиллюстрировано на следующем рисунке.

картинка

Поперечность световых волн и электромагнитная теория света

Свет, который получается после прохождения поляроида, называется плоскополяризованным светом. В поляризованном свете, колебания происходят только в одном – поперечном направлении.

Электромагнитная теория света берет свое начало в работах Максвелла. Во второй половине 19 века Максвелл доказал теоретически существование электромагнитных волн, которые могут распространяться даже в вакууме.

И он предположил, что свет тоже является электромагнитной волной. В основе электромагнитной теории света лежит тот факт, что скорость света и скорость распространения электромагнитных волн совпадают.

К концу 19 века было окончательно установлено, что световые волны возникают из-за движения заряженных частиц в атомах. С признанием этой теории отпала необходимость в светоносном эфире, в котором распространяются световые волны. Световые волны - это не механические, а электромагнитные волны.

Колебания световой волны состоят из колебаний двух векторов: вектора напряженности и вектора магнитной индукции. За направление колебаний в световых волнах принято считать направление колебаний вектора напряженности электрического поля.

Поперечная волна - волна, распространяющаяся в направлении, перпендикулярном к плоскости, в которой происходят колебания частиц среды (в случае упругой волны) или в которой лежат векторы электрического и магнитного поля (для электромагнитной волны).

К поперечным волнам относят, например, волны в струнах или упругих мембранах, когда смещения частиц в них происходят строго перпендикулярно направлению распространения волн, а также плоские однородные электромагнитные волны в изотропном диэлектрике или магнетике; в этом случае поперечные колебания совершают векторы электрического и магнитного полей.

Поперечная волна обладает поляризацией, т.е. вектор её амплитуды определённым образом ориентирован в поперечной плоскости. В частности, различают линейную, круговую и эллиптическую поляризации в зависимости от формы кривой, которую описывает конец вектора амплитуды. Понятие поперечной волны так же, как и продольной волны, до некоторой степени условно и связано со способом её описания. "Поперечность" и "продольность" волны определяются тем, какие величины реально наблюдаются. Так, плоская электромагнитная волна может описываться продольным Герца вектором. В ряде случаев разделение волн на продольные и поперечные вообще теряет смысл. Так, в гармонической волне на поверхности глубокой воды частицы среды совершают круговые движения в вертикальной плоскости, проходящей через волновой вектор , т.е. колебания частиц имеют как продольную, так и поперечную составляющие.

В 1809 году французский инженер Э. Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки могли поворачиваться друг относительно друга на угол φ

Интенсивность прошедшего света оказалась прямо пропорциональной cos2 φ:

Явление Брюстера используется для создания поляризаторов света, а явление полного внутреннего отражения – для пространственной локализации световой волны внутри оптического волокна. Показатель преломления материала оптического волокна превышает показатель преломления окружающей среды (воздуха), поэтому световой луч внутри волокна испытывает на поверхности раздела волокно – среда полное внутреннее отражение и не может выйти за пределы волокна. С помощью оптического волокна можно послать луч света из одной точки пространства в другую по произвольной криволинейной траектории.

В настоящее время созданы технологии изготовления кварцевых волокон диаметром , которые практически не имеют внутренних и внешних дефектов, а их прочность не меньше прочности стали. При этом удалось снизить потери электромагнитного излучения в волокне до величины менее , а также существенно уменьшить дисперсию. Это позволило в 1988г. ввести в эксплуатацию волоконно-оптическую линию связи, соединившую по дну Атлантического океана Америку с Европой. Современные ВОЛС способны обеспечить скорость передачи информации свыше .


При большой интенсивности электромагнитной волны оптические характеристики среды, включая показатель преломления, перестают быть постоянными и становятся функциями электромагнитного излучения. Принцип суперпозиции для электромагнитных полей перестаёт выполняться, и среда называется нелинейной . В классической физике для описания нелинейных оптических эффектов используется модель ангармонического осциллятора . В этой модели потенциальную энергию атомного электрона записывают в виде ряда по степеням смещения x электрона относительно его положения равновесия